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1 Introduction

This note deals with general stochastic general equilibrium models in continuous time. In partic-
ular, we deal with macroeconomic finance variables as interest rates, asset prices, net wealth, and
leverage, with a view of dealing with macroeconomic fluctuations. The two major dimensions of the
analysis are related to the source of uncertainty and to the way it is propagated in the economy.

First, we assume there are aggregate stochastic shocks which hit the economy frequently. That
is, we will not deal with rare big shocks, but with continuous, small, and imperfectly observed ran-
dom perturbations in the fundamentals of the economy. The two branches of financial economics,
financial microeconomics and macroeconomics, can be distinguished by the type of risk they tend
to address. While microfinance deals mainly with idiosyncratic risk, and the insurance or shar-
ing mechanisms provided by asset markets, macrofinance is more concerned with the existence of
aggregate risk and the way it is absorbed, shared, amplified or smoothed out by the operating of
asset markets. In this note we will assume there is an exogenous source of risk which is introduced
through supply shocks taking the form of dividend or productivity random changes.

Second, the propagation of shocks may depend on the existence of frictions in the economy. We
take as a benchmark a frictionless, representative agent, endowment economy (see section 2) and
introduce progressively several frictions. In the literature followed in this note, there are frictions if
there is some type of heterogeneity among agents. They can be rooted in differences in preferences,
participation in financial markets, rates of return on assets, information, for instance. In this note
we consider only one type of friction: limited participation in 3. We will study the distortions
introduced by this type of friction in a benchmark exchange economy and in a production economy
in which there are costs of adjustment of capital (in section 4). Brunnermeier and Sannikov (2016)
call this case technological illiquidity. We will see that in some cases there is an effect on the wealth
distribution on the asset returns.

The objective of this note is mainly pedagogical to make accessible some relevant recent research,
by providing some detail on the construction of the models and on the way they are related. We
will focus on the following papers: Basak and Cuoco (1998), Brunnermeier and Sannikov (2014)
and the survey Brunnermeier and Sannikov (2016).

In section 2 we present the benchmark frictionless economy. In 3 we present a model with
limited asset market participation and in section 4 one model with adjustment costs in investment.
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2 Frictionless economies

2.1 Primitives: preferences and endowments

The general equilibrium for a stochastic dynamic economy requires introducing assumptions re-
garding four elements: information environment, technology available, preference structure, and
existing market institutions. Next, we specify those elements for the simplest financial market
economy: the endowment or exchange economy.

First, the information structure is given by the filtered probability space (Ω,F ,F, P ) where Ω is
the space of admissible realizations, F is the set of all events belonging to the the space Ω, and the
filtration, F = {F(t) : t ∈ R+}, is a flow of non-anticipating events such that F(s) ⊂ F(t), for s < t,
and limt→∞F(t) = F . The filtration is generated by a standard Wiener process, which implies
that, associated to the filtration, there is a flow of unconditional probabilities {P (t) : t ∈ R+}
where P (t) = P (t, ω(t)) such that P (t+ dt, ω

′
)− P (t, ω) ∼ N(0, dt). This information structure is

common knowledge.
The flow of consumption and endowments, C = {C(t), t ∈ R} and Y = {Y (t), t ∈ R}, are

adapted stochastic processes to the filtration F. This means that C(t) and Y (t) are Ft-measurable
random variables for every t ∈ (0,∞)

Second, we will deal mainly with either endowment economies, or production economies, in
which the aggregate supply, or productivity, is driven by a time-varying exogenous shock that is
not perfectly observed by agents. There is only one perishable good in the economy. We will
consider cases in which there are some production and investment decisions for firms. In any case,
that exogenous forcing variable, endowment or productivity, is assumed to follow a linear stochastic
differential equation (SDE)

dY (t)

Y (t)
= gdt+ σdW (t), Y (0) = y0 given (1)

where, we assume for simplicity that the drift, g, and the volatility, σ, coefficients are constant and
known. The initial value of the endowment Y (0) = y0 is also known. Therefore, the sample paths
of the endowment have the following statistics

E [Y (t)] = y0e
gt, V [Y (t)] = y0e

gt
(
eσ

2t − 1
)
,

  meaning that: if g > 0 then limt→∞ E [Y (t)] = limt→∞V [Y (t)] = ∞, and the endowment is both
non-stationary and displays increasing volatility; or, if g = 0, then E [Y (t)] = y0 for each t ∈ [0,∞)

but limt→∞V [Y (t)] = ∞.
Third, the representative household preferences will be represented by the utility functional,
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displaying additive preferences,

E0

[ ∫ ∞

0
u(C(t))e−ρtdt

]
=

∫
F(t)

∫ ∞

0
u(C(t, ω(t))e−ρtdtdP (ω) (2)

  where ρ > 0 is the rate of time preference and u(.) is the instantaneous utility function, satisfying
u

′
(.) > 0, u

′′
(.) < 0 and u

′′′
(.) > 0. For any realization of the consumption process at time t,

C(t) = c > 01 we define the coefficients of relative risk aversion and of relative prudence by

rr(u) ≡ −u
′′
(c)c

u′(c)
, πr(u) ≡ −u

′′′
(c)c

u′′(c)
.

  If rr(u) > 0 the utility function displays risk aversion and if rr(u) = 0 it displays risk neutrality.
In order to be able to derive clear results, and because this is the utility function most commonly
used in the literature, we will assume a constant relative risk aversion (CRRA) utility function, for
evaluating every realization of the consumption process, C(t) = c

u(c) =


c1−γ

1− γ
, if γ ̸= 1

ln (c), if γ = 1

(3)

  Because,
rr(u) = γ, and πr(u) = 1 + γ.

  the utility function displays risk aversion if γ > 0 and risk neutrality if γ = 0, and, for the
logarithmic utility function γ = 1.

Fourth, the institutional structure, that is, the structure of markets, determines the type of
contracts available to the household and, therefore, the way the household allocates resources
between states of nature (insurance) or across time (savings and investments).

We consider next two market structures, and, therefore, two economies: an Arrow-Debreu 
economy  and a frictionless finance economy  in which there is one riskfree asset (in zero net
supply) and a risky asset. In those economies, the household is constrained in its allocations by an
intertemporal budget constraint and by a instantaneous budget constraint in the finance economy.
We will prove that the equilibrium allocations are equivalent in those two economies. This provides
a benchmark to compare equilibrium allocations and prices for finance economies with frictions.

2.2 Arrow-Debreu economy

This is a continuous time version of the Lucas (1978) model.
1Except for the case of rates of return uppercase letters refer to random variables (i.e, a multivalued function) and

lowercase letters refer to a realization (i.e, a number).
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The Arrow-Debreu’s economy institutional setting is defined by the existence of a large (in
fact infinite) number of contingent claim markets, operating at time t = 0, in which agents can
contract for delivery of one unit of the good, at any future moment and state of nature. The price
of an Arrow-Debreu contract for delivery at (t, ω(t)), denoted by Q(t, ω(t)), is Ft-measurable and
satisfies Q(0) = 1. In an endowment homogeneous agent economy, the representative agent faces
the following constraint for its transactions in all the forward markets open at time t = 0,∫ ∞

0

∫
F(t)

(Y (t, ω)− C(t, ω))dQ(t, ω)dt = 0.

If we define the stochastic discount factor as the Ft-adapted process {M(t), t ∈ R+} such that
 dQ(t, ω) = M(t, ω)dP (t, ω), then the budget constraint can be equivalently written as the uncon-
ditional expected present value of the discounted excess supply of the good in all times and states
of nature

E0

[∫ ∞

0
M(t)(Y (t)− C(t))dt

]
= 0 (4)

where M(0) = 1.
There are some technical conditions on the processes M , Y and C which basically amount to

the guarantee of boundedness: they should be class H functions.
The representative household problem is to maximize the functional (2) subject to the budget

constraint (4) given the endowment process {Y (t)}t∈R+ . 

