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1 Introduction

In this note we present the simplest version of the dominant current view in macroeconomics, the
dynamic general equilibrium framework.

We can distinguish between two views on macroeconomics, assuming that its birth as a separate
field in economics started after the great depression of the late 1920’s.

There is a dilemma in macroeconomic modelling between the consistency, at the micro level,
of the actions of agents in all the markets they participate, and the aggregation and coordination
of agents, at the macro level. This dilemma has been addressed in two different ways along the
history of macroeconomic modelling 1

The IS-LM model, first presented by John Hicks in the 1950’s, stressed the aggregative aspect by
sacrificing micro consistency. The model central core is based on market equilibrium relationships
between the main macroeconomic aggregates, in which the behavioral functions are introduced
separately. For instance, the consumption function is dependent on income, the investment function
is dependent on the interest rate and the demand for money is dependent on income and the interest
rate, but it does not consider that all those decisions are taken simultaneously and are tied down
by financial constraints.

A different approach, which we now call the dynamic general equilibrium (DGE) approach,
emerged in the late 1960’s and became dominant in the 1990’s is built around getting the micro
consistency right, at the cost of modelling the behavior of an aggregate economy as analogous to
the behavior of a single agent. The actions of agents in different markets are modelled by specific
(dynamic) microeconomic models, which are made consistent at the aggregate level by market
equilibrium conditions. That consistency was achieved at the cost of some unrealism by casting
away complexities generated by aggregating heterogenous agents. However, in the last decade,
this approach is evolving to introduce heterogeneity among agents, and dealing with aggregation
problems, at the cost of a huge increase in the mathematically complexity of the models.

In this note we provide a simple introduction to the simplest DGE models.
Section 3 presents the centralized verision of the model, and the decentralized version is pre-

sented in section 4. In both of the previous section the labor supply is exogenous. Section 5
 presents a endogenous labor version of the model.

2 The basic DGE model and the stylised facts

A specialization has emerged between macroeconomics and growth economics, which is not clear
in some macroeconomic textbooks (as Romer, 2019 or Alogoskoufis, 2019), but it is clear in growth
textbooks (see Acemoglu, 2009).

For the purpose of this course, we want to make this distinction exolicit. While growth economics
deals with the trend  of the economy, in particular with average rates of growth for long periods of
time, macroeconomics deals with the deviations from that trend, the cycle. This means that while
a growth model has to generate a theory on the rate of growth  of the economy, a macromodel

1This dilemma is not unique to economics.
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has to generate a theory on the deviations of the economy relative to a stationary state,
i.e., the business cycle.

This implies that growth economics and macroeconomics look at different aspects of the econ-
omy. While growth economics addresses the effects of technological change, the dynamics of human
capital, natural capital, and innovations, for instance, macroeconomics deals with the short run
adjustments in consumption, in investment (particularly at its expenditure, financial and capacity
building aspects), in the labor market, in prices, and stabilization policy issues.

A useful macroeconomic model should have, if not an explanation, consistency with some styl-
ized macroeconomics facts. In order to understand which they are, tet us remember the basic
instantaneous product market equilibrium eqwuation

y(t) = c(t) + i(t) + g(t) + x(t)−m(t)

  where y is income (or output or supply), and c, i, x and m represent consumption, investment,
exports, and import expemditures (or demand), which must be satisfied at every point in time t.
The trade balance is tb(t) = x(t)−m(t)

Uribe and Schmitt-Grohé, 2017, ch 1 present several stylized facts for business cycles, regarding
those quantities. In this note we are interested in the following dimensions 2:

1. all the expenditure components are pro-cyclical (i.e., positively correlated with output) , with
the exception of the trade balance which is counter-cyclical;

2. consumption and government expenditures are less volatile than output, while investment
and trade balance are more volatile;

3. consumption is less volatile in developed than in less developed countries;

4. consumption is more persistent and investment less persistent than output.

 
All those variables have a type of mean-reverting behavior, i.e, they fluctuate around their

trend.
There are several elements a model has to explain, from those facts. In particular we might

want to understand what explains:

1. the stability mechanism that forces variables to adjust to their stationary value, or trend;

2. the shifters that generate deviations from their trend;

3. the persistent behavior of consumption;

4. the volatile behavior of investment;

5. the higher persistency of consumption as regards output.

The simplest DGE model provides some explanations for those questions (that we might check
quantitatively):

2Cyclicality is measured by correlation between an expenditure component and output, volatility is measured by
standard deviation of a variable, and persistency is measured by the autocorrelation of a time series.



Paulo Brito Advanced Macroeconomics 2020/2021 5

1. the stability mechanism is provided by the decreasing marginal return of capital;

2. deviations from a stationary state are brought about by supply (increases in productivity) or
demand shocks (preference to anticipate consumption);

3. the persistent behavior of consumption is produced by intertemporal consumption substitu-
tion, that is, by a preference for smooth consumption trajectories, and by the possibility of
using asset markets for intertemporal transfers of resources;

4. the volatile behavior of investment is generated by the volatile behavior of savings, which
finances intertemporal substitution in consumption;

5. the higher persistency of consumption dynamics, in comparison with output, is again ex-
plained by the existence of a mechanism for intertemporal allocation of goods together with
a high elasticity of intertemporal substitution in consumption.

Other models provide other explanations for the different persistencies of consumption and
output: life-cycle behavior in consumption, habit persistence, precautionary motives, just to name
a few.

Next we address a model in which the dominant feature is the existence of intertemporal sub-
stitution in consumption and the existence of decreasing marginal returns in production.

3 The Ramsey model

The Ramsey, 1928 model (in the version established by Cass, 1965 and Koopmans, 1965) has become
the founding stone of the current dominant model in macroeconomics, that has been designated
the DGE (dynamic general equilibrium) approach to macroeconomics.

One of the main strong points, and also one of the main weaknesses, of this model relates to
its nature: we can view it as providing a normative theory (how the economy should work ?) or a
positive positive theory of an economy (how the economy actually works ?). Although the initial
view of Ramsey was normative, some researchers use it as an acceptable positive description of the
economy3.

Consider an economy populated by a constant number, N , of homogeneous households or agents.
The economy has an initial endowment, at the quantity k0 of a durable good.

The stock of the durable good can be increased by production, which depends on the existing
stock of the durable good, and can be consumed immediately or stored for future consumption.
Then a natural question arises: how should consumption, and therefore the stock of the resource,
evolve across time ? In order to answer that question we should find a way to value the state of
the economy.

Therefore, the three basic elements of the model are:
3Not wanting to delve into the philosophy of economics, maybe several economists (aware or unaware) follow

Friedman, 1953’s view that if a model, even if it looks very abstract, generates relationships between variables
statistically similar to actual time series, it is a good representation of the economy. For a recent debate on models
and the macro-economy see Sargent, 2008 Nobel lecture, and for background in the philosophy of economics see
https://plato.stanford.edu/archives/win2013/entries/economics/

https://plato.stanford.edu/archives/win2013/entries/economics/
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1. the possibility of shifting the use of the resource through time;

2. which constraints the condition those intertemporal transfers;

3. a technology allowing the transformation of the existing stock of the resource into a different
stock in the future;

4. a preference ordering over different future paths of consumption.

