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1 Introduction
In this note we address the redistribution function of tax policy in a static, i.e., time-
independent, framework. Redistribution can only take place when the economy is popu-
lated by heterogeneous agents. The most obvious dimension of heterogeneity is related to
differences in income. However, differences in income can be rooted to different types of
primitives: differences in preferences (on time-preference, risk-aversion or other dimensions
of attitude towards risk), differences in skills, differences in information, differences in luck,
among many others.

In this note we assume that the heterogeneity in income has its source on heterogeneity
of skills, which is associated with heterogeneity in productivity and in wages. Part of the
analysis is the similar if we assume heterogeneity in luck, also called idiosyncratic hetero-
geneity.

Tax/transfer policy is a standard instrument to redistribute income, and therefore con-
sumption attainment, within a population with heterogeneity of skills. When the population
is heterogeneous, tax policies, even when they are used as instruments of macroeconomic sta-
bilization, always have effects on distributions of income, intended or not.

Optimal tax/transfer policy deals with the explicit design of a redistribution mechanism
such that social welfare is the best which is attainable. In principle, redistribution can be
achieved when the marginal tax on higher incomes is proportionally higher, i.e., the income
tax schedule should be progressive.

However, redistribution creates an incentive problem: if higher incomes are associated to
higher ability or higher willingness to develop better or higher efforts, and not with higher
rents, then heavier taxes will generate a negative incentive to higher skilled or industrious
people to work, which will negatively effect the aggregate output and therefore, the total
amount of resources to redistribute.

Information play one important role here. If government can observe income and clearly
distinguish its skill or effort component, it can design the tax schedule such that a social
optimum may be attained, by balancing the redistributing and incentive features of the
tax/transfer structure.

However, if the information on the skill abilities or work effort is private, then a particular
tax schedule may have unintended consequences on incentives throughout the economy. One
un-properly designed tax policy may induce the most skilled part of the population to reduce
effort this reducing the total tax collected and the aggregate income of the economy. This
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problem is more generally faced by any contract between a principal and an agent in which
the agent has private information with a bearing in the contract. There is adverse selection
if the private information concerns the type of the agent and moral hazard if the type of
information concerns the actions of the agent 1.

The seminal paper dealing with this problem is Mirrlees (1971), and Mirrleesian taxation
has been identified with the distributional and incentive role of taxation. Mirrlees (1971)
introduces the incentive considerations by adding an incentive compatibility constraint to
the optimal tax problem. Therefore, the optimal taxation problem not only involves dealing
with redistribution of income and changes in incentives but also with one informational
friction.

There is a huge literature on Mirrlesian taxation. For a simpler and clearer version of
the model see Diamond (1998), and for a thorough discussion of their properties see Saez
(2001). A textbook presentation is (Tuomala, 2016, ch. 4). There are some extensions of
the model to dynamic contexts: see Golosov et al. (2011), and Werning (2007) and Farhi
and Werning (2013) for dynamic Mirrleesian economies, andSargent et al. (2017) for a recent
contribution.

In this note, in order to separate the distributional from the information problem we
present the an optimal taxation model with perfect information in section 3. In this section
we specify the two methods for presenting and solving optimal taxation problems: the primal
and dual approaches. In section 4 we present the model with imperfect information, in which
the incentive effects of taxation are incorporated via an incentive compatibility constraint. In
the appendix A auxiliary results on dynamic optimization, needed to solve optimal taxation
problems, are presented.

2 The economy
In this section we present a general equilibrium allocation, of consumption and hours worked,
depending upon on an income tax structure such that the government constraint holds. We
also introduce the approaches to allows us to find an optimal tax structure.

Assume an economy populated by agents with heterogeneous skills or earnings ability.
The skill levels, θ, are ordered in a continuum, from the minimum θ ≥ 0 to the maximum θ̄

that can be finite or infinite: formally, θ ∈ Θ ≡ (θ, θ̄) ⊆ (0,∞). The population is heteroge-
1This is now standard in the mechanism design literature (see Bolton and Dewatripont (2005).
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nous and is distributed according to the skill levels. The proportion of population with skill
θ is given by the density function f(θ) = F

′
(θ), where the cumulative skill distribution, F (θ)

satisfies the following properties:
∫
Θ
dF (θ) =

∫
Θ
f(θ)dθ = 1, and f(θ) > 0 for all θ ∈ Θ.

We assume that gross income for an agent with skill level θ is a linear in the hours worked,
ℓ(θ), is

y(θ) = θ ℓ(θ)

  where w(θ) = θ is the wage rate for agents with skill level θ. In this simple model θ is
equal to the productivity of agents with skill level θ. We also assume that the labor effort is
measured in hours worked with introduces the following constraint: 0 ≤ ℓ(θ) ≤ 1.

The tax faced by agents of type θ, T (θ), is set by the tax authority, and has a shape which
is a-priori unknown to the agent. The functional form of the tax function T (θ) is a-priori
unknown, and is not necessarily a linear function of agents’ income. It can be non-linear, or
can have a lump-sum structure to, and can have any sign. However, one would expect that
it should be negative for low levels of income and positive for high levels of income.

The after-tax income for an agent with skill level θ is y(θ) − T (θ) and is a function of
both the skill level and the hours worked. If T (θ) > 0 agents of type θ are taxed and if
T (θ) < 0 they receive a transfer.

As we are dealing with a static economy (or with a steady state of a dynamic economy),
there are no savings, implying that consumption is equal to post-tax income

c(θ) = y(θ)− T (θ) = θ ℓ(θ)− T (θ). (1)

Considering both the constraint on hours worked, 0 < ℓ(θ) < 1 and introducing the con-
straint that consumption should be positive, for every skill level, then the hours worked are
assumed to belong to the set

L(θ) =
{
ℓ(θ) : max

{
0,
T (θ)

θ

}
< ℓ(θ) < 1

}
,

  for every θ ∈ Θ.
We assume agents derive utility from consumption and leisure, and that their prefer-

ences are homogeneous throughout the skill distribution. Thus their utility function is
U(c(θ), ℓ(θ)), for every θ ∈ Θ. Furthermore, we let the standard properties hold: utility
is increasing in consumption and is decreasing on hours worked, Uℓ(c, ℓ) < 0 < Uc(c, ℓ), and
utility is a strictly concave function of (c, ℓ).
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The utility of agent θ, u(θ), can be written as a function of the hours worked, u(θ) =

U (θ ℓ(θ)− T (θ), ℓ(θ)).
The optimal working time, ℓ∗(θ), is skill-specific and is the solution to the problem

max
ℓ(θ)∈L

u (θ ℓ(θ)− T (θ), ℓ(θ)) .