Definition 1. An Arrow-Debreu general equilibrium (also called a simultaneous market equi-
librium), for an aggregate risk given by {W (t)}t∈R+, is defined by the processes for consumption,
(C(t))t∈R+, and for the stochastic discount factor (SDF) (M(t))t∈R+, such that:

1. the representative household solves its problem, that is, it maximizes the utility functional (2)
subject to the intertemporal budget constraint (4), given the SDF and endowment processes,

2. markets clear at every time and state of nature, that is C(t) = Y (t) at every time and state
of nature.

The equilibrium condition in the goods market implies dC(t) = dY (t). Therefore, because

dC(t) = C(t) (gdt+ σdW (t)) , t ≥ 0. (5)

  consumption is perfectly correlated with the endowment, which implies that consumption is
non-stationary if g > 0 and is stationary in average if g = 0

E[C(t)] = y0e
gt,
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  although even in the last case the variance increases

V[C(t)] = y20e
gt
(
eσ

2t−1
)
.

 
At the equilibrium, the stochastic discount factor (see the appendix A ) is the Ft adapted

stochastic process

M(t) = e−ρtu
′
(Y (t))

u′(y0)
.

Using, Itô’s lemma 2 we find that the equilibrium stochastic discount factor also follows a diffusion
process

dM(t) = −M(t) (µm(t)dt+ σm(t)dW (t)) (6)

where the drift and the volatility are

µm(t) = ρ+ rr(Y (t))

(
g − 1

2
πr(Y (t))σ2

)
(7)

σm(t) = rr(Y (t))σ (8)

Therefore, the stochastic discount factor (SDF) is governed by a backward diffusion process in
which:

• the diffusion coefficient has two terms: the first is the rate of time preference and the second
depends on the dynamic properties of the endowment and on the behavior towards risk.
The diffusion term increases with the diffusion coefficient and decreases with the volatility
coefficient of the endowment process;

• the volatility coefficient is proportional to the volatility of the endowment process.

• the transmission of the growth and volatility of the endowment to the SDF is proportional
to the relative risk aversion coefficient.

2.2.1 Isoelastic utility function

Because it is an homogeneous function, the CRRA function is particularly convenient because
it features, as we saw, constant coefficients of relative risk aversion and prudence. It yields, for

2This equation is of type Y = f(t,X) where dX = X(µxdt+ σx)dW . Then

dY = ft(t,X)dt+ fx(t,X)dX +
1

2
fxx(t,X)

=

(
ft(t,X)dt+ fx(t,X)µxX +

1

2
fxx(t,X)(σx)2

)
dt+ fx(t,X)σxXdW



Paulo Brito Advanced Macroeconomics 2018/2019 7

the general case and for the logarithmic utility the drift component of the SDF, a constant drift
coefficient

µm =

ρ+ γg − 1

2
γ(1 + γ)σ2, if γ ̸= 1

ρ+ γg − σ2, if γ = 1
(9)

and a constant volatility coefficient

σm =

γσ, if γ ̸= 1

σ, if γ = 1.
(10)

If there is risk neutrality, that is, if γ = 0, the stochastic discount factor is deterministic: µm = ρ

and σm = 0.
The statistics for M are the following

E[M(t)] = e−µmt, V[M(t)] = e−2µmt
(
eσ

2
mt−1

)
  and

Cov[C(t),M(t)] = y0e
(ρ+(1+γ)(g− γ

2
σ2))t

(
eγσ

2t−1
)
.

  This means that consumption and the stochastic discount factor are negatively correlated:

Corr[C,M(t)] =
e−γσ2t − 1√(

eγσ2t − 1
) (

eσ2t − 1
) < 0

 
We already concluded that, at the equilibrium: (1) consumption is perfectly correlated with the

endowment; (2) consumption and the stochastic discount factor are negatively correlated.
The distributional dynamics of consumption inherits those of the endowment. However, the

distributional dynamic properties of the stochastic discount factor depend upon the sign of g, which
depend on the relationship between the parameters of the model, in particular on the magnitude
of the elasticity γ. We can see that here is a value for γ,

γc =
g

σ2
− 1

2
+

[(
g

σ2
− 1

2

)2

+
2ρ

σ2

] 1
2

  such that:

• if the risk-aversion is low such that 0 ≤ γ < γc then µm > 0. This implies

lim
t→∞

E[M(t)] = lim
t→∞

V[M(t)] = +∞

  and the solution is non-stationary (there are bubbles);
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• if the risk aversion is high such that γ > γc then µm < 0 then

lim
t→∞

E[M(t)] = lim
t→∞

V[M(t)] = 0

  and the solution is stationary and the M(t) converges to zero

• if γ = γc then µm = 0 and

E[M(t)] = 1, for all t ∈ [0,∞), lim
t→∞

V[M(t)] = ∞

  the process for M is stationary in average but the volatility increases unboundedly.

2.3 Finance economy

In a finance economy the allocations through time and states of nature can be done by trading
in asset markets. In the present continuous time framework markets are continuously open and
trade is continuous. We assume that there are two assets, one risk free and one risky asset, and
therefore there are two asset markets. While the risky asset is in positive aggregate net supply, the
risk free is in aggregate zero net supply. We consider a representative agent economy in which the
representative agent can take long or short positions in every asset.

The value of the risk free asset, at time t, is denoted by B(t) and its rate of return, r, follows
the deterministic process

dr(t) = r(t)dt.

  Although this process is given for the individual agent, we will determine it endogenously at the
general equilibrium.

The risky asset has a value, at time t, denoted by S(t), and it entitles to a gain process
G(t) = S(t) +

∫ t
0 D(s)ds, where D is the dividend. We assume that the dividend is exogenous and

follows a diffusion process
dD(t)

D(t)
= gdt+ σdW (t). (11)

  The similarity with the endowment process in the Arrow-Debreu economy of the previous section
is introduced in order to make the two economies comparable, as will be seen latter in this section.

Although the change in market value of the risky asset is endogenous, we assume that it follows
the linear diffusion

dS(t)

S(t)
= µs(t)dt+ σs(t)dW (t).

  If we denote the price-dividend ratio by q, then S(t) = q(t)D(t) then the rate of return for holding
risky assets follows the (endogenous) process

drs(t) = µ̃s(t)dt+ σs(t)dW (t). (12)
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where µ̃s(t) = µs(t) +
1

q(t) .
In the literature the following measure of the relative returns of the two assets is called the

Sharpe ratio
Sharpe =

µ̃s − r

σs
 

The households net wealth is invested in risk free and risky assets. Denoting net wealth ,
at time t, by N(t), we have N(t) = B(t) + S(t). If the weight of the risky asset is denoted by
w(t) ≡ S(t)/N(t), then the budget constraint for the agent is

dN(t) = N(t) [r(t)(1− w(t)) + (µ̃s(t)dt+ σs(t)dW (t))w(t)]− C(t)dt (13)

where we assume that wealth at the initial time is deterministic N(0) = n0. Because the risky
asset is in aggregate positive supply, we will have w(t) > 0, and because agents can take long or
short positions in the risk-free asset w(t) has a free upper bound. If agents leverage their position
on the risky asset by risk-free borrowing then w(t) > 1. If agents cannot take short positions on
the risk-free asset then w(t) would be constrained to be smaller than one.

Definition 2. General equilibrium for an unconstrained finance economy It is the alloca-
tions (Ceq(t), Beq(t), Seq(t))t∈R+ and the returns (req(t), rs,eq(t))t∈R+ such that, given the aggregate
risk process (W (t))t∈R+:

1. the representative household solves its problem, that is, it maximizes the utility functional (2)
subject to the instantaneous budget constraint (13), given the assets’ rates of return processes;

2. markets clear: Ceq(t) = D(t), Beq(t) = 0, and Seq(t) = N eq(t), at every time and state of
nature. 