Notation In the case of the Ramsey model the resource is considered to be physical capital,
denoted by K, the output of the economy is denoted by Y and aggregate consumption is denoted
by C. All those quantities are functions of time, t, which is assumed to be a non-negative real
variable belonging to set T = R+ (or T = R+ ∪ ∞). We take the present time as t = 0. Now
and in the rest of the lecture it is important to distinguish: mappings, values and paths. Taking
the example of consumption, we can have consumption as a mapping  (a function in this case)
C(·) : T → R+, the level  of consumption at a particular point in time t ∈ T is denoted by C(t),
and the path  of consumption is the flow of the consumption level through time, C =

(
C(t)

)
t∈T.

Off course, a path C can be traced out if we know function C(·) and evaluate at every point in
time t ∈ T.

Aggregate variables are denoted by uppercase symbols and per capita variables are denoted by
lowercase symbols. Therefore k ≡ K/N , y ≡ Y/N and c ≡ C/N are, respectively, capital intensity,
per-capita output and per-capita consumption. We assume all those variables take non-negative
real values. We can denote accordingly per-capita consumption as a function, c(·), as a value at
time t, c(t) and as a path c =

(
c(t)
)
t∈T and analogously for the other variables.

3.1 Constraints

There are three constraints on the allocation of the good in the economy: first, the initial capital
stock is given k(0) = k0 > 0 is known and is positive, second, the present-value of the terminal
capital stock is non-negative limt→∞ k(t)e−R(t) ≥ 0, where R(t)/t is the average rate of return on
capital; and third, there is an instantaneous budget constraint k̇(t) = y(t)− c(t).

Let us assume we can write

k̇ = r(t)k(t) + z(t), t ∈ [0,∞) (1a)
k(0) = k0, t = 0 (1b)
lim
t→∞

k(t)e−R(t) ≥ 0 (1c)

    where r(t) is the instantaneous rate of return on capital, e−R(t) = e−
∫ t
0 r(s)ds is the discount

factor with a time-varying interest rate, and z(t) = w(t) − c(t) is the savings out of non-financial
income.

From those three constraints, we can derive an equivalent intertemporal budget constraint. The
solution of the instantaneous budget constraint  (1a) is

k(t) = eR(t)
(
k(0) +

∫ t

0
e−R(s)z(s)ds

)
.
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  If we substitute (1b), and multiplying by e−R(t), we obtain 4 

e−R(t)k(t) = k0 +

∫ t

0
e−R(s)z(s)ds.

  Taking the limit, lim → ∞ and introducing the terminal constraint (1c) we have intertemporal
budget constraint

k0 ≥ −
∫ ∞

0
e−R(s)(w(s)− c(s))ds⇔ k0 + h0 ≥

∫ ∞

0
e−R(s)c(s)ds

  which means that the three conditions (1a)-(1c) together are equivalent to requiring that the
initial capital stock is larger (or equal) to the present value of the net uses in consumption of the
good in the future. Defining human capital at time t = 0 by the present value of future wages

h(0) ≡
∫ ∞

0
e−R(s)w(s)ds

  the intertemporal budget constraint is equivalent to

k0 + h(0) ≥
∫ ∞

0
e−R(s)c(s)ds

  which means that the present value of future consumption at time t = 0 should not be higher
than the total capital (non-human and human).

As k0 is bounded then the path of the consumption c =
(
c(t)
)∞
t=0

should also be bounded in
present value terms.

There are two alternative equivalent ways of seeing the instantaneous budget constraint. First,
defining savings at time t as non-consumed output, s(t) = y(t) − c(t), the instantaneous budget
constraint is equivalent to investment equal savings: k̇ = s(t). Second, as we assume that there
is no capital depreciation, gross investment is equal to investment expenditures and is equal to
net investment (or capital formation), i(t) = k̇. Therefore, the budget constraint can be seen as a
balance between the origin of output and its uses y(t) = c(t) + i(t).

3.2 Assumptions

3.2.1 Technology

  The technology of this economy is described by the production function,

Y = F (K,L)

  where aggregate output, Y , is produced with two inputs the stocks of physical capital, K and
labor L. We assume there is no unemployment, then L = N . The production function is assumed
to have three properties that allow to label it as neo-classical:

First, there are positive marginal returns for both inputs, FK(·) > 0, FL(·) > 0. This means
that increases in the quantity of any input increases production

4It is important to notice the conceptual difference between k(0) and k0. While the first is the level of a function
of time evaluated at time t = 0, k(0) = k(t)

∣∣
t=0

, k0 is a known real number.
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Second, it is concave, i.e., FKK(·) < 0, FLL(·) < 0 and FKK(·)FLL(·) − FKL(·)2 > 0, and
usually the inputs are Edgeworth complementary FKL(·) > 0. This means that there are decreasing
marginal returns for increases in own input but increasing with the other input, but in a smaller
proportion.

Third, it is usually assumed that there are constant returns to scale. Mathematically the last
property is translated by the requirement the F (K,L) is an homogeneous of degree one function.
Thus if we increase every input by a scale factor λ the output also increases by the same factor
F (λK, λN) = λF (K,L) = λY . Linear homogenous functions have a nice property: Euler’s lemma
says that Y = FK(K,L)K + FL(K,L)L.

The three properties, display different roles in the model. Positive returns allows for a positive
effect of the increase in resources on the possibility for having consumption in the future without
completely depleting the stock of capital and concavity provides a stable dynamics.

Constant returns to scale (CRS), allows to recast the production in per capita terms: setting
λ = 1/N yields

y =
Y

N
=
F (K,N)

N
= F

(K
N
, 1
)
= F (k, 1) = f(k).

  where f ′′(k) < 0 < f ′(k), from the properties of F (·).

3.2.2 Consumption preferences

Preferences over aggregate consumption are ranked according to a (cardinal) social welfare func-
tional 

U[C] = NU[c]

  where U[c] is the intertemporal utility functional  for a single agent (or household).
We assume an additive, discounted intertemporal utility functional

U[c] ≡
∫ ∞

0
u(c(t)) e−ρtdt, ρ > 0

  There are three main features of this utility functional tU[c] hat worth mentioning: first, it
displays impatience (because we are discounting future consumption by a time decreasing discount
factor e−ρt); second, it displays additive separability because the value of consumption at each point
in time is not affected by the past consumption (u(c(t)) only depends on the level of consumption
and not on the path of consumption); and third, there is intertemporal substitution in consumption,
which can measured by the relative concavity of u(·), or the inverse of the elasticity of intertemporal
substitution

σ(c) ≡ −u
′′(c) c

u′(c)
.

 
We assume implicitly that there is an institutional mechanism that derives social utility by

summing up utility of every household (or dynasty) assumed to be infinitely living.