 
The necessary first-order conditions for an interior maximum, 0 < ℓ∗(θ) < 1 is is

u∗c(θ)θ + u∗ℓ(θ) = 0, for every θ ∈ Θ (2)

  where u∗c(θ) = Uc (θ ℓ
∗(θ)− T (θ), ℓ∗(θ)) and u∗ℓ(θ) = Uℓ (θ ℓ

∗(θ)− T (θ), ℓ∗(θ)).
If there are no singularities, ℓ∗(θ) will be unique, which would allows us to find the

aggregate labor input, income and consumption (all this data is in per-capita terms) L =∫
Θ
ℓ∗(θ)f(θ)dθ, Y =

∫
Θ
θ ℓ∗(θ)f(θ)dθ and C =

∫
Θ
c∗(θ)f(θ)dθ.

The government sets taxes/transfers within a balanced budget policy. In per-capita terms
the government budget constraint is∫

Θ

T [y(θ)]f(θ)dθ ≥ G (3)

  where G are exogenous per capita government net expenditures.

Definition 1. A general equilibrium in this economy is an allocation (ceq(θ), ℓeq(θ))θ∈Θ

such that, for a given tax/transfer policy (T (θ))θ∈Θ: first, the hours worked for agents of skill
level θ, equation (2) holds; second, consumption of agents os skill level θ satisfies equation
(1); third, the government budget constraint (3) is satisfied; and, fourth, the goods’ market
clears Y = C +G.

Up to this point, we have assume the tax/transfer policy is arbitrary. The optimal
taxation problem  is to find the tax schedule such that the tax authority optimizes a
welfare function.

We will assume next that the social welfare functional is

W =

∫
Θ

W [u(θ)]f(θ)dθ. (4)
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The social welfare function is the average of the social value of the private utility
distribution for the population with all the skill levels. Here considerations over social justice
enter into the model 2.

If W (u) = u, the social welfare function is called utilitarian because W is just a simple
average of the utility levels for people with different skills, weighted by their proportion in
the total population. If, in general, W (u) is increasing in u then the social welfare function
will not involve a change in the order relationship which exists in the distribution of private
utilities. However, its concavity properties may entail a redistribution such that the the
social differences in utility will be smoother than the private ones.

Next we determine optimal allocations for two different information environments: first,
we assume that the tax authority has perfect information both on consumption, income, and
hours worked, c(θ), y(θ), and ℓ(θ); second, we assume the tax authority faces an information
friction  because it observes consumption and income, c(θ), y(θ), but does not observe works
worked, ℓ(θ). In particular, in the second case, it does not know whether a given income
comes from the agents type (or luck), θ, or on the agents’ effort, ℓ(θ)

Definition 2. An optimal allocation  (c∗(θ), ℓ∗(θ))θ∈Θ is an allocation that maximizes
the welfare functional (4).

Definition 3. A tax/transfer policy T ∗(θ) implements the optimal allocation if is a
tax/transfer function that makes an equilibrium allocation optimal.

In the literature, particularly in the literature relative to the Chamley-Judd capital in-
come taxation, a distinction can be made between two methods for finding an optimal
taxation: the primal and the dual approaches. The primal approach  consists in solving
a centralized optimization problem for finding the optimal allocation with the tax policy
implicit. After this step the tax policy that implements the optimal allocation can be found.
The dual approach  solves the problem in two steps: in the first step the problem for the
agents is solved, given the tax policy, and in second step the tax authority determines the
optimal taxation taking the equilibrium allocations as a constraint. Although the second
approach is intuitive, because taxation is used directly as an instrument, in the second step,
the first is simpler to apply.

Under some circumstances, that we will discuss later, the two methods yield the same
optimal tax schedule. While the first method uses a local approximation to the optimal

2For the economics of the social welfare function see any textbook in public economics, v.g. Atkinson
and Stiglitz (1980).



Paulo Brito Advanced Macroeconomics 2018/2019 8

taxation problem, the second method has a global nature. Therefore, the difference between
two has analogies with the general difference between local and global approximations to
optima.

3 The optimal taxation with complete information
In this section, we derive the properties of the optimal tax structure (T ∗(θ))θ∈Θ when the
government has perfect information. In subsection 3.1 we solve the problem using the primal
approach, and in subsection 3.2 we use the dual approach. Some examples allow for more
explicit characterizations.

3.1 The primal approach
The primal approach consists in finding the optimal allocation, of consumption and hours
worked, subject to government budget constraint, by taking the tax structure implicitly, that
it by observing that T (θ) = y(θ) − c(θ). In order to compare to the Mirrlees model (see
section 4) we will consider an equivalent problem in which the optimization is done by using
the distribution of utility, u(θ), instead of the distribution of consumption, c(θ).

If the source of heterogeneity was luck, or idiosyncratic uncertainty, this problem would
be similar to an optimal insurance problem.

Central planner problem We assume that the utility function, U(c, ℓ) is monotonic as
a function of consumption, c, that is Uc(c, ℓ) > 0 for any (c, ℓ) ∈ R++ × (0, 1). Therefore, if
the utility of an agent of skill level θ is u(θ) = U (c(θ), ℓ(θ)), then, by the implicit function
theorem we can write consumption as a function of the level of utility and hours worked

c(θ) = C (u(θ), ℓ(θ)) ,

  that has the following first derivatives,

∂C(u, ℓ)

∂u
=
∂U(c, ℓ)

∂c
> 0,

∂C(u, ℓ)

∂ℓ
= −

∂U(c, ℓ)

∂ℓ
∂U(c, ℓ)

∂c

> 0.

  Therefore, consumption increases with utility and there is complementarity between con-
sumption and hours worked.
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The set of admissible values for consumption and hours worked is

U = {(u(θ), ℓ(θ)) : C (u(θ), ℓ(θ)) > 0, 0 < ℓ(θ) < 1, ∀θ ∈ Θ} .

 

Definition 4. An optimal allocation (c∗(θ), ℓ(θ))θ∈Θ is an allocation such that c∗(θ) =

C (u∗(θ), ℓ∗(θ)) and (u∗(θ), ℓ(θ))θ∈Θ solve the tax-planner problem:

max
(ℓ(.),u(.))∈U

∫
Θ

W [u(θ)]f(θ)dθ (5)

subject to the (per capita) government budget constraint∫
Θ

(θ ℓ(θ)− C (u(θ), ℓ(θ))) f(θ)dθ ≥ G (6)

The planner problem is to find an optimal distribution of utilities and hours worked,
such that the government budget constraint is satisfied, in order to maximize a social welfare
function which is the average of the social value of private utilities for agents of all skills.