In the appendix we derive the optimality conditions for the representative household: First,
consumption is proportional to net wealth,

C∗(t) = θ(t)N(t), where θ(t) ≡ 1

γ

[
ρ+ (γ − 1)

(
r(t) +

1

2γ

(
µ̃s(t)− r(t)

σs(t)

)2
)]

(14)

  the optimal portfolio weight of the risky asset is

w∗(t) =
1

γ

(
µ̃s(t)− r(t)

(σs(t))2

)
. (15)

  This means that the demand for the risk-free asset is B∗(t) = (1 − w∗(t))N(t) and the demand
for the risky asset is S∗(t) = w∗(t)N∗(t).
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Substituting the consumption and the portfolio weights, equations (14)  and (15), in the budget
constraint (13), and using the Itô’s formula in equation (14), we find that the rates of growth of
consumption and net wealth are perfectly correlated

dC∗(t)

C∗(t)
=

dN∗(t)

N∗(t)
= µn(t)dt+ σn(t)dW (t) (16)

where

µn(t) =
1

γ

[
r(t)− ρ+

1 + γ

2γ

(
µ̃s(t)− r(t)

σs(t)

)2
]

σn(t) =
1

γ

(
µ̃s(t)− r(t)

σs(t)

)
.

 
The equilibrium for the risk-free market requires that the demand and supply for the risky asset

are equal N(t) = S∗(t) = weq(t)N(t), that is

weq(t) = 1.

  Therefore, the equilibrium stochastic discount factor (which it is shown in the Appendix B.3 that
is equal to the Sharpe ratio) is proportional to the volatility of the risky asset

X(t) =
µ̃s(t)− r(t)

σs(t)
= γσs(t).

  Equivalently, the expected change in the risky asset rate of return is equal to the risk-free rate of
return plus Xσs,

E[drs(t)] = µ̃s(t) = µs(t) +
1

q(t)
= r(t) + γ(σs(t))

2, (17)

Therefore, at every point in time, the ratio C(t)/N(t), in equation (14), is simplified to

γθ = ρ+ (γ − 1)r + (
1− γ

2
)(γσs)

2,

  and the diffusion and volatility coefficients in equation (16) become

γµn = r − γ + (
1 + γ

2
)(γσs)

2, and σn = σs.

 
The goods market equilibrium condition

C(t) = θ(t)N(t) = D(t)
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  has two implications. First, together with the definition of q, from S = qD, we have an equilibrium
equation for the price-dividend ratio qθ = 1, which is equivalent to

q(t)

(
ρ+ (γ − 1)

(
r(t) +

1

2γ
(γσs(t))

2

))
= γ. (18)

Second, at the equilibrium the rates of growth of the dividend, of consumption and of the aggregate
net wealth are perfectly correlated

dD(t)

D(t)
= gdt+ σdW (t) =

dC(t)

C(t)
=

dN(t)

N(t)
= µn(t)dt+ σn(t)dW (t)

  implying gdt+ σdW (t) = µn(t)dt+ σn(t)dW (t).
The diffusion and the volatility terms match if and only if

g = µn =
1

γ

(
r − γ +

(
1 + γ

2γ

)
(γσs)

2

)
(19)

σ = σn = σs. (20)

Solving equations (17), (18), (19), and (20) for q, r, µs and σs we obtain the equilibrium values
for the interest rate of the risk-free asset, as a constant

req(t) =

ρ+ γg − γ

(
1 + γ

2

)
σ2, if γ > 0 and ̸= 1

ρ+ g − σ2, if γ = 1

for every t ∈ [0,∞) (21)

and the price-dividend ratio

qeq(t) =


(
ρ+ (γ − 1)(g − γσ2)

)−1
, if γ > 0 and ̸= 1

ρ−1, if γ = 1
for every t ∈ [0,∞) (22)

is also a constant. Because

µs,eq = g − γ

(
1− γ

2

)
σ2, and σs,eq = σ

  the equilibrium rate of return for the risky asset, dreqs (t) = µ̃s,eqdt+σs,eqdW (t) follows a diffusion
process

dreqs (t) =


(
ρ+ γg + γ

(
1− γ

2

)
σ2

)
dt+ σdW (t), if γ > 0 and ̸= 1

(ρ+ g) dt+ σdW (t), if γ = 1.

(23)

The stochastic discount factor process at the equilibrium (see the Appendix B.3) follows the
process

dM(t) = −M (rdt+XdW (t))
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  where X is the market price of risk:
X =

µ̃s − r

σs
.

  If we substitute the equilibrium rates of return for the risk-free and risky asset from equation
(21)  and (23), respectively, we find that Xeq = γσ

Comparing with the solution we found for the Arrow-Debreu economy, in equations (9) and
(10), we observe that µm = req and σm = Xeq. Therefore, the implied equilibrium stochastic
discount factor for this finance economy is the same as in the Arrow-Debreu economy,
in which the endowment is exogenously supplied to the household.

This means that those two institutional settings provide equivalent market mechanisms to gen-
erate an equilibrium intertemporal allocations of resources. This also means that the financial
markets in this unconstrained finance economy are complete.

In both economies we conclude that the only source of aggregate risks are fundamental exogenous
aggregate risks introduced by (W (t))t≥0.

3 Heterogeneous market participation

In this section we consider a first type of financial friction originated by limited asset market
participation, and, consequently there is heterogeneity on the composition of the net wealth among
economic agents. This generates illiquidity, in the sense that some agents cannot fully insure
against uncertainty, which has consequences on the risk bearing of agents, and, possibly on the
existence of an endogenous source of macroeconomic risks. That endogenous source of risk adds to
the exogenous aggregate risks which is the same as in the case of the frictionless economy that we
studied in the last section.

Again we assume that there are two assets: a risk-free asset with zero net supply and a risky asset
in positive net supply. There are two groups of homogeneous agents: there is a group of households
that cannot hold the risky asset (called households in the literature) and other group of agents
that participate in both markets (called specialists in several papers). Both groups share the same
information and preferences. We continue to assume that the only source of income is financial
income. There are several explanations for this difference in participation, v.g., informational
constraints or existence of transaction costs.

Because non-participants can only hold the risk-free asset, and because it is in zero net supply,
the participants finance their holdings of risky assets by holding short positions (i.e, taking loans)
in the risk-free asset. This implies that the fluctuations in fundamentals are completely absorbed
by the participants. We will see that the distribution of net wealth varies and drives the dynamics
of the equilibrium rates of return, because their level of wealth is one of the determinants of the
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demand for risky assets thus influencing its price. Because there are no arbitrage opportunities,
then the risk free rate of return is also affected.

We will also see that the type of utility function has a relevant effect on the equilibrium prop-
erties. This is natural, because the concavity of the utility function is related to the risk aversion
behavior. In particular, there is not an endogenous source of risk if the utility function is logarith-
mic, which is not the case if the utility function displays higher risk aversion.

We present next a version of the Basak and Cuoco (1998) model (see Brunnermeier and Sannikov
(2016) for a discussion).

Non-participating households, denoted by an index h, consume Ch and hold net wealth, Nh,
by solving the problem

max
Ch

E0

[ ∫ ∞

0

(Ch(t))1−γ

1− γ
e−ρtdt

]
  subject to the budget constraint,

dNh(t) = r(t)Nh(t)dt− Ch(t)dt t ∈ [0,∞)

  where Nh(0) = nh
0 is given, and r(t) is again the rate of return of the risk free asset, which is

taken as given to the household. The first order conditions are, for consumption,

Ch(t) = θh(t)Nh(t), where θh(t) =
1

γ
(ρ+ (γ − 1)r(t)) (24)

  and
dCh(t)

Ch(t)
=

dNh(t)

Nh(t)
=

(
r(t)− ρ

γ

)
dt. (25)

 
Participating, or specialist, households can participate in both asset markets. They solve the

problem

max
Cx,wx

E0

[ ∫ ∞

0

(Cx(t))1−γ

1− γ
e−ρtdt

]
  where, Cx is consumption and wx is the weight of the risky asset in net wealth, for participators,
subject to the budget constraint

dNx(t) = (r(t)(1− wx(t)) + µ̃s(t)w
x(t))Nx(t)dt+ σs(t)w

x(t)Nx(t)dW (t)− Cx(t)dt

  where Nx(0) = nx
0 is given. These households are also price takers in both asset markets, where

the rate or return for the risky asset is as in equation (12), which is taken as given by these
households. As in the previous section we assume that there are exogenous dividends accruing to
the holders of the risky asset following the process given in equation (11).