3.3 Optimal allocation

Gathering all the previous elements we can model the aggregate behavior of an homogeneous agent
economy endowed with an efficient social allocation mechanism.
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Definition 1 (Optimal allocation). An optimal allocation (c∗,k∗) =
(
c∗(t), k∗(t)

)
t∈T is an alloca-

tion that solves the problem

max
c(·)

∫ ∞

0
u(c(t)) e−ρtdt (2a)

subject to
k̇ = f(k)− c, t ∈ [0,∞) (2b)
k(0) = k0, t = 0 (2c)
lim
t→∞

k(t)e−R(t) ≥ 0 (2d)

   

There are two approaches to solving this problem that became the most used in the literature:
5 the Pontryiagin’s maximum principle (PMP) and the dynamic programming approach (DPP).

Observe that the problem is fundamentally to find the best way to use an initial resource, k0,
from now to the infinite future knowing that, if we don’t consume it all (i.e., c = f(k)) at every
point in time there is a technology that allows it to grow, allowing to consume more in the future.
Therefore the problem is valuing the resource by the use in consumption that it allows in the future.

Therefore, the value of the resource k0 can be measured by the optimal path of consumption it
makes possible. which can be measured by the value function 6 for the initial resource

v(k0) = U[c∗] =

∫ ∞

0
u(c∗(t)) e−ρtdt.

  This idea is used by the DPP.

3.4 Finding the solution through the PMP

The Pontryiagin’s maximum principle (PMP) is reminiscent from the Lagrangean approach for
static optimization.

We introduce the (current-value) Hamiltonian function

H(k, q, c) = u(c) + q (f(k)− c)

which penalizes the utility of consumption, at every point in time, by the value of the foregone
storage, where q is a dynamic shadow value (which is called co-state variable or adjoint variable).

5There is also the calculus of variations approach, which transforms the problem into  

max
k(·)

∫ ∞

0

u
(
f(k(t))− k̇(t)

)
e−ρtdt

subject to

k(0) = k0, t = 0

lim
t→∞

k(t)e−R(t) ≥ 0

   
6Mathematically it is a function, not a functional, because if we were able to find the optimal solution for con-

sumption it would be of type c∗ = C(t, k0). If we plugged it into the functional U[c], and integrate on time, we would
obtain a function of k0. The problem only in very special cases we can obtain explicitly function C(t, k0).
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An optimal allocation (c∗,k∗) satisfies the following optimality, adjoint and transversality con-
ditions

u
′
(c∗(t)) = q(t) (4a)

q̇ = q
(
ρ− f ′(k ast)

)
(4b)

lim
t→∞

q(t) k∗(t) e−ρt = 0 (4c)

    together with the admissibility constraints (2b)-(2c), evaluated at k∗(t). Off course k∗(0) = k0

should hold. If the utility function is strictly concave, with u′′(c) < 0 on all its domain, we can apply
the implicit function theorem to get the adjoint variable as a decreasing function of consumption,
q = Q(c), with Q′(c) < 0, and obtain the so-called Euler equation

u′′(c) ċ = u′(c)
(
ρ− f ′(k)

)
.

  Using the previously defined elasticity of the utility function σ(c) the modified Hamiltonian
dynamic system (MHDS) encapsulates the optimality conditions:

k̇∗ = f(k∗)− c∗ (5a)

ċ∗ =
c∗

σ(c∗)

(
f ′(k∗)− ρ) (5b)

k∗(0) = k0 (5c)
lim
t→∞

u′(c∗(t)) k∗(t) e−ρt = 0. (5d)

   
The last condition forces the solution to converge asymptotically (i.e., when T → ∞) to a

constant or to a function of time that should grow at a non-positive rate7

The PMP operates in the following way.
Let us assume that there is one unique solution to the problem. If this is the case, given an

initial value for (k(0), c(0)) the system (5a)-(5b) traces out one single path
(
c(t), k(t)

)∞
t=0

. However,
we only know k(0) = k0 and for most values of c(0) the solution will not satisfy the transversality
condition (5d). On the other hand, uniqueness of solutions to the problem is equivalent to requiring
that there will be only one value for c(0) such that the solution which satisfies (5d). If this condition
only holds for constant values of k and c, this means that the unique solution converges to a steady
state of the saddle-point type.

From all this we learn two things: first, the crucial step in obtaining the solution to the problem is
to find the initial value for consumption c∗(0), and, second, this value will be determined backwards
from the terminal conditions, which is usually a steady state of saddle-point type. This is only
possible if there is some type of foresight, as is clear from the fact that the consumer values the
present value of all the consumption path (c(t))t∈[0,∞).

Therefore, an optimal solution will contain both forward and backward mechanisms.
The first, represented by the instantaneous budget constraint, propagates the capital stock into the
future through savings. The second, backward (anticipating) mechanism is related to the incentives
for consumption, guided by both the return on production relative to impatience and the attitude

7This is the case of endogenous growth models for which f(k) is a linear function.
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of the consumer as regards intertemporal consumption substitution, which determines savings at
every point in time.

Next we will show how to find the solution for a particular case.

3.5 Finding the solution through the DPP approach

The DPP approach operates in a different way. It tries to find a rule that, given the observed
capital stock at every point in time, would enable to find a time-independent optimal rule (I.e., a
recursive mechanism) for consumption.

We call value function to

v(k(t)) = U[c∗; t] ≡ max
c(·)

∫ ∞

t
u(c∗(s))e−ρ(s−t) ds

  which provides a valuation of the existing level of the capital stock as a resource allowing for
consumption in the future. This notation highlights the fact that the value of the stock of the
durable good at time t, k(t), if used efficiently allows us to attain the intertemporal utility level
U[c∗; t], at the optimum.

Applying the principle of dynamic programming, an optimal allocation (c∗,k∗) satisfies the
Hamilton-Jacobi-Bellman (HJB) equation

ρ v(k) = max
c

{
u(c) + v′(k)

(
f(k)− c)

}
, (6)

where the optimal consumption satisfies

u′(c∗) = v′(k). (7)

  If again the utility function has no singularities, we can find implictly the optimal policy
function

c∗ = C(k) = (u′)−1(v′(k)) (8)

  which, substituting on the HJB equation, yields

ρ v(k) = u(C(k)) + v′(k)
(
f(k)− C(k)) (9)

  which is an implicit ordinary differential equation. If we are able to find the optimal policy
function, we can determine the solution by solving

k̇ = f(k)− C(k), for t ∈ T
k(0) = k0.

(10)

Comparing the optimality conditions from the PMP, equation (4a), and from the DPP, equation
(7), we observe that, in the infinite horizon case, the adjoint variable q of the first is formally equal
to the marginal value of capital, v′(k) of the second. This allows us to interpret q as a shadow-value
of capital.

Remembering that the solution for c is forward looking, when using the PMP, we can interpret
the policy function, in equation (8), as implicitly incorporating the transversality condition (5d).
That is, it translates the backward solution of the adjoint equation together with the transversality
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condition, equations (5b) and (5d), into a single backward rule (8). This is why solving the problem
by the DPP is said to be applying recursive methods8

There are advantages and disadvantages in applying the PMP or the DPP to solving the
Ramsey-like types of models. The main difficulty in applying the PMP is related to finding the
initial value of consumption by transforming the MHDS into a initial-terminal value problem.
However, it allows for using the richness of results from dynamic systems theory for, at least, char-
acterizing analytically the optimal solution. The main difficulty in applying the DPP is solving the
implicit ordinary differential equation (9). However, the recursive structure of the solution provides
a simpler interpretation of the characteristics of the solution.