Although it is infinite dimensional, this is a static redistribution problem. Next, we
assume that the conditions for an interior solution are satisfied. If there is an optimal
allocation (u∗(θ), ℓ∗(θ))θ∈Θ will satisfy, jointly with the Lagrange multiplier λ, the necessary
first order conditions for an interior maximum

Cℓ (u
∗(θ), ℓ∗(θ)) = θ, for every θ ∈ Θ (7a)

λCu (u
∗(θ), ℓ∗(θ)) = W

′
[u∗(θ)], for every θ ∈ Θ (7b)∫

Θ

(θ ℓ∗(θ)− C (u∗(θ), ℓ∗(θ))) f(θ)dθ = G. (7c)

Equation (7a) expresses an efficiency condition: the marginal increase in consumption
of agent of skill θ should be equal to its productivity (which in this case is equal to its
wage). Equation (7b) says that the marginal social value of the utility of agents with skill
θ should be equal to their cost, measured by the value of the marginal effect on aggregate
consumption which is generated by an increase in their utility. Also, from equation (7b) we
can see that

λ =
W

′
[u∗(θ)]

Cu (u∗(θ), ℓ∗(θ))
for any θ ∈ Θ

  which means that the optimal policy would equalize the social and private value of utility
across the continuum of skills.

Now, we need to determine which tax policy would generate an optimal allocation, that
is would satisfy conditions (7a)-(7c).
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Implementing the optimal plan If we find, explictly or implicitly, an optimal allocation,
u∗(.) and ℓ∗(.), we can determine the associated income y∗(θ) and consumption c∗(θ) =

C (u∗(θ), ℓ∗(θ)) and by substituting in

T (θ) = y∗(θ)− c∗(θ) = θell∗(θ)− C (u∗(θ), ℓ∗(θ))

  we find the tax policy that implements the optimal allocation. However, this formula
will gives the tax schedule as a function of the skill distribution.

In order to compare with the results for the model with imperfect information ( and with
actual tax codes) we need to determine the dependence of the tax function on income, and,
in particular the marginal tax function. As

T (θ) = θℓ(θ)− c(θ) =

= θℓ(θ)− C (u(θ), ℓ(θ)) =

= y(θ)− C

(
u(θ),

y(θ)

θ

)
  then the marginal tax rate, as a function of income, is

T
′
(y(θ)) = 1− Cℓ (u(θ), ℓ(θ))

θ
,

where ℓ(θ) = y(θ)/θ.
We say we have a linear tax stucture if T ′

(y) is constant.
Optimal allocations, and the fiscal policy that implements them, will depend on the

agents’ utility function, u(.) via function C(.), on the social utility function W (.), on the
distribution of skills f(.) and on the level of government income R = G. Next we derive
them for particular cases considered in the literature.

3.1.1 Example 1

Assume that the utility function is U(c, ℓ) = log (c) + α log (1− ℓ), where α is the weight of
leisure relative to consumption, and that the social utility function is W [u] = u. This means
that we are assuming a utilitarian social welfare function, weighting the distribution of utility
just by their weight in total population. The private utility function also means that there
are both income and substitution effects from the private choice between consumption and
leisure.
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In this case, we have
c = C(u, ℓ) = eu (1− ℓ)−α

  and the optimality conditions (7a) and (7b) take the form

θℓ(θ) = θ − α

λ
, and c(θ) = 1

λ
.

  Substituting in the resource constraint (7c) we obtain the Lagrange multiplier as pro-
portional to the difference between the per capita wage and the per-capita government
expenditure

1

λ
=

α

1 + α
(E[θ]−G) ,

  because the average wage is
E[θ] =

∫
Θ

θf(θ)dθ.

  Then a candidate allocation satisfies c(θ) =
1

1 + α
(E[θ]−G) and y(θ) = θℓ(θ) = θ −

α

1 + α
(E[θ]−G). This is an only if the admissibility conditions hold: c(θ) > 0 and y(θ) ∈

(0, θ), that is if and only if E[θ]−G > 0 and θ > θ =
α

1 + α
(E[θ]−G).

Therefore, if
(
1 + α

α

)
θ > E[θ]−G > 0 then an optimal allocation is characterized by

c∗(θ) =
1

1 + α
(E[θ]−G)

  and
y∗(θ) = θℓ∗(θ) = θ − α

1 + α
(E[θ]−G) .

 
Observe that there is complete insurance or complete redistribution (i.e, consumption is

skill-independent) and labor income is increasing in skill.
The tax schedule that implements this optimum is

T ∗(θ) = θ − (E[θ]−G) .

  If we define a critical skill threshold by θc = E[θ] − G, the optimal tax schedule can be
written as a piecewise function of the skill level,

T (θ) = θ − θc


< 0 if θ < θ < θc

= 0 if θ = θc

> 0 if θ > θc.
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  We see that there is a lump-sum subsidy, equal to E[θ]−G and a linear tax schedule such
that agents with skill bellow θc receive a net subsidy and agents with skill above θc pay net
taxes.

However, the marginal tax rate, relative to income, y(θ) is

T
′
(y) = 1− α

c∗(θ)

1− ℓ∗(θ)
=

=

αc∗(θ)

θ
− αc∗(θ)

αc∗(θ)

θ

=

= 1− θ.

  Then T
′
(y) ⋚ 0 if and only if θ ⋚ 1. This means that the income tax schedule has the

typical Laffer form: an inverted U-shape with a maximum at θ = 1, or y∗ = 1 + α(1− θc)

1 + α
.

3.1.2 Example 2

This is the case considered in Diamond (1998). Assume that the utility function is u(c, ℓ) =

c+(1−ℓ)ξ and that the social utility function is concave W [u] = −e
−β u

β
, where both ξ and β

are positive. In this case, the social welfare function is not utilitarian, although it still displays
an increasing social welfare function, but at decreasing rate: if limu→∞W

′
(u) = 0. The

private utility function is linear in consumption, which means that there are only substituting
effects associated with labor supply.

In this case we have
c = C(u, ℓ) = u− (1− ℓ)ξ.

  which implies Cu = 1 and Cℓ = ξ(1− ℓ)ξ−1.
The optimality conditions (7a) and (7b) take the form ξ(1−ℓ(θ))ξ−1 = θ and λ = e−βu(θ).

Therefore, the leisure time is

1− ℓ(θ) =

(
θ

ξ

) 1
ξ−1

.

and the utility is skill-independent u(θ) = u. If we substiitute in equation (7c), we can
determine the utility level as

u∗ = Y + V −G
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  where Y is the average per-capita income

Y = E[y] =

=

∫
Θ

θy(θ)f(θ)dθ =

=

∫
Θ

(
θ − ξ

(
θ

ξ

) ξ
ξ−1

)
f(θ)dθ

  and V is the average utility of leisure

V = E[(1− ℓ)ξ] =

=

∫
Θ

(1− ℓ(θ))ξf(θ)dθ =

=

∫
Θ

(
θ

ξ

) ξ
ξ−1

f(θ)dθ.