Cx(t) = θx(t)Nx(t), where θx(t) ≡ 1

γ

[
ρ+ (γ − 1)

(
r(t) +

1

2γ

(
µ̃s(t)− r(t)

σs(t)

)2
)]

(26)
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  the portfolio weight of the risky asset is

wx(t) =
1

γ

(
µ̃s(t)− r(t)

(σs(t))2

)
(27)

  and consumption and net wealth are again perfectly correlated, at the households level,

dCx(t)

Cx(t)
=

dNx(t)

Nx(t)
= µx

n(t)dt+ σx
n(t)dW (t) (28)

where

µx
n(t) =

1

γ

[
r(t)− ρ+

1 + γ

2γ

(
µ̃s(t)− r(t)

σs(t)

)2
]

σx
n(t) =

1

γ

(
µ̃s(t)− r(t)

σs(t)

)
.

 
The balance sheet constraint is Nh(t) = Bh(t), for non-participating households, and Nx(t) =

Bx(t)+S(t), for participating households, where Bh(t) and Bx(t) are the stocks of bonds and S(t)

is the stock of risky assets. All those variables are in nominal terms. We assume that Bh(t) ≥ 0

meaning that non-participating households are lenders to participating agents. Therefore Bx(t) cor-
responds to risk-free financing of purchases of risky assets by participating agents, and Bx(t)/S(t)

is the leverage ratio. This is equivalent to setting wx(t) ≥ 1.

Definition 3. General equilibrium for the limited participation finance economy It is
the allocations (Ch,eq(t), Cx,eq(t), Bh,eq(t), Bx,eq(t), Seq(t))t∈R+ and the returns (req(t), rs,eq(t))t∈R+

such that, given the aggregate risk process (W (t))t∈R+:

1. non-participating and participating households solve their particular problems, taking as given
the rates of return of the risk free and risky assets;

2. markets clear: the good’s market clearing condition is

Ceq(t) = Ch,eq(t) + Cx,eq(t) = D(t),

  where C(t) is aggregate consumption; the risk-free market clearing condition is

Bh,eq(t) +Bx,eq(t) = 0

  and the risky asset market clearing condition is

Seq(t) = N eq(t)
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3. aggregation: N(t) = Nh(t)+Nx(t) is the stock of the risky asset, and is equal to the aggregate
wealth of the economy.

We denote the share of the specialists in the total net wealth of the economy by η, that is

η(t) ≡ Nx(t)

N(t)
∈ (0, 1).

  It is constrained to be smaller than one because it is equal to the share of the risky asset in the
portfolio of the specialists, that is

η(t) =
1

wx(t)
=

Nx

S
,

  and because the position of the specialists in the risky asset is leveraged, that is wx ≥ 1.
As the demand for risky assets for the specialists is given by equation (27), then the Sharpe

ratio is, at the equilibrium
µ̃s(t)− r(t)

σs(t)
= γ

σs(t)

η(t)
. (29)

 
From the good’s market clearing condition, C(t) = D(t), the consumption optimality conditions,

equations (24) and (26), and the definition of η we obtain

C(t) = Ch(t) + Cx(t) =

= θh(t)Nh(t) + θx(t)Nx(t) =

=
(
θh(t)η(t) + θx(t)(1− η(t)

)
N(t) =

= D(t) =

=
N(t)

q(t)

  if we ntroduce, again the price dividend ratio definition, which at the equilibrium satisfies

q(t) =
S(t)

D(t)
=

N(t)

D
.

  Therefore, (
θh(t)η(t) + θx(t)(1− η(t)

)
q(t) = 1.

  Using the optimal consumption demands, equations (24) and (26), this is equivalent to[
ρ+ (γ − 1)r(t) + η(t)

(γ − 1)

2γ

(
µ̃s(t)− r(t)

σs(t)

)2
]
q(t) = γ,

  and, using the Sharpe ratio, (29), yields the dividend-price ratio in equilibrium

1

q(t)
=

1

γ

[
ρ+ (γ − 1)r(t) + γ

(
γ − 1

2

)
(σs(t))

2

(
1

η(t)

)]
. (30)
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  If we compare with the analogous equation for the frictionless economy, in equation (18), we see
that the wealth distribution variable has an influence in the way volatility is transmitted to the
dividend-price ratio.

The drift for the rate of return of the risky asset (see equation (12) for the process followed by
teh return of the risky asset) in equilibrium

µs = µ̃s −
1

q
=

1

γ

[
r(t)− ρ+ γ

(
1 + γ

2

)
(σs(t))

2

η(t)

]
, (31)

depends on the rate of interest r(t), the volatility σs(t), and the asset distribution η(t).
The aggregate net wealth change is dN(t) = dNh(t)+ dNx(t). Substituting the Sharpe ratio in

equation (28) and adding equation (??) we get the rate of change of aggregate net wealth

dN(t)

N(t)
=

dNh(t)

Nh(t)
+

dNx(t)

Nx(t)
= µs(t)dt+ σs(t)dW (t).

  This allows us to obtain the dynamics for the share of the specialists on total wealth, η, and a
dynamic equation for the equity price ratio, q, which can be seen as two state variables driving the
equilibrium rates of return.

First, as η(t) = 1− Nh(t)

N(t)
then, using Itô’s formula

dη(t) = −Nh(t)

N(t)

[
dNh(t)

Nh(t)
− dN(t)

N(t)
+

(
dN(t)

N(t)

)2
]
=

= −(1− η(t))

[(
r(t)− ρ

γ

)
dt− (µs(t)dt+ σs(t)dW (t)) + (σs(t))

2dt

]
=

= −(1− η(t))

[(
r(t)− ρ

γ
− µs(t) + (σs(t))

2

)
dt+ σs(t)dW (t)

]
.

Substituting the drift of the risky asset price process, in equation (31), we obtain one equation for
the dynamics of the wealth distribution is driven by the diffusion equation

dη(t) = (1− η(t))

[
(σs(t))

2

η(t)

(
1 + γ

2
− 1

)
dt− σs(t)dW (t)

]
, (32)

which can be written as a diffusion process

dη(t) = (1− η(t)) (µη(t, η(t))dt− σs(t)dW (t)) , (33)

  where the drift component

µη(η) ≡
(σs)

2

η

(
1 + γ

2
− 1

)
  is negative related to η if γ ≥ 1.
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Second, the dividend-price ratio also follows a diffusion process. Applying Itô’s formula we get

d

(
1

q(t)

)
=

dD(t)

N(t)
− D(t)

N(t)

dN(t)

N(t)
− dD(t)

N(t)

dN(t)

N(t)
+

D(t)

N(t)

(
dN(t)

N(t)

)2

=

=
D(t)

N(t)

{
dD(t)

D(t)
− dN(t)

N(t)
− dD(t)

D(t)

dN(t)

N(t)
+

(
dN(t)

N(t)

)2
}

=

=
1

q(t)

{
gdt+ σdW (t)− µs(t)dt− σs(t)dW (t)− σσs(t)dt+ (σs(t))

2dt
}

=

=
1

q(t)
{µq(t)dt+ σqdW (t)}

  where

µq(t) = g +
ρ− r(t)

γ
−
(
1 + γ

2

)
(σs(t))

2

η(t)
+ σs(t) (σs(t)− σ)

σq(t) = σ − σs(t)

  From the last equation we find that the net-wealth volatility can have two components σs(t) =

σ + σq(t), a fundamental and and endogenous component.
In equation (30) we find there is a contemporaneous relationship between the dividend-price

ratio and the distributional of wealth η. Taking derivatives of equation (30), and observing that
dr(t) = r(t)dt and dσs(t) = σs(t)dt, we find

d

(
1

q(t)

)
=

[(
γ − 1

γ

)
r(t) + (γ − 1) (σs(t))

2

(
1

η(t)

)]
dt+

(
γ − 1

2

)
(σs(t))

2d

(
1

η(t)

)
.