Next we solve the Ramsey model by introducing specific utility and production functions.

3.6 A benchmark application: the isoelastic-Cobb-Douglas case

 
The Ramsey model in the general form just presented does not have an explicit solution because

we have left the utility function, u(·), and the production function, f(c)̇, are unspecified.
Whatever the method we use, in general we cannot find explicitly the optimal allocation (c∗,k∗),

even if we consider explicit utility and production functions. Even if we specified those functions,
in most cases we cannot obtain an explicit (i.e, exact) solution and we have to use approximate or
numerical methods to find it. This is unfortunate, because a complete understanding of the nature
of the solution can only be obtained by knowing the explicit solution.9

A benchmark particular case in which the utility function is a generalized logarithm10

u(c) =
c1−θ − 1

1− θ
, for θ > 0

  where σ(c) = θ, is the inverse of the elasticity of intertemporal substitution, and the production
function is Cobb-Douglas Y = AKαL1−α, yielding

y = f(k) = Akα, A > 0, 0 < α < 1,

  where A is the the total factor productivity (TFP) and α is the share of capital in national
income.

If we want to determine or characterize the optimal allocation (c∗,k∗), we have two alternative
methods:

We can use the PMP and solve the particular version of the MHDS system together with its
initial and transversality conditions,

k̇∗ = A (k∗)α − c∗ (11a)

ċ∗ =
c∗

θ

(
αA (k∗)α−1 − ρ) (11b)

k∗(0) = k0 (11c)
lim
t→∞

(c∗(t))−θ k∗(t) e−ρt = 0 (11d)

8Ljungqvist and Sargent, 2018 apply systematically this approach for discrete time versions of macromodels.
9It is not uncommon to find in the literature inaccurate presentations of the solutions to the Ramsey problem.

10We can write it as u(c) = logθ(c). A particular case, when θ = 1 is the logarithmic utility function u(c) =

log1(c) = log(c). Prove this by nothing that u(c) = log(eu(c)) and  by using the l’Hôpital rule.
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    We denote the rate of return of capital, or interest rate by

r(k) = f ′(k) = αA (k)α−1.

 
Because the initial stock of capital is given, in equation (11c),   and, as we will see, consumption

at time t = 0 is implicitly determined from the transversality condition (11d), we call k a prede-
termined variable and c a non-predetermined  variable. If we are able to find c(0) uniquely,
we say that the optimal path is determined.

Alternatively, we can use the DPP, solve the particular version of the HJB equation (6)

ρ v(k) = max
c

{c1−θ − 1

1− θ
+ v′(k)

(
Akα − c

)}
(12)

  obtain optimal consumption from the optimal policy function

c∗ = C(k) =
(
v′(k)

)−θ
,

  and solve the ODE problem
k̇ = Akα − C(k)

  together with the initial condition k(0) = k0 to obtain k∗ =
(
k∗(t))t∈[0,∞), and substitute back

in the policy function C(k) to obtain c∗ =
(
c∗(t))t∈[0,∞)

Then, we can answer two fundamental macroeconomic questions: First, how does consumption
and output respond to demand and supply shocks, represented by shifts in the parameters A and
ρ ? Second, does the type of response matches the stylized facts ?

The best way to answer those questions would involve obtaining exact (also called closed form)
solutions. Even in this isoelastic-Cobb-Douglas case, for generic values of the parameters, there
is no known explicit solution, which explains why researchers resort to approximate analytical of
numerical methods to solve it.

However, if θ = α we can obtain an explicit solution can be obtained. Although this relationship
is counterfactual 11 because most empirical research, using macro and micro data, finds a realistic
value for θ to be in an interval centered at θ = 2, this case is important because it allows for an
understanding of our previous discussion.

3.6.1 The case θ = α

If we have any hope of getting an explicit solution, the hard problem is solving the backward looking
part, i.e., obtaining consumption as a function of the capital stock: c = C(k). We prove in the
appendix12 that both methods yield one unique solution

c = C(k) ≡ ρ

α
k.

11References benchmark parameter values: Basu and Fernald, 1997, Hall, 1988.
12See appendix A.
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  Then the solution for capital is obtained by solving forward in time 13k̇
∗ = A (k∗)α − ρ

α
k∗ for t ∈ (0,∞)

k∗(0) = k0
(13)

  which is

k∗(t) =

[
k̄1−α +

(
k1−α
0 − k̄1−α

)
e−ρ
(

1−α
α

)
t
] 1

1−α
, for t ∈ [0,∞), (14)

  where
k̄ =

(αA
ρ

) 1
1−α (15)

  is the steady state level of the capital stock.
From this result we can get explicit solutions for consumption c∗(t) =

ρ

α
k∗(t), output y∗(t) =

A
(
k∗(t)

)α, savings s(t) = y(t)− c(t) and the interest rate r(t) = αA
(
k∗(t)

)α−1. For instance,

y∗(t) =

[
ȳ

1−α
α +

(
y

1−α
α

0 − ȳ
1−α
α

)
e−ρ
(

1−α
α

)
t

] α
1−α

, for t ∈ [0,∞) (16a)

r∗(t) =

[
1

ρ
+
( 1

r(0)
− 1

ρ

)
e−ρ
(

1−α
α

)
t
]−1

, for t ∈ [0,∞). (16b)

  where the steady state output is

y(∞) = ȳ = c̄ =

(
A
(α
ρ

)α) 1
1−α

=
ρ

α
k̄ (17)

and the steady state interest rate is equal to the rate of time preference r(∞) = r̄ = ρ.
We only have the following type of dynamic adjustments (see Figure 1):

• If k0 = k̄ the solution is stationary, that is time-invariant: consumption and the capital stock,
and therefore output will not change in time, if there is no anticipated shock in any parameter.
In this case the rate of return on capital, and therefore, the real interest rate is equal to the
rate of time preference r(k̄) = ρ.

• If k0 < k̄ both consumption and the capital stock will increase in time: if the level of consump-
tion is too low given the level of production, there is positive savings, and therefore to capital
accumulation. This increases output and allowing for an increase in consumption in the fu-
ture. There is substitution of present consumption by future consumption. The incentive for
increasing consumption continues as long as the interest rate is higher than the rate of time
preference r(k(t)) > ρ. Because the interest rate decreases with the process of capital accu-
mulation, this reduces the incentives for savings and therefore for capital accumulation. This
adjustment is slowed down by the fact that there are decreasing marginal returns: increasing
the production capacity does not increase output commensurably. Stability is brought about
by the fact that the rate of return of capital converges to ρ from above (limk→k̄− r(k) = ρ).