  As optimal consumption for agents of skill level θ is 3

c∗ = u∗ − v(ℓ∗)

where the utility of leisure at the optimum

v(ℓ∗) =

(
θ

ξ

) ξ
ξ−1

  is increasing (decreasing) with skill if ξ > 1 (ξ < 1), that is, if the elasticity of labor supply
is positive or negative. Defining the elasticity of labor supply

ϵ(ℓ(θ)) ≡ −v
′′
(ℓ(θ))ℓ(θ)

v′(ℓ(θ)
(8)

  that result is obtained if we observe that

ϵ(ℓ(θ)) =
(ξ − 1)ℓ∗(θ)

1− ℓ∗(θ)
.

Therefore, consumption is increasing (decreasing) with the skill level if agents have in-
elastic (elastic) labor supply.

3We leave the determination of the admissibility conditions for an interior optimum cθ > 0 and 0 <

ℓ∗(θ) < 1.
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The tax function that implements the optimum is

T ∗(θ) = ψ(θ)− u∗ = ψ(θ)−Ψ+G.

  where

ψ(θ) ≡ y∗(θ) + v(ℓ∗) = θ + (1− ξ)

(
θ

ξ

) ξ
ξ−1

  and
Ψ ≡ E[ψ] =

∫
Θ

ψ(θ)f(θ)dθ.

  The tax structure, as regards the skill level, depends on the elasticity of labor supply. As

ψ
′
(θ) = 1−

(
θ

ξ

) 1
1−ξ

, and ψ′′
(θ) =

1

ξ − 1

(
θ

ξ

) ξ
1−ξ

,

  then: if ξ < 1 then ψ(θ) is concave with a maximum at θ = ξ, and if ξ > 1 is convex with
a minimum at θ = ξ.

This means that we have now two critical levels for skills θc < ξ < θ̄c but the distributional
properties of the tax structure are symmetrical, depending on the level of expenditures to
finance G: if labor supply is inelastic (ξ < 1) then the two extremes of the skill distribution
will pay lower taxes (or may be subsidized) and the middle level would pay higher taxes; but
if labor supply is elastic (ξ > 1) the opposite shape is optimal with the two extremes of the
skill distribution will pay higher taxes and the middle level would pay lower taxes (or may
be subsidized).

In this case, the marginal tax distribution, related to income, yields a surprising result

T
′
(y) = 1− Cℓ (u

∗(θ), ℓ∗(θ))

θ
= 0

  that is the tax schedule is a lump-sum tax as a function of income.
We can readily see that this result holds for any utility function which is additive in

consumption and leisure and linear in consumption, of the form U(c, ℓ) = c + v(1 − ℓ),
where v(.) is an increasing function of leisure. For this utility function we have Cu = 1 and
Cℓ = v

′
(1− ℓ) and the optimality condition (7a) is v′

(1− ℓ∗(θ)) = θ. Therefore, the optimal
marginal tax, as a function of income, tax implements the optimum is always zero,

T
′
(y) = 1− Cℓ (u

∗(θ), ℓ∗(θ))

θ
= 1− v

′
(1− ℓ∗(θ))

θ
= 0.
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3.1.3 Example 3

The case that is most common in the recent macro literature, U(c, ℓ) = (1−σ)−1c1−σ − (1+

ξ)−1ℓ1+ξ and W = u, is left as an exercise.

3.2 The dual approach
The dual approach involves two steps. In the first step, we find equilibrium allocations for
arbitrary fiscal policies, and, in the second step, we find optimal (or second-best) allocations
by solving a problem for the tax policy maker using the tax function as a control variable.

Again, an equilibrium allocation is an allocation of consumption and hours worked
(c(θ))θ∈Θ and (ℓ(θ))θ∈Θ such that households solve their problem, markets clear and the gov-
ernment budget constraint holds, given the tax policy (T (θ))θ∈Θ and the level of government
expenditures G.

The equilibrium allocations, satisfy the first order condition for household (2), together
with the budget constraint, equation (3), and the market clearing condition: Y = C +G, or∫

θ∈Θ
θ ℓ(θ) f(θ)dθ =

∫
θ∈Θ

c(θ) f(θ)dθ +G

  From the Walras law, and because the budget constraint of the consumer is c(θ) =

θ ℓ(θ) − T (θ), and because the market equilibrium condition is equivalent to a macroe-
conomic resource constraint, the general equilibrium is characterized only by equations (2)
and (3).

In order to formulate the policy-maker’s problem of finding the optimal tax we have two
possibilities: first, if we have an explicit functional form for the equilibrium hours worked
as a function of taxes, then we can write the social utility function as the tax schedule and
solve the problem taking the tax function as a control variable; second, if we do not have
an explicit functional form for the equilibrium hours worked we introduce equation (2) as a
constraint to the optimization problem and solve it using both hours worked and taxes as
control variables.

Next, we follow the second approach.
The optimal tax policy is the following perimetric problem (see Appendix subsection A.2

for the optimality condition):

max
(ℓ(θ),T (θ))∈U ∗

∫
Θ

W [u (θ ℓ(θ)− T (θ), ℓ(θ))] f(θ) dθ (9)
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  for U ∗ = {(ℓ(θ), T (θ))θ∈Θ : 0 < ℓ(θ) < 1, θ ℓ(θ) > T (θ)}   subject to

uc (θ ℓ(θ)− T (θ), ℓ(θ)) θ + uℓ (θ ℓ(θ)− T (θ), ℓ(θ)) = 0, θ ∈ Θ (10a)∫
Θ

T (θ) f(θ) dθ = G. (10b)

   
We define the Lagrangean associated to every skill-level θ

L(θ) = {W [u (θ ℓ(θ)− T (θ), ℓ(θ))] + λT (θ) } f(θ)+
h(θ) [uc (θ ℓ(θ)− T (θ), ℓ(θ)) θ + uℓ (θ ℓ(θ)− T (θ), ℓ(θ))]

  where λ is the Lagrange multiplier associated to constraint (10b) and h(θ) are the Lagrange
multipliers associated to every constraint (10a). The first order conditions for an interior
solution are, simplifying the notation,

W
′
[u] (uc(θ)θ + uℓ(θ)) + h(θ)

(
ucc(θ)θ

2 + 2ucℓ(θ)θ + uℓℓ(θ)
)
= 0 (11a)(

−W ′
[u]uc(θ) + λ

)
f(θ) + h(θ) (ucc(θ)θ + uℓc(θ)) = 0 (11b)

together with constraints (10a) and (10b). Constraint (10a) together with the assumption
that the agents’ utility function is strictly concave (therefore the Hessian of u(.) is positive
definite) implies that restriction (11a)  is equivalent to h(θ) = 0 for every θ ∈ Θ. Therefore
condition (11b)  becomes W ′

[u]uc(θ) = λ.
Going back to the primal problem, we have solved u(θ) = u(c(θ), ℓ(θ)) for c as c = C(u, ℓ).