  Therefore, req(t) and σeq
s (t) are the solutions of the system

µq (r(t), σs(t), η(t)) =

(
γ − 1

γ

)
r(t) + (γ − 1) (σs(t))

2

(
1

η(t)

)
+

(
γ − 1

2

)
(σs(t))

2(1− η(t))µη(t, η(t))

σq (σs(t)) = −
(
γ − 1

2

)
(1− η(t))(σs(t))

3.

(34)
  The system, which does not seem to have closed form solution. However, in the general case, of
an isoelastic utility function, the risk-free interest rate and the asset return volatility depend on
the distribution of net wealth. This distinguishes this economy from the frictionless case.

As the solution clearly depends on the degree of risk aversion, let us consider first the benchmark
case of a logarithmic utility function, i.e., γ = 1.

The logarithmic case Setting γ = 1 in system (34), we find that the price dividend ratio is
stationary

q(t) =
1

ρ
, for any t ∈ [0,∞).
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  Therefore, there is no endogenous risk, that is σeq
s (t) = σ and the rate of return of the risky asset

follows the process
drs,eq(t) = (ρ+ γ) dt+ σdW (t), (35)

  which is the same process as for the frictionless economy (see equation (23)).
The interest rate of debt contracts is positively correlated with the distribution of wealth pa-

rameter, η

req(t) = ρ+ g − σ2

η(t)
, (36)

  meaning that is η is low the demand for leverage by the participants is also low, which reduces
the demand for the risk free asset.

Substituting γ = 1 in equation (33) we determine the process followed by the wealth distribution:

dη(t)

η(t)
=

(
1− η(t)

η(t)
σ

)2

dt+

(
1− η(t)

η(t)
σ

)
dW (t). (37)

 
Figure 1 illustrates one sample path for η, in the upper left subfigure, and one hundred sample

paths, in the upper right subfigure. In the lower subfigure we substitute the first sample in equation
(36) to obtain a sample path for the rate of return of the risk free asset. Although it looks as random,
the effect of uncertainty is contemporaneous (as if it were a random variable) and not dynamic as
in the equilibrium process for the rate of return of the risk free asset in equation (35). This is the
case because the instantaneous change of the wealth distribution is associated to a random change
in the demand for risk free bounds to which the rate of interest responds contemporaneously

In 1 we see that the interest rate η converges asymptotically to one. In fact η = 1, if we look
at equation (37) we see that the skeleton (i.e., the diffusion part) has η = 1 as a steady state. This
steady state is an absorbing state because

d

dη

(
1− η

η

)2

< 0

  if 0 < η < 1. This means that, asymptotically, all financial wealth will be concentrated on the
specialists. This result can be changed if we introduced labor and human capital which would
imply that the non-specialists would have positive total wealth. In this case the net wealth of the
financially limited agents will converge to their human wealth.

The main difference from the non-financially constrained economy is that the short run interest
rate responds to the leverage of the economy , i.e, to 1 − η: we see that the higher the leverage
the lower the interest rate. This process discourages further loans from the financially constrained
households, which drives up the interest rate and reduces leverage.
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Figure 1: The limited participation model: logarithmic utility
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The risk-averse case In a scenario with higher risk aversion, that is with γ > 1, we would have
to solve system (34) in order to obtain the equilibrium expressions for r(t) and σs(t). It does not
seem to have a closed form solution.

However, we can determine the volatility of the risky asset, σs, from the second equation

σ − σs
q

= −
(
γ − 1

2

)
(1− η)(σs)

3. (38)

  We readily see that its is higher than the fundamental volatility, that is σs ≥ σ, for 0 < η ≤ 1,
meaning that when agents are highly risk averse the existence of limited participation generates
endogenous volatility and that this volatility is dependent upon the asset distribution. In equation
(38) we readily see that the asset volatility is positively related to leverage ( if we set σs = σs(η)

we have σ
′
s(η) < 0). This means that,

• if the leverage ratio is low, i.e., η is closed to one, the endogenous component of volatility will
be low and the volatility of the risky asset will approach the fundamental volatility;

• if the leverage ratio is high, i.e., η is closed to zero, the endogenous component of volatility
is high and the volatility of the risky asset will be higher than the fundamental volatility

4 Technological illiquidity frictions

In this section we present a version of a model presented in Brunnermeier and Sannikov (2016)
in which there are, in the words of those authors, technological illiquidity. In this model the
dividends process and the capital accumulation processes are endogeneized (following a model
by Bernanke et al. (1999)) with two assumptions: (1) the production function displays constant
returns to scale; and (2) there adjustments costs in investment which have a convex deterministic
component and a linear stochastic component. The last assumption is the source of technological
illiquidity.

We first consider the frictionless financial markets version and then present the limited market
participation version. In order to isolate the source of market volatility generated by technologic
liquidity we assume that preferences are homogeneous and the utility function is logarithmic.

4.1 Unrestricted market participation

There are two dimensions of the technology in this economy: first, the production function displays
constant returns to scale, Y (t) = AK(t); second, the investment technology involves adjustment
costs taking the form convex costs for installing capital. In particular, we assume that investment
expenditures, I(t) = ι(t)K(t), generate a deterministic increase in gross capital Φ(ι)K(t), where



Paulo Brito Advanced Macroeconomics 2018/2019 21

Φ(0) = 0, Φ′′
(ι) < 0 < Φ

′
(ι), and have a random component, capturing fundamental uncertainties

in the investment process.
The capital accumulation equation follows the diffusion equation

dK(t)

K(t)
= (Φ(ι(t))− δ) dt+ σdW (t)

  where δ is the depreciation rate. We denote µk(t) = Φ(ι(t))− δ and σk = σ.
Investment in physical generates a dividend, which is equal to output subtracted by the invest-

ment expenditures,
D(t) = (A− ι(t))K(t).

 
Because the asset value of the firm is S(t) = q(t)K(t), where q is Tobin’s q, the return for

holding the capital is
drs(t) =

d (q(t)K(t))

q(t)K(t)
+

D(t)

q(t)K(t)
dt.

  We conjecture that the relative price of capital q(t) is driven by the process

dq(t)

q(t)
= µq(t)dt+ σq(t)dW (t)

  where µq(t) and σq(t) are to be determined in equilibrium. Therefore, the capital gains dynamics
is driven by the equation, after applying Itô’s formula,

d (q(t)K(t))

q(t)K(t)
= (µq(t) + µk(t) + σq(t)σk(t)) dt+ (σq(t) + σk(t)) dW (t)

= (µq(t) + Φ(ι(t))− δ + σq(t)σ) dt+ (σq(t) + σ) dW (t)

  where σ represents fundamental, exogenous, volatility and σq is the endogenous volatility com-
ponent.

At last, we obtain the process followed by the rate of return for investment in the risky asset

drs(t) = (d(q(t), ι(t)) + Φ(ι(t))− δ + σq(t)σ) dt+ µq(t) + (σq(t) + σ) dW (t). (39)

where the dividend-price ratio
d(q(t), ι(t)) ≡ A− ι(t)

q(t)

  is a negative function of both the relative price of capital and the investment rate.
Using our previous notation, this is equivalent to drs(t) = µ̃s(t)dt+ σs(t)dW (t), where

µ̃s(t) = d(q(t), ι(t)) + Φ(ι(t))− δ + µq(t) + σq(t)σ

σs(t) = σq(t) + σ
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If we assume that there is no heterogeneity and no financial frictions, this return is received by

the representative household which own the firms, and has the balance sheet constraint

B(t) + q(t)K(t) = N(t),

  where B(t) is the household stock of risk-free assets and N(t) is the household net wealth.