13Observe, in the initial condition, that while k∗(0) refers to the optimal solution k∗(t) evaluated at t = 0, which
is not known at this point, k0 refers to an observed level of the percapita capital stock which we can obtain from
published statistics.
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k̇ = 0

k̄

ċ = 0
c = C(k)

c̄

k0

c∗(0)

k

c

k̇ = 0

k̄

ċ = 0
c = C(k)

c̄

k0

c∗(0)

k

c

Figure 1: Phase diagrams for the exact optimal adjustments for c and k for the θ = α case. The
adjustment depends on the relationship between the initial level of capital, k0 and the steady state
level k̄: if k0 < k̄, as in the upper panel, there will be both an increase in consumption and the
stock of capital; and if k0 > k̄, as in the lower panel, both will decrease.
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• If k0 > k̄ both consumption and the capital stock will decrease in time: if the level of con-
sumption is higher than output, part of the durable good is de-accumulated, which decreases
the capital stock and therefore output. This forces consumption to reduce as well. In this
case, because there is too much capital the rate of return is below the rate of time preference
r(k) < ρ, i.e., the economy has too much capital from the perspective of the utility maximiz-
ing consumer. Stability is brought about by the fact that the decrease in the stock of capital
increases the rate of return until it converges to ρ from below (limk→k̄+ r(k) = ρ).

3.6.2 The general case with θ ̸= α

 
In this general, more realistic case, ,we cannot find an exact solution to the optimal allocation

by using any of the two previous approaches, the PMP and DPP.
If we want to have an analytical derivation of the solution, we can only resort to a linear

approximation. In this case, the PMP allows for a simpler derivation of an approximative solution14.
We proceed as follows: first, we obtain a non-zero steady state of the model (which in this case is
unique); second, we perform a first-order Taylor approximation of the MHDS (11a)-(11b) in the
neighborhood of the steady state , obtaining a variational MHDS; third, we solve the variational
MHDS by requiring that: first, it converges to the steady state, and its initial value is given by
(11c). As we require that the solution converges to a constant, then the solution satisfies the
transversality condition (11d).

This steady state is given by the positive pair (k, c) such that r(k) = ρ and c = f(k), that is

(k̄, c̄) =
{
(k, c) ∈ R2

++ : αAkα−1 = ρ, c = Akα
}
,

  that is
k̄ =

(αA
ρ

) 1
1−α

, c̄ =
(
A
(α
ρ

)α) 1
1−α

=
ρ

α
k̄.

  The steady state is the same as in the previous case (see equations (15) and (17)). Again, in
the steady state c̄ = ȳ. This means that the parameter θ does not influence the steady state, but
influences the optimal path out of the steady state.

The variational MHDS, in the neighborhood of the steady state (k̄, c̄), is represented by the
linear-ODE (

k̇

ċ

)
= J

(
k(t)− k̄

c(t)− c̄

)
,where J ≡

 ρ −1

c̄r
′
(k̄)

θ
0

 (18)

As we prove in the Appendix B the solution is

k(t) = k̄ + (k(0)− k̄)eλst

c(t) = c̄+ λu(k(0)− k̄)eλst
(19)

where λs < 0 < λu are the eigenvalues of the Jacobian matrix J, satisfying the properties λs+λu =

ρ > 0 and λsλu = det(J) < 0, where the the determinant of the Jacobian J is dependent on the
parameters of the model

det(J) = −
(1− α

α

)ρ2
θ
< 0.

14However, some people find the DPP as simpler to get a numerical solution.
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  Therefore

λs =
ρ

2

(
1−

(
1 +

(1− α

α

)4
θ

) 1
2

)
, λu =

ρ

2

(
1 +

(
1 +

(1− α

α

)4
θ

) 1
2

)

both λs and λu depend upon the parameters ρ, α and θ, that is on the substitution between labor
and capital in production, on the rate of time preference (which measures impatience) and on the
intertemporal substitution in consumption. If θ → ∞, meaning that there is no intertemporal
substitution in consumption we have limθ→∞ λs = limθ→∞ λu = ρ which means that there will be
no savings and consumption will be equal to output. Therefore the smaller is θ the higher (positive
or negative) savings will be and consumption will be less instantanepusly correlated with income.

Several other observations can be made. First, if k(0) ̸= k̄ then the solution converges asymp-
totically to the steady state limt→∞ k(t) = k̄, because limt→∞ e−λs t = 0. The speed of convergence
can be measured by the half-life of the adjustment 15 which is, in this case τ = − log(1/2)

λs
> 0.

This means the higher in absolute value λs is the quicker will be the adjustment. Again, a small θ
will speed uf convergence to the steady state.

Second, as in the previous case the solution is unique, or determinate: given any initial
value for k, k(0), there is only one value for c, c(0), which is determined endogenously such that
limt→∞ c(t) = c̄. The exact solution for consumption throughout time is tangent to a linear
approximation

c(t)− c̄ = λu(k(t)− k̄),

this line is represented in the lower panel in Figure 2 by the label Es and defines the stable
eigenspace (i.e., the space tangent to the stable manifold which is the geometrical analog of the
exact relationship between c and k for the solution of the problem).

3.6.3 Approximations to the optimal path

The difference between the exact solution and the linear approximation can be seen in Figure 2,
where the exact solution is depicted in the upper panel and the approximate solution is depicted
in the lower panel). The linear approximation captures the qualitative dynamics of the optimal
trajectory, although it can quantitatively be slightly different if the initial value of k0 is far away
from the steady state (or the economy is perturbed by an unanticipated shock in any parameter.

There are, in the literature, some misunderstandings regarding the nature of the solution.
Sometimes people use the fact that the steady state is a saddle-point, in which the stable manifold
passing through the steady state is unique, by using this fact to derive the solution. This can be
done as a device to characterize the solution, but introduces a potential misunderstanding on the
mathematical meaning of the uniqueness of the solution to an optimal control problem. If we look
at the derivation of the exact solution for the θ = α case makes this clear: the uniqueness of the
policy function is associated to the existence of a stable-manifold of dimension one, meaning that
the solution of the problem is unique (and it will never wander around the phase diagram as might
be understood if we draw the complete vector field).

15The half life is defined by τ =
{
t : k(t)− k0 =

k̄ − k0
2

}
, i.e, by the time needed such to travel half of the distance

between the initial, k0, and the steady state, k̄, level for the stock of capital.
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Figure 2: Phase diagrams for the exact optimal adjustments for c and k: the upper panel is the
exact solution and the lower panel is the linear approximation
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From a dynamic systems perspective, the solution traces out an heteroclinic trajectory 16 linking
(0, 0) to (k̄, c̄) and following a smooth trajectory for (k, c) higher than (k̄, c̄). That is, the policy
function is geometrically equivalent to that heteroclinic trajectory. For the case θ = α the line
c = ρ

αk corresponds to that heteroclinic trajectory (which we saw is the only locus where the
solution lies). If θ > α the policy function will be ”trapped” between the same line, c = ρ

αk, and
the isocline for k, c = f(k) = Akα.