As, locally, du = ucdc+uℓdℓ if there are no singularities we find Cu = 1/uc and Cℓ = −uℓ/uc.
Therefore, with the restrictions that the utility function u(.) is strictly concave and has

no singularities (i.e, uc and uℓ are different from zero in all their domains), the solution to
the dual problem is equivalent to the solution of the primal problem (see equations (7a)-
(7b) ).

The literature uses (explicitly or implicitly) this equivalence result to deal with more
complicated problems of optimal tax policy by using the primal approach which leads to
more straightforward results. But, again, this equivalence only works if the local and global
properties of the problem are similar.



Paulo Brito Advanced Macroeconomics 2018/2019 17

4 The Mirrlees model: optimal distributive tax policy
with information frictions

In Mirrlees (1971) the optimal tax policy problem is addressed when the tax authority
has imperfect information: it observes  again both the consumption and the income
distributions, c(θ) and y(θ), but it does not observe  the individual productivity, θ, and
the effort level of agents ℓ(θ). This creates a problem for policy: a more productive agent
may have an interest in reducing the income it reports by reducing its effort. If this is the
case, the social welfare will be reduced because the total resources of the economy will be
reduced, because, again the resource constraint∫

Θ

θ ℓ̃(θ)dθ =

∫
Θ

c(θ)dθ +G

  should be satisfied, where ℓ̃(θ) has a distortion generated by the tax policy relative to the
perfect information case. This problem creates an information friction in the derivation
of the optimal tax policy.

The Mirrlees (1971) paper was one of the first papers in the mechanism design literature
that adresses principal-agent problems in contexts of imperfect information.

4.1 Incentive compatibility
The solution put forward by Mirrlees (1971) is to make the policy incentive compatible, in
the sense that there should exist a truth revealing mechanism: that is agents of type θ > θ

′

should work at least a fraction θ
′

θ
of the time worked by agents of type θ′ . This is possible

if and only if

u (c(θ), ℓ(θ)) ≥ u

(
c(θ

′
),
θ
′

θ
ℓ(θ

′
)

)
.

As there is no savings, consumption is equal to after-tax income, and after-tax income
is y(θ) = θℓ(θ) − T (θ). As the utility of agent of type θ is u(θ) ≡ u (c(θ), ℓ(θ)) =

u (θℓ(θ)− T (θ), ℓ(θ)) it maximizes utility if condition (2) holds. Given its type θ, the incen-
tive compatibility condition holds if the marginal increase in its skill level induces a marginal
change in its income and therefore to an increase in utility 4

du

dθ
= uc(θ)ℓ(θ) = −ℓ(θ)uℓ(θ)

θ
4If r is the report of an agent of type θ then the income reported by agent of type θ is rℓ(θ). Therefore

the change in utility obtained by a small increase in reporting if du
dr = d

dru(c(r)) =
d
dru (rℓ(.)− T (.), ℓ(.)).
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  where we introduced the optimality condition (2): uc(θ)θ + uℓ(θ) = 0.

4.2 The primal optimal tax problem
Using the same primal approach as for the perfect information case, the policy problem is
to find

max
l(θ)∈(0,1)

∫ θ̄

θ

W [u(θ)]f(θ)dθ (12)

where the skill domain is Θ = [θ, θ̄], subject to the following constraints∫ θ̄

θ

[θℓ(θ)− C(u(θ), ℓ(θ)] f(θ)dθ ≥ G (13a)

du

dθ
= −ℓ(θ)uℓ(θ)

θ
(13b)

θ, θ̄ free (13c)
u(θ), u(θ̄) free. (13d)

Equation (13a) is the resource constraint, equation (13b) is the incentive compatibility
constraint. The constraints (13c) and (13d) are introduced to account for the fact that
the tax authority limits and levels of taxes at both ends of the skill distribution should
be optimally derived. This means that there can be upper or lower extremes of the skill
distribution that are not taxed.

This is a control problem with state variable u(θ) and control variable ℓ(θ), whose opti-
mality conditions are derived in the Appendix A. We have to introduce two types of adjoint
variables: λ is skill-independent and is associated to constraint (13a), and h(θ) is skill-
dependent and is associated to state variable u(θ). The Hamiltonian is

H(θ) = H(θ, λ, y(θ), u(θ), h(θ)) ≡

≡ {W [u(θ)]− λ (C (u(θ), ℓ(θ))− θ ℓ(θ))} f(θ)− h(θ)
ℓ(θ)

θ
uℓ (C (u(θ), ℓ(θ)) , ℓ(θ))

  Next we present the conditions for an interior solution, i.e., for 0 < ℓ∗(θ) < 1. The static
optimality condition H∗

ℓ (θ) = 0 (see equation (23a)) yields the optimal distribution of income

λ (C∗
ℓ (θ)− θ) f(θ) =

h(θ)

θ
[u∗ℓ(θ) + ℓ(θ) (u∗cℓ(θ) + u∗ℓℓ(θ))] , θ ∈ [θ∗, θ̄∗]. (14)

Again, we denote C∗
j (θ) ≡ Cj (u

∗(θ), ℓ∗(θ)), for j = u, ℓ, u∗ℓ(θ) ≡ uℓ (C (u∗(θ), ℓ∗(θ)) , ℓ∗(θ))

and analogously for the higher order derivatives of the utility function u(.).
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The Euler equation h′
(θ)+H∗

u(θ) = 0 (see equation (23b)) yields the change in the value
of the utility along the skill distribution

h(θ)

dθ
=
(
λC∗

u(θ)−W
′
[u∗(θ)]

)
f(θ) +

(
ℓ∗(θ)

θ
u∗ℓc(θ)C

∗
u(θ)

)
h(θ), θ ∈ [θ∗, θ̄∗]. (15)

The optimal conditions associated to the limit values for households’ utility in the two limits
of the skill distribution, u∗(θ) and u∗(θ̄) (see equation (23c)), satisfy

h(θ̄) = h(θ) = 0 (16)

  and the optimal cutoff-values for skill distribution which is taxable, θ∗ and θ̄∗, (see equation
(23d)) are

H∗(θ∗) = h(θ∗)u
′
(θ∗), for θ∗ = θ∗, θ̄∗ (17)

  The admissibility conditions (13a) and (13b) should also hold for ℓ(θ) = ℓ∗(θ) and u(θ) =

u∗(θ).
We see that the information friction introduces a skill-varying change when we compare

to the analogous first-order conditions for the perfect information problem (compare with
equations (7a) and (7b)):

C∗
ℓ (θ)− θ =

h(θ)

λθf(θ)
[u∗ℓ(θ) + ℓ(θ) (u∗cℓ(θ) + u∗ℓℓ(θ))]

λC∗
u(θ)−W

′
[u∗(θ)] =

1

f(θ)

(
h(θ)

dθ
−
(
ℓ∗(θ)

θ
u∗ℓc(θ)C

∗
u(θ)

)
h(θ)

)
  In addition, optimality conditions (16) and (17) constrain the range of taxable income and
the level of taxes at the two extremes of the skill distribution.