Definition 4. General equilibrium Is defined by the allocations (Ceq(t), ieq(t), Beq(t),Keq(t))t∈R+

and the returns (req(t), rs,eq(t))t∈R+ such that, given the aggregate risk process (W (t))t∈R+:

1. the representative household solves its problem, that is, it maximizes the utility functional (2)
subject to the instantaneous budget constraint (13), given the asset income processes;

2. the representative firm maximizes its profits π(ι) = qΦ(ι)− ι, at every point in time;

3. markets clear: Ceq(t) + Ieq(t) = Y (t), Beq(t) = 0, and Seq(t) = N eq(t), at every time and
state of nature. 

If we assume a logarithmic utility function, the optimality condition for the household is pro-
portional to net wealth

C(t) = ρN(t), (40)

  and the demand for the two assets is B(t) = (1− w(t))N(t) and S(t) = w(t)N(t), where

w(t) =

(
µ̃s(t)− r(t)

(σs(t))2

)
=

X(t)

σs(t)
. (41)

 
As in the previous model consumption and net wealth have their rates of growth perfectly

correlated
dC(t)

C(t)
=

dN(t)

N(t)
= µn(t)dt+ σn(t)dW (t) (42)

where

µn = r − ρ+

(
µ̃s − r

σs

)2

σn =
µ̃s − r

σs
.

  Because the firm’s profit, per unit of capital, is

π(ι) = qΦ(ι)− ι
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  then the optimum investment condition is

qΦ
′
(i) = 1.

  From the implicit function theorem, investment is an increasing function of the relative price of
capital,

ι(t) = Ψ(q(t)), Ψ
′
(q) > 0.

  This implies that the dividend-price ratio is decreasing with q, d = d̂(q) = d(q,Ψ(q)), for d̂′
(q) < 0.

The aggregation and market equilibrium for the risk free asset, Beq(t) = 0, implies

weq =
q(t)K(t)

N(t)
= 1.

There are two implications: first
q(t)K(t) = N(t) (43)

and
µ̃s(t) = r(t) + (σs(t))

2. (44)

 
The goods’ market equilibrium condition, is

AK(t) = C(t) + ι(t)K(t).

  As at the equilibrium C(t) = ρq(t)K(t), then A = ρq(t)+ι(t). Therefore, the equilibrium dividend
per unit of capital is equal to the rate of time preference,

d̂(q) = ρ.

 
This condition together with the optimality condition for firms yield a system of two equations

in (q(t), ι(t)), ρq + ι = A

qΦ
′
(ι) = 1

(45)

which has an unique solution for q and ι, q̄ = q̄(A, ρ) and ῑ = ῑ(A, ρ), which are both positively
related to productivity and negatively related to the rate of time preference 3.

3To see this take the total differential to the second equation: dqΦ
′
(ι) + qΦ

′′
(ι)dι = 0. Because Φ(.) is increasing

and concave then this equation features a positive relation between q and ι. As the other equation features a negative
relation, therefore the system has one unique and positive solution.
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As the price of capital, and the investment rate, is stationary at the equilibrium we obtain
µeq
q = σeq

q = 0. Therefore

d (q(t)K(t))

q(t)K(t)
= (Φ (ῑ(A, ρ))− δ) dt+ σdW (t).

 
The dynamics for the net wealth, from the solution of the household problem is

dN(t)

N(t)
=
(
r(t)− ρ+ (σs(t))

2
)
dt+ σs(t)dW (t).

  From the market equilibrium condition (43) we should have

d (q(t)K(t))

q(t)K(t)
=

dN(t)

N(t)
.

  Matching the two equations allows us to find the equilibrium asset return volatility, σs(t) = σ,
and equilibrium risk-free interest rate

req(t) = ρ+R(A, ρ)− σ2. (46)

  where the net rate of return on capital is

R(A, ρ) ≡ Φ(ῑ(A, ρ))− δ.

 
Because RA =

∂R

∂A
> 0 this means that an increase in productivity will increase the risk-free

interest rate. Substituting in equation (44) we determine the equilibrium process for the rate of
return for capital

dreqs (t) = µ̃eq
s dt+ σeq

s dW (t) = (ρ+R(A, ρ)) dt+ σdW (t), (47)

 
Furthermore, the equilibrium rate of growth of aggregate net wealth is N(t) = q̄(A, ρ)K(t),

dN eq(t)

N eq(t)
= (R(A, ρ)− ρ) dt+ σdW (t)

  
The rate of growth increases with the productivity, and, again the uncertainty is driven by the

fundamentals.
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4.2 Limited asset market participation

Now the balance sheet constraints are: for households Bh(t) = Nh(t) and for specialists S(t) +

Bx(t) = Nx(t), where S(t) = q(t)K(t). The aggregate net wealth is N(t) = Nh(t) +Nx(t).
Again we denote the weight of specialists on the aggregate wealth by η(t) = Nx(t)/N(t).
Assuming again that the risk-free asset is in zero net supply the market equilibrium condition

is Bh(t) + Bx(t) = 0. Consolidating the accounts and using this market equilibrium condition we
obtain again S(t) = q(t)K(t) = N(t).

The good’s market equilibrium condition is

AK(t) = C(t) + ι(t)K(t)

  where aggregate consumption is

C(t) = Ch(t) + Cx(t) = ρ(Nh(t) +Nx(t)) = ρN(t) = ρq(t)K(t).

  assuming again a logarithmic utility function.
Therefore, we have again A− ι(t) = ρq(t). This equation together with the optimality condition

for investment by the firm, q(t)Φ′
(ι(t)) = 1, implies that both q and ι are constant as in the previous

section, and functions of (A, ρ), q = q̄(A, ρ) and ι = ῑ(A, ρ).
This implies that the equilibrium value of capital follows the process

d (q(t)K(t))

q(t)K(t)
= (Φ (ῑ(A, ρ))− δ) dt+ σdW (t) = R(A, ρ)dt+ σdW (t).

  In order to derive the equilibrium dynamics for the aggregate demand of risky assets, which
satisfies S(t) = N(t) = Nh(t) +Nx(t), we have

dN(t) = dNh(t) + dNx(t) =

= Nh(t)(r(t)− ρ)dt+Nx(t)

(
r(t)− ρ+

(
µ̃s(t)− r(t)

σs(t)

)2

+
µ̃s(t)− r(t)

σs(t)
dW (t)

)
=

= N(t)

[(
r(t)− ρ+ η(t)

(
µ̃s(t)− r(t)

σs(t)

)2
)
dt+ η(t)

(
µ̃s(t)− r(t)

σs(t)

)
dW (t)

]
=

= N(t)

[(
r(t)− ρ+

(σs(t))
2

η(t)

)
dt+ σs(t)dW (t)

]
 

Matching again the two diffusion processes, because at the equilibrium N(t) = q(t)K(t), we
find σeq

s (t) = σ and

req(t) = ρ+R(A, ρ)− σ2

η(t)
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  the process for the return of the risky asset is the same as in equation (47), and is independent
from the distribution of wealth, η

The risk-free interest rate is, as in the model in section 3. We also find that the dynamics for
the wealth distribution is driven by the equation

dη(t)

η(t)
=

(
1− η(t)

η(t)
σ

)2

dt+

(
1− η(t)

η(t)
σ

)
dW (t).

 

5 Other frictions

The models we have presented are very simple. Most of the models do not display endogenous
risk, with the exception of the model in which there is limited participation and non logarithmic
preferences.

In order to obtain richer dynamics other type of frictions can be introduced. Most of the
frictions are generated by some sort of discontinuity. But the number of frictions considered in the
literature is huge.