Therefore, a better approximation to the policy function (or the stable manifold in the language
of the dynamic systems) would be given by an average between the two curves, as

c = S(k) = ω
ρ

α
k + (1− ω)Akα

  where ω is a weighting factor. We can determine ω by requiring that the slope of curve S(k) in
the neighborhood of the steady state is the same as the slope of the stable eigenvector which we
saw that was given by λu, i.e, by requiring that S(k) is tangent to the linear approximation in the
neighborhood of the steady state. Therefore,

ω = {w : S′(k̄) = λu},

  and performing the calculation we find

ω =
α (λu − ρ)

ρ(1− α)
.

  Therefore a ”heteroclinic” approximation of the policy function is

c = S(k) =
λu − ρ

1− α
k +

ρ− αλu
ρ(1− α)

Akα.

  To interpret geometrically this result, observe that the slope of the isocline k̇ = 0 in the neigh-
borhood of the steady state is equal to ρ, which means that if λu → ρ− then the optimal trajectory
would approach the curve c = f(k), which means there will be no savings and output will be
completely consumed. We will have this case if θ → ∞, meaning that the consumer elasticity of
intertemporal substitution approaches zero.

Therefore the distance between the policy function c = C(k) and the curve c = f(k) is governed
by the elasticity of substitution θ, and the further apart they are the higher savings is and the lower
consumption is correlated with output.

3.6.4 Consequences of supply and demand shocks

 
Assuming we depart from a steady state Figure 3 presents the geometry of the dynamic

adjustments following a non-anticipated, permanent and constant supply shock (i.e., an increase
in productivity from A to A′ > A) and a non-anticipated, permanent and constant demand shock
(i.e., an increase in productivity from ρ to ρ′ > ρ).

In the case of a positive supply shock, starting from point A (in the upper panel of Figure 3)
consumption, responding to the new anticipated path for the rate of return, increases discontin-
uously to point B. As there is also an increase in output, which is larger than the increase in

16An heteroclinic trajectory is a path linking, in a dynamic system, two steady states.
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consumption, there is positive savings which through investment sets in motion a process of fur-
ther capital accumulation, increase in consumption, and positive savings which drives a transition
dynamics process towards the new steady state, point C, in which both consumption, output and
the capital stock will be higher.

In the case of a positive demand shock, there is also an immediate increase in consumption,
because the implicit relationship between present and future consumption becomes unbalanced
at point A (in the lower panel): consumers prefer consuming now than in the future. Because
output does not change, this generates negative savings (i.e, the durable good is used more for
consumption rather than investment) which reduces the stock of capital and output, forcing a
reduction in consumption. The process is stabilized by the facts that further reduction in the stock
of capital raises the rate of return of capital until we have r(k̄′) = ρ′. 

This type of dynamics justifies labelling capital as predetermined and consumption as non-
pretedermined: capital moves continuously when there is savings, while consumption responds to
news regarding the future evolution of the economy.

The most common approach to obtain an analytical derivation of the whole process is through
a comparative dynamics exercise. As detJ ̸= 0 we could approximate the response function
for the model for a change in parameter φ by

∂φk(t, φ) = ∂φk̄(φ) (1− eλs t) t ∈ [0,∞)

where ∂φk̄(φ) is the long run multiplier and ∂φk(t, φ) is the short run multiplier for the stock of
capital for a permanent, non-anticipated shock in the parameter φ. For consumption one would
get

∂φc(t, φ) = ∂φc̄(φ) − λu ∂φk̄(φ) e
λs t t ∈ [0,∞).

We call impact multiplier to the short run multiplier evaluated at time t = 0. Performing the
calculation we have

∂φk(0, φ) = 0, ∂φc(0, φ) = ∂φc̄(φ) − λu ∂φk̄(φ)

  where we have an analytical confirmation to the fact that k only changes continuously and that
the initial change in c responds to the long-run anticipated behavior of the economy.

In order to calculate the long-run multipliers we use the implicit function theorem. Looking to
the MHDS system, in particular to the dynamic equations (11a)-(11b) we see that at the steady
state y(A, k)− c = 0

c

θ

(
r(A, k)− ρ

)
= 0

  Computing differentials for both the endogenous variables and the parameters, evaluating the
derivatives at the steady state, we have, for a change in A 17 ∂ky(k̄) −1

c̄ ∂kr(k̄)

θ

r(k̄)− ρ

θ

 (
dk

dc

)
+

 ∂A y(k̄)

c̄∂A r(k̄)

θ

 dA

17We use the following notation. Let a function be y = f(x, φ) we write ∂xy =
∂f(x, φ)

∂x
.
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Figure 3: Dynamic adjustments for non-anticipated, permanent and constant supply (upper panel)
and a demand (lower panel) shocks. In both cases I assume that the economy is in the steady state
(point A). Immediately after the shock, becomes off-balance and there is an immediate jump in
consumption (point B) to the new curve C(k) (or the stable eigenspace in the linearized version).
Across time it converges asymptotically to the new steady state (point C). We see that while a
supply shock generates a pro-cyclical adjustment, the demand shock has a transient countercyclical
adjustment.
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  where, at the steady state r(k̄)−ρ. As the first Jacobian matrix is matrix J and we already found
that it has a non-zero determinant, then we can invert it to get the expressions for the long-run
multipliers

(
∂Ak̄

∂Ac̄

)
=

 dk

dA

∣∣
k=k̄

dc

dA

∣∣
c=c̄

 = −

 ∂k y(k̄) −1

c̄∂k r(k̄)

θ

r(k̄)− ρ

θ

−1  ∂A y(k̄)

c̄ ∂A r(k̄)

θ

 .

  For the case of a shock in A we find comparative dynamics exercise for the cases depicted in
Figure 3, performing simplifications and evaluating the derivatives at the steady state,  we find
the long run multipliers (

∂Ak̄

∂Ac̄

)
= −

 c̄

A
ρ c̄

θ A

 =

 k̄

(1− α)A
c̄

(1− α)A

 ,

  which are both positive. Therefore, the impact multipliers for consumption is

∂Ac(0) =
(ρ− αλu

α

) k̄

(1− α)A

  which is positive if and only if ρ− αλu = λs + (1− α)λu > 0.

3.7 Empirical implementation

If we would like to to take this model to data we can fix parameters α = 0.3, θ = 2 and ρ = 0.02

but the parameter A can only be obtained by calibration.
To calibrate A, assume that an economy is at a steady state and take relavant statistics. For

example, from18 we observe that the GDP per capita in Portugal in 2019 is y = 23.7 and the capital
output ratio is around k/y = 3.43. Then we could calibrate A = 6.5.

4 The simplest dynamic general equilibrium ( DGE ) model

4.1 The model

Instead of the existence of a central planner as a coordinating device, in a market economy the
coordination is make through market transactions. We assume production is done in firms which
are owned by households. This allows us to distinguish between financial capital, a and physical
capital k. Firms are a device to transform financial capital into physical capital. They distribute
not only capital income but also wage income to households as a result of the production process.
Firms are also on the supply side of the output market where demand comes from consumption
and investment expenditures.