4.3 Diamond (1998) simplified version
A little more intuition on the characterization of the optimal redistribution problem is gained
by using the utility function assumed by Diamond (1998): u(c, ℓ) = c+v(1−ℓ) where v′

(.) > 0

and v
′′
< 0. This utility function simplifies calculations by assuming there are no income

effects associated to changes in taxes 5. With this utility function the elasticity of labor
supply, for skill-level θ is

ϵ(θ) = −v
′′
(1− ℓ(θ)) ℓ(θ)

v′(1− ℓ(θ))
.

5Saez (2001) proves that introducing income effects do not change qualitatively the results.
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  With this utility function, the first order condition (14) becomes

λ
(
v

′
(1− ℓ∗(θ))− θ

)
f(θ) =

h(θ)

θ

(
v

′
(1− ℓ∗(θ))− ℓ∗(θ)v

′′
(1− ℓ∗(θ))

)
, for θ ∈ [θ∗, θ̄∗],

(18)
  and condition (15) becomes

h(θ)

dθ
= −

(
W

′
[u∗(θ)]− λ

)
f(θ), for θ ∈ [θ∗, θ̄∗]. (19)

This is an ordinary differential equation, which can be solved together with the terminal
optimality conditions (16). Then, 6, (16),

h(θ) =

∫ θ̄

θ

(
W

′
[u∗(s)]− λ

)
f(s)ds =

∫ θ̄

θ

(
W

′
[u∗(s)]− λ

)
dF (s),

  is a balance equation between the utility of agents of type θ and the net benefit of reducing
utility for agents with skill higher than θ.

Substituting in equation (18) yields

λ
(
θ − v

′
(1− ℓ(θ))

)
f(θ) =

(
v

′
(1− ℓ(θ))− ℓ(θ)v

′′
(1− ℓ(θ))

θ

)∫ θ̄

θ

(λ−W
′
(s))dF (s).

  Using the definition of the elasticity of labor supply, as in equation (8), and rearranging
terms we get the well known expression (see Diamond (1998) and (Tuomala, 2016, ch. 4) )

θ − v
′
(1− ℓ(θ))

v′(1− ℓ(θ))
= A(θ)B(θ)C(θ) (20)

where
A(θ) ≡ 1 +

1

ϵ(θ)

 

B(θ) ≡
∫ θ̄

θ

(
λ−W

′
[u(s)]

)
dF (s)

λ (1− F (θ))

 
C(θ) ≡ 1− F (θ)

θf(θ)

  Equation (20) basically says that the ratio of the optimal tax policy should equate the
marginal rate of substitution between consumption and labor supply, for an agent of skill θ

6From now on we delete the ∗ symbol in functions ℓ∗(θ) and u∗(θ) and in numbers θ∗ and θ̄∗.
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to the product of three terms: the deadweight burden generated by the income tax to people
of skill θ (A(θ)), the relative transfer of income from people with higher skills than θ (B(θ)),
and the weight of people with higher skills relative to the average skills of people with skill
θ (C(θ)).

4.4 Implementing the optimal tax
In order to find the conditions for an optimal tax policy we need to find which tax implements
the optimal redistribution. Because the tax authority has imperfect information, as it only
observes income y(θ), and not θ and ℓ(θ), we need to find the tax policy that implements
the optimal allocation as a function of the agents’ income.

If we use the Diamond (1998) utility function the tax schedule becomes

T (θ) = θℓ(θ)− c(θ) =

= θℓ(θ)− u(θ) + v (1− ℓ(θ))

= y(θ)− u(θ) + v

(
1− y(θ)

θ

)
  then the marginal tax rate that implements optimality condition (20) is T ′

(y(θ)) = 1 −
v

′
(1− ℓ(θ))

θ
yielding

T
′
(y(θ))

1− T ′(y(θ))
=
θ − v

′
(1− ℓ(θ))

v′(1− ℓ(θ))
.

  Therefore, the optimal tax policy that allows for the optimal redistribution of income
within an imperfect information environment is

T
′
(y(θ))

1− T ′(y(θ))
= A(θ)B(θ)C(θ), for θ ∈ [θ∗, θ̄∗] (21)

 
In the perfect information case, we saw that T ′

(y(θ)) = 0 because θ = v
′
(1 − ℓ(θ). In

this imperfect information case the result is not so clear cut.
The literature has discussed the shape of the tax function T (y(θ)), the marginal tax rates

at the two extremes of the skill and income distribution, and the values of the cutoffs (see
Diamond (1998), Saez (2001) and (Tuomala, 2016, ch 4 and 5)). All those features of the
optimal tax policy depend on the nature of the utility function, u(.), the welfare function,
W (.) and the distribution of skills, F (.). Most of the results tend to generate non-linear
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tax schedules with the marginal tax rates at the boundaries of the distribution close to zero.
This result is not surprising because it is a consequence of the boundary optimality condition
(16).

A detailed analysis of the Diamond model is provided in Dahan and Strawczynski (2000).
A survey on theory and policy implications of Mirrleesian taxation can be found in

Diamond and Saez (2011).
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A General problem
Independent variable, or index, x ∈ X ⊆ R+, where X ≡ [x0, x1], state variable y : X → R
and control variable u : X → R.

The problem

max
x0,x1,y(x0),y(x1),(u(x))x∈[x0,x1]

∫ x1

x0

F
(
x, y(x), y

′
(x)
)
dx, subject to (22a), (22b), and (A) (P1)

 

∫ x1

x0

G0 (x, y(x), u(x)) dx ≤ Ḡ (22a)

dy(x)

dx
= G1 (x, y(x), u(x)) x ∈ X (22b)

x0, x1, y(x0), y(x1) free (22c)

This problem optimal control problem has one functional constraint of the isoperimetric
type, (22a), one ordinary differential equation constraint, (22b), and has free initial and
terminal indices and free initial and terminal values for the state variable . There are several
versions of it. For instance: (1) the simplest problem is the one in which x0, x1, y(x0) and
y(x1) are fixed; (2) the free terminal problem which is common in optimal control problems
in which the index variable is time in which x0 and y(x0) are known and x1 and y(x1) are
free; (3) a problem in which the limit values of the indices, x0 and x1, are fixed and the state
values, y(x0) and y(x1), are free; or (4) a problem in which the limit values of the indices,
x0 and x1, are free and the state values, y(x0) and y(x1), are fixed.