Brunnermeier and Sannikov (2014) consider a model in which both households and specialists
invest in two assets, risky and riskless, and there is some sort of heterogeneity affecting the rate of
return of the risky capital (µ̃s and/or σs). If there are no more requirements on structure of the
balance sheet of the agents, the model will display results similar to those in section 4. However,
if there is a requirement that the specialists keep a higher share of investment in equity and the
non-specialists are constrained to lend in the risk-free markets, this introduces another mechanism
for the share of wealth η affecting the volatility σs away from the fundamentals.

Kiyotaki and Moore (1997) consider a case in which loans to firms, because of asymmetries of
information, require a collateral. This means that loans cannot be higher than a given proportion of
net wealth, v.g Bh(t) ≤ κNx(t). This generates an amplification mechanism contracting investment
when asset prices are depressed.

He and Krishnamurty (2012) and He and Krishnamurty (2013) assume that households do not
invest directly in the risky asset but invest through an intermediary. This generates an agency
problem because households and intermediaries have asymmetric on the market conditions for
risky assets. In order to secure financing from households, via risk-free assets, the intermediary
has to consider incentive compatible contracts with the household. In depressed markets for the
risky asset, the intermediary may be constrained from investing in the risky asset because it should
satisfy the incentive compatibility constraint for securing financing from the households.
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Appendix

A Arrow-Debreu equilibrium

Given the assumptions on boundedness we can form the Lagrangean

L = E0

[∫ ∞

0

(
u(C(t))e−ρt + λM(t)(Y (t)− C(t))

)
dt

]
where λ is a constant. The f.o.c are

u
′
(c(t, ω))e−ρt = λm(t, ω) (t, ω(t)) ∈ R+ ×Ft.

As, at time t = 0 we have u
′
(c(0)) = λ, where consumption is deterministic, which allows us to

determine λ. Then we can write

u
′
(c(t, ω))

u′(c(0))
= eρtm(t, ω), (t, ω(t)) ∈ R+ ×Ft.

By the market clearing condition, we get equilibrium stochastic discount factor  for any state
of nature

m∗(t, ω) = e−ρtu
′
(y(t, ω))

u′(y(0))
, (t, ω) ∈ R+ ×Ft.

  Then M∗(t) = e−ρtu
′
(Y (t))

u′(y(0))
for any t ∈ R+.

B Solving the representative household problem in a finance econ-
omy

Here we consider the representative household problem in a finance economy, when it participates
in all the financial markets and chooses consumption and its financial portfolio to maximize an
intertemporal utility functional,

max
c,w

E0

[∫ ∞

0
u(C(t))e−ρtdt

]
(48)

subject to the instantaneous budget constraint, in its differential representation,

dN(t) = {[r(t)(1− w(t)) + µs(t)w(t)]N(t) + y(t)− c(t)} dt+ w(t)σs(t)N(t)dW (t). (49)

where N(0) = n0 is given and N(.) is bounded, v.g., limt→∞N(t) ≥ 0. This is a stochastic
optimal control problem with infinite horizon, and two control variables. There are three different
methods to solve this problem: (1) dynamic programming; (2) stochastic control; and (3) martingale
methods.
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B.1 Solution by the principle of dynamic programming

Next we solve it by using the principle of dynamic programming (see Fleming and Rishel (1975) or
Seierstad (2009)). This is the most common method of solution.

Let the realization at an arbitrary time t of the stochastic processes for consumption, non-
financial income, portfolio weights, and net financial wealth be C(t) = c, Y (t) = y, w(t) = w, and
N(t) = n. We use the same notation for the rate of return processes: r(t) = r, µs(t) = µs and
σs(t) = σs.

The Hamilton-Jacobi-Bellman equation is a second order ODE in implicit form, for the value
function V (n),

ρV (n) = max
c,w

{
u(c) + V

′
(n)[(r(1− w) + µsw)n+ y − c] +

1

2
w2n2(σs)2V

′′
(n)

}
. (50)

The policy functions for consumption and portfolio composition, c∗ and w∗, are obtained from the
equations

u
′
(c∗) = V

′
(n), (51)

w∗ =
1

rr(v)

(
µs − r

σs

)
(52)

where
rr(V (n)) = −v

′′
(n)n

v′(n)
, pr(v) = −v

′′′
(n)n

v′′(n)

  are the coefficients of relative risk aversion and prudence for the value function, and µs − r

σs
is

the Sharpe index.
We obtain an explicit solution to the problem, if the utility function is isoelastic.
In this case we conjecture that the solution for equation (50) is of the form

V (n) = x

(
A(n)1−γ

1− γ

)
where x is an unknown constant, and

A(n) =
y

r
+ n.

  If the agent does not receive a non-financial income then A(n) = n.
If the conjecture is correct, note that the V

′
(n) = x(A(n))−γ , V

′′
(n) = −xγ(A(n))−(1+γ),

and V
′′′
(n) = −xγ(1 + γ)(A(n))−(2+γ). As for the utility function, we can compute coefficients of

relative risk aversion and prudence for the value function (which can be thought as an intertemporal
indirect utility function over net wealth,

rr(V (n)) = γ, pr(V ) = 1 + γ.
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  Therefore, the optimal policy functions for consumption is

c∗ = x
− 1

γA(n)

  and for the weight of the risky asset on net wealth is

w∗ =

(
µs − r

(σs)2

)
A(n)

γn
. (53)

Substituting the trial function for V (n) and optimal policies in the HJB equation (50), and
after some algebra, we obtain

x =

{
ρ

γ
−
(
1− γ

γ

)[
r +

1

2γ

(
µs − r

σs

)2
]}−γ

.

 
Therefore, the optimal policy for consumption is

C∗ =

{
ρ

γ
−
(
1− γ

γ

)[
r +

1

2γ

(
µs − r

σs

)2
]}

A(N). (54)

  Therefore, the SDE for the optimal new wealth becomes, after substituting optimal consumption
and portfolio policies, equations (54) and (53), in the budget constraint (49)

dN∗ =
A(N)

γ

{[
r − ρ+

(1 + γ)

2γ

(
µs − r

σs

)2
]
dt+

(
µs − r

σs

)
dW (t)

}
(55)

 
In the case of a logarithmic utility function we have:

w∗ =

(
µs − r

(σs)2

)
A(N)

N
(56a)

C∗ = ρA(N(t)) (56b)

dN∗ = A(N)

{[
r − ρ+

(
µs − r

σs

)2
]
dt+

(
µs − r

σs

)
dW (t)

}
(56c)

If the agent does not receive non-financial income and has a logarithmic utility function the
solution simplifies to

w∗ =

(
µs − r

(σs)2

)
(57a)

C∗ = ρN(t) (57b)

dN∗ = N(t)

{[
r − ρ+

(
µs − r

σs

)2
]
dt+

(
µs − r

σs

)
dW (t)

}
(57c)

 
References: Merton (1971), Merton (1990), Duffie (2001) and (Cvitanić and Zapatero, 2004,

p. 395-398).
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B.2 Solution by the stochastic Pontriyagin maximum principle

Next we consider again the problem of maximizing the intertemporal utility functional (48) subject
to the stochastic differential equation (49) where we assume there is no non-financial income, that
is Y (t) = 0.

In this case there are two control variables, C and w, but one control variable, w, affects the
volatility term. Because of the last fact we have to introduce two dynamic adjoint functions p and
P and two static ones, q and Q.

The adjoint equations aredp(t) = − [(r + (µ− r)w(t)) p(t) + σw(t)q(t)] dt+ q(t)dW (t)

limt→∞ p(t) = 0

  anddP (t) = −
[
2 (r + (µ− r)w(t))P (t) + (σw(t))2P (t) + 2σw(t)Q(t)

]
dt+Q(t)dW (t)

limt→∞ P (t) = 0.

  To find the optimal controls we write the generalized Hamiltonian

G(t,N,C,w, p, P ) = e−ρtC
1−γ

1− γ
+ p [ (r + (µ− r)w)N − C] +

1

2
σ2w2N2P

  and
H(t,N,C,w) = G(t,N,C,w, p, P ) + σwN (q − Pσw∗N) .