18See https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_destaques&DESTAQUESdest_boui=
306571350&DESTAQUESmodo=2.

https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_destaques&DESTAQUESdest_boui=306571350&DESTAQUESmodo=2
https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_destaques&DESTAQUESdest_boui=306571350&DESTAQUESmodo=2
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Households  As owners of firms, household also have to finance investment expenditures through
savings. We assume that the utility functional is time additive

U[c] =

∫ ∞

0
u(c(t)) e−ρ t dt

 
The household problem is

v(a0) = max
c

U[c] (20a)

subject to
ȧ = r(t) a+ w(t)ℓ(t)− c(t), for t ∈ (0,∞) (20b)
a(0) = a0 (20c)
lim
t→∞

a(t)e−
∫∞
t r(s)ds ≥ 0 (20d)

The budget constraint (20b) has the following meaning: consumers’ income comprise capital income
r a and labor income w, where it is assumed that consumers supply inelastically one unit of labor
ℓ(t) = 1; the difference between total income and consumption are equal to savings s(t) = r(t) a+

w(t)ℓ(t) − c(t) which, if positive, represent an increase in the ownership financial assets, which in
this economy we assume it is deterministic. Differently from k in the Ramsey model a(t), at time
t, can be positive, if the household is a net creditor, or negative, if the household is a net debtor.

The last condition is called in the literature the non-Ponzi game condition  (NPG). It
essentially means that households can not expect to be a net debtor asymptotically. It can only be
a net debtor in the short run. 19  Taken together, the constraints to the household mean that it
cannot expect to use more than its initial asset position a0, if it is a net creditor (i.e., if a0 > 0) or
has to repay its initial level of indebtedness, if it is an initial net debtor (i.e, if a0 < 0).

In order to see this, integrate equation (20b) together with the initial condition (20c) to get

a(t) = e
∫ t
0 r(s)ds

(
a0 +

∫ t

0
e−

∫ s
0 r(z)dz

(
w(s)− c(s)

)
ds
)

  multiply both terms by the discount factor e−
∫ t
0 r(s)ds

e−
∫ t
0 r(s)ds a(t) = a0 +

∫ t

0
e−

∫ s
0 r(z)dz w(s)− c(s) ds

  pass to the limit as t→ ∞

lim
t→∞

e−
∫ t
0 r(s)ds a(t) = a0 +

∫ ∞

0
e−

∫ s
0 r(z)dz w(s)− c(s) ds.

  Introduce the NPG condition,∫ ∞

0
e−

∫ t
0 r(s)ds c(t) dt ≤ a0 + h∞(0)

where
h∞(0) ≡

∫ ∞

0
e−

∫ t
0 r(s)dsw(t) dt

19Sometimes people call this condition the transversality condition, which is a misnomer.
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  is the lifetime human capital, i.e, the present value (at the time of planning) of the future wages
discounted by the market interest rate.

Therefore the three constraints are equivalent to requiring that the present value of consumption
does not exceed the initial financial and human capital, measured by the present value of future
wage earnings.

Firms  This capital represents participation in firms. Therefore, the firms balance sheet takes
the form of K(t) = N a(t), where we assume K(t) to be aggregate capital and N population (or
the number of households) assumed to be homogeneous and constant.

The firms problem is solved for every moment in time

max
K(t),L(t)

Π(K(t), L(t)) = F (K(t), L(t))− r(t)K(t)− w(t)L(t)

  where we assume that F (·) is homogeneous of degree one. We assume firms are price takers in
all the markets and that there is no unemployment, that is L(t) = N .

Because of linear homogeneity, the firms problem may be simplified to

max
k(t)

π(k(t)) = f(k(t))− r(t)k(t)− w(t). (21)

 

Definition 2 (DGE). A dynamic general equilibrium is an allocation
(
ceq(t), keq(t), yeq(t), weq(t), req(t)

)
t∈T

such that

1. every household solves problem (20a)-(20d) taking the interest rate as given r and w, but
having perfect foresight on their determination;

2. firms solve problem (21);

3. The compatibility condition holds: a(t) = k(t).

4. Labor, capital and goods markets clear. In particular, the product market equilibrium condition
holds:

y(t) = c(t) + k̇(t), for every t ∈ T.

 

Using the PMP yield the first order optimality conditions for the household

ċ =
c

σ(c)

(
r(t)− ρ) (22a)

lim
t→∞

u′(c(t)) a(t)e−ρt = 0 (22b)

together with the constraints (20a)-(20c). Equation (22a) provides an arbitrage condition between
consumption and increasing the investment in financial assets and equation (22b) is the transver-
sality condition, which is a dual condition associated to the NPG condition (20d) by requiring that
the asset position has no value in present-value terms.
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The solution to the firm’s problem together with the zero profit condition (because markets are
competitive) yield the equations

f ′(k(t)) = r(t) (23a)
f(k(t)− k(t) f ′(k(t)) = w(t). (23b)

The first equation means that the optimal the return on capital (obtained from production) is
equal, at the optimum, to the interest rate, and the second means that the marginal return from
employing labor is equal to the wage rate.

Because labor supplied inelastically to firms and households supply capital to firms, equa-
tions (23a) and (23b) are identically market clearing conditions for capital and labor market. As
y(t) = f(k(t)) = f ′(k(t))k(t) + w(t) = r(t)k(t) + w(t) then we get the equilibrium total income to
households.

From the compatibility condition we have a(t) = k(t), we see that the household’s budget
constraint is formally identical to the market equilibrium condition k̇ = y(t)− c(t).

Therefore, we can find the DGE
(
ceq(t), keq(t), yeq(t), weq(t), req(t)

)
t∈T by solving a dynamic sys-

tem which is formally identical to the first optimum conditions for an optimal allocation
(
c∗(t), k∗(t)

)
t∈T

as in the Ramsey model (5a)-(5d).
In the case of the isoelastic-Cobb-Douglas case the DGE satisfies the following dynamic system

k̇eq = A (keq)α − ceq (24a)

ċeq =
ceq

θ

(
αA (keq)α−1 − ρ) (24b)

keq(0) = k0 (24c)
lim
t→∞

(ceq(t))−θ keq(t) e−ρt = 0 (24d)

   
This means that the DGE is Pareto optimal, and all our previous analysis can be reinter-

preted as a result of a decentralized market allocation.

4.2 Interpreting the DGE: over-saving and perfect foresight

We have used the PMP to obtain the first order conditions for an optimum. There is a potential
pitfall in following a recursive approach, by using the DPP, which allows for a discussion of one
important feature of the information agent have in a DGE.

Assume that the utility function is u(c) = c1−θ − 1

1− θ
and consider the consumer problem (20a)-

(20d) taking the rate of return and the wage rate as constants  r(t) = r and w(t) = w.
The HJB equation is

ρ v(a) = max
c

{c1−θ − 1

1− θ
+ v′(a)

(
r a+ w − c

)}
.