Defining

H∗(x) = H (x, y∗(x), u∗(x), λ0, λ0, λ1(x)) =

= F (x, y∗(x), u∗(x))− λ0G0 (x, y
∗(x), u∗(x)) + λ1(x)G1 (x, y

∗(x), u∗(x)) , x ∈ [x∗0, x
∗
1]

  The first-order necessary conditions for optimality are

H∗
u(x) = 0, for x ∈ [x∗0, x

∗
1] (23a)

λ
′
(x) +H∗

y (x) = 0, for x ∈ [x∗0, x
∗
1] (23b)

λ1(x)δyt = 0, for x = x∗t , t = 0, 1 (23c)(
H∗(x)− λt(x)(y

∗)
′
(x)
)
δxt = 0, x = x∗t , for t = 0, 1 (23d)
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for admissible solutions, i.e., satisfying∫ x∗
1

x∗
0

G0 (x, y
∗(x), u∗(x)) dx = Ḡ (24a)

(y∗)
′
(x) = G1 (x, y

∗(x), u∗(x)) x ∈ (x∗0, x
∗
1) (24b)

In order to simplify the derivation of the necessary conditions we consider two simpler
problems: problem (P2) in which we address the free limits problem and problem (P3) in
which we deal with the functional constraint.

A.1 Simple calculus of variations problem free initial and terminal
indexes and states

The problem is ( see (Gelfand and Fomin, 1963, ch. 3))

max
x0,x1,(y(x))x∈[x0,x1]

∫ x1

x0

F
(
x, y(x), y

′
(x)
)
dx, subject to (A) (P2)

We define the value functional

V [y] =

∫ x1

x0

F
(
x, y(x), y

′
(x)
)
dx.

  As we assume that the the initial and terminal indices and va�ues of the state variable are
free, we write x∗0 and x∗1 the optimal initial and terminal indices and the solution for the
state variable as the path y∗ = (y∗(x))x∈[x∗

0,x
∗
1]

. In particular optimal initial and terminal
values for the state variable are y∗j = y∗(x∗j) for j = 0, 1. The optimal value is

V [y∗] =

∫ x∗
1

x∗
0

F
(
x, y∗(x), (y∗)

′
(x)
)
dx. (25)

 
We introducing a continuous perturbation y(x) = y∗(x) + h(x). Because of the nature

of the optimization problem, the initial and the terminal points of the perturbation are
endogenous. We denote by P ∗

j ≡ (x∗j , y
∗
j ) for j = 0, 1 the values of the indexes and of the

states at the two boundaries at the optimum. The related terminal points for the perturbed
solution are written as Pj = (x∗j + δxj, y

∗
j + δyj for j = 0, 1.
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Therefore the variation in the functional, δV = V [y∗+h]−V [y∗] is (omitting the functional
dependence when possible)

δV =

∫ x∗
1+δx1

x∗
0+δx0

F
(
x, y∗(x) + h(x), (y∗)

′
(x) + h

′
(x)
)
dx−

∫ x∗
1

x∗
0

F
(
x, y∗(x), (y∗)

′
(x)
)
dx

=

∫ x∗
1

x∗
0

F
(
x, y∗(x) + h(x), (y∗)

′
(x) + h

′
(x)
)
− F

(
x, y∗(x), (y∗)

′
(x)
)
dx+

+

∫ x∗
1+δx1

x∗
1

F
(
x, y∗(x) + h(x), (y∗)

′
(x) + h

′
(x)
)
dx−

∫ x∗
0

x∗
0+δx0

F
(
x, y∗(x) + h(x), (y∗)

′
(x) + h

′
(x)
)
dx

  Using a first-order Taylor approximation and integration by parts yields, if we denote
F ∗ (x) = F

(
x, y∗(x), (y∗)

′
(x)
)

and an analogous notation for the derivatives,

δV =

∫ x∗
1

x∗
0

Fy (x)h(x) + Fy′ (x)h
′
(x)dx+ F (x)|x=x∗

1
δx1 − F (x)|x=x∗

0
δx0

=

∫ x∗
1

x∗
0

(
Fy(x)−

d

dx
Fy′ (x)

)
h(x)dx+

+ Fy′ (x)h(x)
∣∣
x=x∗

1

− Fy′ (x)h(x)
∣∣
x=x∗

0

+ F (x)|x=x∗
1
δx1 − F (x)|x=x∗

0
δx0

  If we approximate
h(x∗t ) ≈ δyj − y

′
(x∗t )δxt, for t = 0, 1

  we obtain

δV =

∫ x∗
1

x∗
0

(
Fy(x)−

d

dx
Fy′ (x)

)
h(x)dx+ Fy′ (x)

∣∣
x=x∗

1

− Fy′ (x)h(x)
∣∣
x=x∗

0

+

+
(
F (x)− Fy′ (x)y

′
(x)
)∣∣∣

x=x∗
1

δx1 −
(
F (x)− Fy′ (x)y

′
(x)
)∣∣∣

x=x∗
0

δx0

  Therefore the necessary conditions for optimality are

Fy

(
x, y∗(x), (y∗)

′
(x)
)
=

d

dx
Fy′

(
x, y∗(x), (y∗)

′
(x)
)
, x ∈ [x∗0, x

∗
1] (26a)

Fy′ (x
∗
0, y

∗(x∗0), (y
∗)

′
(x∗0)) δy0 = 0, (y(x∗0)) (26b)

Fy′ (x
∗
1, y

∗(x∗1), y
′
(x∗1)) δy1 = 0, (y(x∗1)) (26c)(

F (x∗0, y
∗(x∗0), (y

∗)
′
(x0))− Fy′ (x

∗
0, y

∗(x∗0), (y
∗)

′
(x∗0))(y

∗)
′
(x∗0)

)
δx0 = 0 (x∗0) (26d)(

F (x∗1, y
∗(x∗1), (y

∗)
′
(x∗1))− Fy′ (x

∗
1, y

∗(x∗1), (y
∗)

′
(x∗1))(y

∗)
′
(x∗1)

)
δx1 = 0, (x∗1) (26e)

To apply the limit conditions (26b) to (26e), observe that



Paulo Brito Advanced Macroeconomics 2018/2019 27

• if the value of the index-j variable, xj, is known we set δxj = 0 in equation (26d) for
j = 0 or in equation (26e) for j = 1;

• if the value of the index-j variable is free to find x∗j we use

F (x∗j , y(x
∗
j), y

′
(x∗j))− Fy′ (x

∗
j , y(x

∗
j), y

′
(x∗j))y

′
(x∗j) = 0

  in equation (26d) for j = 0 or in equation (26e) for j = 1, to free optimal index-
variable limit;

• if the value of the state variable associated to index-j variable, y(xj) = yj or y(x∗j) = yj,
is known we set δyj = 0 in equation (26b) for j = 0 or in equation (26c) for j = 1;

• if the value of the state variable associated to index-j variable, y∗(xj) or y∗(x∗j), is free
we set

Fy′ (x
∗
j , y

∗(x∗j), (y
∗)

′
(x∗j)) = 0

  in equation (26b) for j = 0 or in equation (26c) for j = 1.