  The optimal controls, C∗ and w∗ are found by maximizing function H(t,N,C,w) for C and w.
Therefore, we find

C∗(t) = e
− ρ

γ
t
p(t)

− 1
γ (58)

  and the condition

p(t)(µ− r)N∗(t) + w∗(t)σ2N∗(t)2P (t) + σN∗(t) (q(t)− σw∗(t)N∗(t)P (t)) = 0

  which is equivalent to p(t)(µ− r)N∗(t) + σq(t)N∗(t) = 0. Therefore we find

q(t) = −p(t)

(
µ− r

σ

)
,

  and, substituting in the adjoint equation,

dp(t) = −p(t)

(
rdt+

(
µ− r

σ

)
dW (t)

)
.
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  Observe that the structure of the model is such that the shadow value of volatility functions P

and Q have no effect in the shadow value functions associated with the drift component p and q,
which simplifies the solution.

Applying the Itô’s formula to consumption (58), and using this expression for the adjoint vari-
able q, we find

dC(t) = −ρ

γ
C(t)dt− C(t)

γp(t)
dp(t) +

(1 + γ)

γ

C(t)

p2(t)
(dp(t))2 =

= −ρC(t)

γ
dt+

C(t)

γ

(
rdt+

(
µ− r

σ

)
dW (t)

)
+ C(t)

(1 + γ)

2γ

(
µ− r

σ

)2

dt =

=
C(t)

γ

{(
r − ρ+

(1 + γ)

2

(
µ− r

σ

)2
)
dt+

(
µ− r

σ

)
dW (t)

}
.

  Now, we conjecture that consumption is a linear function of net wealth C = θN . If this is the
case this would allow us to obtain the optimal portfolio composition w∗. If the conjecture is right
then we will also have

dC(t) = θdN(t)

= θN(t) [ (r + (µ− r)w − ξ) dt+ σwdW (t)]

= C(t) [ (r + (µ− r)w − ξ) dt+ σwdW (t)]

  This can only be consistent with the previous derivation if
1

γ

[
r − ρ+

(1 + γ)

2

(
µ− r

σ

)2
]

= r + (µ− r)w − θ

1

γ

(
µ− r

σ

)
= σw

  Solving for θ and w we obtain the optimal controls

θ =
1

γ

[
ρ+ (γ − 1)

(
r +

1

2γ

(
µ̃s − r

σs

)2
)]

w∗ =
1

γ

(
µ− r

σ2

)
  Substituting in the budget constraint we have the optimal net wealth process

dN∗(t)

N∗(t)
= µndt+ σndW (t)

  where

µn =
1

γ

[
r − ρ+

(1 + γ)

2γ

(
µ− r

σ

)2
)

(59)

σn =
1

γ

(
µ− r

σ

)
(60)
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which can be explicitly solved with the initial condition N∗(0) = n0. We also find that
dC∗(t)

C∗(t)
= µndt+ σndW (t)

  the rates of return for consumption and wealth are perfectly correlated.
References (Yong and Zhou, 1999, chap. 3)

B.3 Solution by martingale representation methods

Suppose there is financial market with two assets, one risk-free asset with price B and one risky
asset with price S following the processes {(B(t), S(t)), t ≥ 0} represented by

dB(t) = r(t)B(t)dt, B(0) = 1

dS(t) = µs(t)S(t)dt+ S(t)σs(t)dW (t), S(0) = S0.

Then asset 1 is risk-free and asset 2 is risky.
We can show that e−

∫ t
0 r(s)dsS(t) can be converted into a martingale. Applying the Itô’s

lemma we get

d
[
e−

∫ t
0 r(s)dsS(t)

]
= S(t)d

[
e−

∫ t
0 r(s)ds

]
+ e−

∫ t
0 r(s)dsdS(t)

= e−
∫ t
0 r(s)ds (−r(t)S(t)dt+ µs(t)S(t)dt+ σs(t)S(t)dW (t))

= e−
∫ t
0 r(s)ds ((µs(t)− r(t))S(t)dt+ σs(t)S(t)dW (t))

If , in general µs(t) ̸= r(t) then e−
∫ t
0 r(s)dsS(t) is not a martingale, with the initial probability

distribution P . That is EP
[
d
[
e−

∫ t
0 r(s)dsS(t)

]]
̸= 0

From the Girsanov theorem, we can find a Ft-adapted process Xt and a new Wiener process
W̃ (t) with probability measure Q and with density ξt relative to P , such that

dP (t) = ξ(t)dQ(t)

i.e., for which
ξ(t) = e

∫ t
0 X(s)dW (s)− 1

2

∫ t
0 X(s)2ds

with
∫ t
0 X(s)2ds < ∞, is a martingale. The new process is defined as

dW (t) = dW̃ (t)−X(t)dt.

Applying that result we get

d[e−
∫ t
0 r(s)dsS(t)] = e−

∫ t
0 r(s)ds ((µs(t)− r(t))S(t)dt+ σs(t)S(t)dW (t))

= e−
∫ t
0 r(s)ds

(
(µs(t)− r(t))S(t)dt+ σs(t)S(t)(dW̃ (t)−X(t))

)
= e−

∫ t
0 r(s)ds

[
((µs(t)− r(t))S(t)dt− σs(t)S(t)X(t)dt) + σs(t)S(t)dW̃ (t)

]
= e−

∫ t
0 r(s)dsσs(t)S(t)dW̃ (t).
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Then EQ
[
d
[
e−

∫ t
0 r(s)dsS(t)

]]
= 0 if and only if

X(t) =
µs(t)− r(t)

σs(t)
.

This process is called market price of risk.
Considering the budget constraint For convenience, we rewrite the instantaneous budget con-

straint

dN(t) = [(r(t)(1− w(t)) + µs(t)w(t))N(t) + Y (t)− C(t)]dt+ w(t)σs(t)N(t)dW (t),

and N(0) = N0 and assume that Y (t) follows equation (1).
Consider the process

dM(t) = −X(t)M(t)dW (t)

also called in the literature the state density process, where X(t) is the market price of risk. The
process

M(t) = e−
∫ t
0 r(s)dsM(t)

is called the state density deflator. Using the Itô’s lemma (prove this) it has the differential
representation

dM(t) = −M(t) (r(t)dt+X(t)dW (t)) .

Now consider the deflated value of wealth defined as

Z(t) = M(t)N(t)

which is a Ft-measurable. By using the Itô’s lemma its differential representation is 4

dZ(t) = Z(t)[σs(t)w(t)−X(t)]dW (t) +M(t)(Y (t)− C(t))dt

then
Z(T ) = Z(t) +

∫ T

t
M(s)(Y (s)− C(s))ds+

∫ T

t
Z(s)[σs(s)w(s)−X(s)]dW (s)

Under certain conditions, a self-financing strategy holds, i.e,

Et[Z(T )] = Z(t) + Et

[∫ T

t
M(s)(Y (s)− C(s))ds

]
4 Exercise: prove this result by using the following version of the Itô’s lemma: for y = f(x1, x2)

dy =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

1

2

∂2f

∂x2
1

(dx1)
2 +

1

2

∂2f

∂x2
2

(dx2)
2 +

∂2f

∂x1∂x2
dx1dx2.
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If we set t = 0 and take T = ∞ and assume that there are no bubbles

E0[ lim
t→∞

M(t)N(t)] = N0

then we get the intertemporal budget constraint as

E0

[∫ ∞

0
M(s)(Y (s)− C(s))ds

]
= 0

which is formally identical to the restriction for the consumer problem in the Arrow-Debreu econ-
omy. This means that the state price deflactor and the stochastic discount factor are equal.

An equivalent result would be obtained if the the household chose

w(t) =
X(t)

σs(t)
,

  which is the solution obtained by the other two methods.
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