A.2 Isoperimetric problem
Let us consider now the problem

max
x0,x1,(y(x))x∈[x0,x1]

∫ x1

x0

F
(
x, y(x), y

′
(x)
)
dxsubject to (A) and (27) (P3)

with the isoperimetric constant (observe the constraint is also a functional)∫ x1

x0

G
(
x, y(x), y

′
(x)
)
dx ≤ Ḡ. (27)

 
The value of this program is (compare with in equation (25)) is

V [y∗] =

∫ x∗
1

x∗
0

F
(
x, y∗(x), (y∗)

′
(x)
)
dx+ λ∗

(
Ḡ−

∫ x∗
1

x∗
0

G
(
x, y∗(x), (y∗)

′
(x)
)
dx

)

or, if we define the Lagrangean as

L(x, y(x), y
′
(x), λ) = F (x, y(x), y

′
(x))− λG(x, y(x), y

′
(x)).
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  it is
V [y∗] =

∫ x∗
1

x∗
0

L
(
x, y∗(x), (y∗)

′
(x), λ∗

)
dx+ λ∗Ḡ (28)

 
Using the same method of proof we find the necessary conditions for optimality

Ly

(
x, y∗(x), (y∗)

′
(x), λ∗

)
=

d

dx
Ly′

(
x, y∗(x), (y∗)

′
(x), λ∗

)
, x ∈ [x∗0, x

∗
1] (29a)

Ly′

(
x∗t , y

∗(x∗t ), (y
∗)

′
(x∗t ), λ

∗
)
δyt = 0, t = 0, 1 (29b)(

L
(
x∗t , y

∗(x∗t ), (y
∗)

′
(xt), λ

∗
)
− Ly′

(
x∗t , y

∗(x∗t ), (y
∗)

′
(x∗t ))(y

∗)
′
(x∗t ), λ

∗
))

δxt = 0, t = 0, 1,

(29c)∫ x∗
1

x∗
0

G
(
x, y∗(x), (y∗)

′
(x)
)
dx ≤ Ḡ (29d)

λ∗

(
Ḡ−

∫ x∗
1

x∗
0

G
(
x, y∗(x), (y∗)

′
(x)
)
dx

)
= 0, λ∗ ≥ 0 (29e)

where the derivatives of the L(.) function are

Ly(x, y(x), y
′
(x), λ) = Fy(x, y(x), y

′
(x))− λGy(x, y(x), y

′
(x))

 
Ly′ (x, y(x), y

′
(x), λ) = Fy′ (x, y(x), y

′
(x))− λGy′ (x, y(x), y

′
(x)).

  For the problem with an equality constraint∫ x1

x0

G
(
x, y(x), y

′
(x)
)
dx = Ḡ

  the previous conditions are also value, but with constraint (29d) holding as∫ x∗
1

x∗
0

G
(
x, y∗(x), (y∗)

′
(x)
)
dx = Ḡ

and the constraint (29e) holding with λ∗ > 0.

A.3 Optimal control problem
Now we go back to problem (P1).
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We define the Hamiltonian

H(x, y(x), u(x), λ0, λ1(x)) ≡ F (x, y(x), u(x))−λ0G0 (x, y(x), u(x))+λ1(x)G1 (x, y(x), u(x)) .

  At the optimum the value function is

V [y∗, u∗] =

∫ x∗
1

x∗
0

F (x, y∗(x), u∗(x)) dx. (30)

  Equivalently

V [y∗, u∗] =

∫ x∗
1

x∗
0

(F (x, y∗(x), u∗(x))− λ0G0 (x, y
∗(x), u∗(x))) dx+ λḠ

=

∫ x∗
1

x∗
0

(
F (x, y∗(x), u∗(x))− λ0G0 (x, y

∗(x), u∗(x)) + λ1(x) (G1 (x, y
∗(x), u∗(x)))− (y∗)

′
(x)
)
dx+ λḠ

=

∫ x∗
1

x∗
0

(
H(x, y∗(x), u∗(x), λ0, λ1(x)) + λ

′

1(x)y
∗(x)

)
dx+ λ1(x

∗
1)y

∗(x∗1)− λ1(x
∗
0)y

∗(x∗0) + λ0Ḡ

  Now, we introduce the arbitrary (functional) perturbations y∗(x) → y(x) = y∗(x)+εhy(x),
u∗(x) → u(x) = u∗(x) + εhu(x), and the (point) perturbations x∗t → xt = x∗t + εδxt, for
t = 0, 1 and y∗t → yt = y∗t + εδyt, for t = 0, 1, such that

hy(x
∗
t ) = δyt − y

′
(x∗t ) δxt, t = 0, 1 (31)

  At the optimum δV [y∗, u∗] = 0 where the variational derivative is

δV [y∗, u∗] = lim
ϵ→0

∆V

ϵ

  where ∆V = V [y∗+εhy, u
∗+εhu]−V [y∗, u∗]. Using derivations from the previous problems

we find

∆V [y, u] =

∫ x∗
1

x∗
0

[H (x, y∗(x) + εhy(x), u
∗(x) + εhu(x), λ0, λ1(x))−H (x, y∗(x), u∗(x), λ0, λ1(x)) +

+λ
′

1(x) (y
∗(x) + εhy(x)− y∗(x))

]
dx+

+ λ1(x
∗
1) (y

∗(x∗1) + εhy(x
∗
1))− λ1(x

∗
0) (y

∗(x∗0) + εhy(x
∗
0))− λ1(x

∗
1)y

∗(x∗1) + λ1(x
∗
0)y

∗(x∗0)+

+
(
H (x, y∗(x), u∗(x), λ0, λ1(x))|x=x∗

1

)
δx1 −

(
H (x, y∗(x), u∗(x), λ0, λ1(x))|x=x∗

0

)
δx0
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  Using a first-order Taylor approximation and equation (31), collecting terms, factoring out
and simplifying the notation we have,

∆V [y, u] = ε

{∫ x∗
1

x∗
0

[
H∗

u(x)hu(x) +
(
H∗

y (x) + λ
′

1(x)
)
hy(x)

]
dx+

+λ1(x
∗
1)hy(x

∗
1)− λ1(x

∗
0)hy(x

∗
0) +H∗(x∗1)δx1 −H∗(x∗0)δx0} =

= ε

{∫ x∗
1

x∗
0

[
H∗

u(x)hu(x) +
(
H∗

y (x) + λ
′

1(x)
)
hy(x)

]
dx+

+λ1(x
∗
1)δy1 − λ1(x

∗
0)δy0 +

(
H∗(x∗1)− λ1(x

∗
1)(y

∗)
′
(x∗1)

)
δx1 −

(
H∗(x∗0)− λ1(x

∗
0)(y

∗)
′
(x∗0)

)
δx0

}
  at the optimum δV [y∗, u∗] = 0 from which we derive equations (23a)-(23d).
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