  The policy function is c = C(a) = (v′(a))−
1
θ . Substituting in the HJB equation yields the implicit

ODE
ρ v(a) =

1

1− θ

(
θ (v′(a))−

θ−1
θ − 1

)
+ v′(a)

(
r a+ w

)
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  Using a similar method as the one used in Appendix B we explicitly find the value function

v(a) =
1

1− θ

[(ρ+ r (θ − 1)

θ

)−θ (r a+ w

r

)1−θ
− 1

ρ

]

  which implies that the optimal consumption is given by the policy function

c = C(a) =
(ρ+ r (θ − 1)

θ

)(r a+ w

r

)
. (25)

  If we consider the optimality conditions for the firm, the consistency condition a = k and the
market equilibrium condition we see that the DGE becomes a recursive system, where

k̇ = Akα − C(k)

  and
C(k) =

ρ

α θ
k +

θ − 1

θ
Akα, (26)

  is consumer’s policy function. If we solve the differential equation we obtain

k(t) =
(
k̄1−α +

(
k1−α
0 − k̄1−α

)
e−λ̃ t

) 1
1−α

  where k̄ is the same as in equation (15)

λ̃ =
ρ

θ

(1− α

α

)
.

  If we compare this solution to the Ramsey case dealt in section 3.6.2, we observe: first, now
we obtain a closed form solution while for the Ramsey model we could not obtain a closed form
solution; second, we obtain an explicit solution to solution path (26) while this was not possible for
the centralized model; third, both consumption and the capital stock converge to the same steady
state; and fourth, the main difference is related to the speed of adjustment, which is now exactly
λ̃ and it was approximated by λs in the Ramsey case.

Looking to equation (26) we observe that, as in our discussion to the ”heteroclinic” approach
to approximating the optimal path for the centralized problem, it is an average of the same two
schedules c = ρ

α
k and c = Akα, but now we are able to find the explicit weight ω = 1

θ . This means

that a linear solution along curve c =
ρ

α
k will occur for θ = 1 and not θ = α as in the Ramsey

model.
This means that compared to the model in subsection 3.6.2 the equilibrium trajectory deter-

mined in this way is shifted down, which means that now we have there is over-saving. We show
next the reason for over-saving: solving the model this way implicitly assumes that the consumer
is myopic, and takes the factor prices as constants, and does not take into consideration that by
saving now it depresses the future interest rate because of the existence of decreasing marginal
returns.

We next prove that the optimal consumption satisfies (see the proof in Appendix C)

ceq(t) =
a(t) + h∞(t)∫∞

t e−
∫ s
t γ(z)dzds

, for t ∈ (0,∞) (27)
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  where
γ(t) ≡ (θ − 1) r(t) + ρ

θ

  and
h∞(t) ≡

∫ ∞

t
e−

∫ s
t r(s)dsw(t) dt

  is the human capital at time t. In this case the rate of consumption growth is endogenous and
time varying, because the interest rate is a function of the capital stock r(t) = αAk(t)1−α which
depends on consumption. If the interest rate were constant, i.e, r(t) = r for time t onward, we
would obtain the policy function in equation (25).

This clarifies why the equilibrium in this case is different from the one derived from using the
PMP together with the market equilibrium condition for the rate of return as in the previous
subsection: if the consumer takes both the interest rate and the wage rates as constants it does not
incorporate the effect of the increase in savings on capital accumulation which will increase wages
and decrease the rate of return on capital. It is as an externality which is not internalized.

Therefore, if we assume perfect foresight, the PMP approach allows for the right determination
of the DGE path. The DPP approach seems simpler to use if there technology of production is
linear (as in endogenous growth models) or in models in which there is not perfect foresight.

5 Endogenous labor supply

 
In the simple version of the model, we assumed that every household supplied elastically one

unit of labor supply, i.e. ℓ = 1, where ℓ represents work effort (hours worked plus effort per hour).
The utility functional of households depends now on the paths of both consumption and work

effort
(
c(t), ℓ(t)

)
t∈R+

,

U[c, ℓ] =

∫ ∞

0
u(c(t), ℓ(t)) e−ρ t dt

  The household’s problem now is

v(a0) = max
c,ℓ

U[c, ℓ] (28a)

subject to
ȧ = r(t) a+ w(t)ℓ− c(t), for t ∈ (0,∞) (28b)
a(0) = a0 (28c)
lim
t→∞

a(t)e−
∫∞
t r(s)ds ≥ 0 (28d)

(28e)

The firms’ problem is the same as in the previous DGE model.
In a perfect foresight enviroment the DGE is Pareto optimal and is equivalent to the following
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centralized problem

v(k0) = max
c,ℓ

∫ ∞

0
u(c(t), ℓ(t)) e−ρ t dt (29a)

subject to
k̇ = f

(
k(t), ℓ(t)

)
c(t), for t ∈ (0,∞) (29b)

k(0) = k0 (29c)
lim
t→∞

k(t)e−
∫∞
t r(s)ds ≥ 0 (29d)

(29e)

The model is said to be neo-classical if the utility function, u(c, ℓ) is increasing and concave in
c and decreasing and convex in ℓ and the production function is increasing in both inputs, displays
decreasing marginal returns and is concave, and both functions are sufficiently smooth such that
there are no-singularities. The last property allows invoking the implicit function theorem to
determine uniquely the marginal utilities and marginal productivities.

There are two main versions of the model, depending on the separability of the utility function:

1. the additive utility case, in which

u(c, ℓ) = u(c)− v(ℓ)

  in which u′′(c) < 0 < u′(c) and v′(ℓ) < 0 < v′′(ℓ)

2. non-additively separable cases comprise several possibilities:

(a) the Cobb-Douglas case

u(c, ℓ) = u(v(c, ℓ)) =

(
cγ(1− ℓ)1−γ

)1−θ − 1

1− θ

 

(b) the Greenwood, Hercowitz, and Huffman, 1988, or GHH case

u(c, ℓ) = u(c− v(ℓ))

 

(c) the King, Plosser, and Rebelo, 1988 or KPR case

u(c, ℓ) = u(c− v(c, ℓ))

 

 
Defining the current-value Hamiltonian function by

H(k, q, c, ℓ) = u(c, ℓ) + q
(
f(k, ℓ)− c

)
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  the necessary conditions for an optimum
(
c∗(t), ℓ∗(t), k∗(t)

)
t∈R+

are 20

uc(c, ℓ) = q (30a)
uℓ(c, ℓ) = q fℓ(k, ℓ) (30b)
q̇ = q

(
ρ− fk(k, ℓ)

)
(30c)

lim
t→∞

q(t) k(t) e−ρt = 0 (30d)

together with the admissibility conditions (29b) and (29c),   where the partial derivatives of the
utility function are denoted by uj(c, ℓ) ≡ ∂u(c,ℓ)

∂j , for j = c, ℓ and the marginal productivities are
denoted by fj(k, ℓ) ≡ ∂f(k,ℓ)

∂j , for j = k, ℓ.
The strategy to solving the model is different depending on the the assumption regarding the

separability of the utility function.

5.1 Additively separable utility

If the utility function is additively separable, then uc(c, ℓ) = u′(c) and uℓ(c, ℓ) = v′(ℓ). Then we
can use equation (30a) to eliminate q, yielding the arbitrage equation for labor, equation (30b),

v′(ℓ) = u′(c)w(k, ℓ)

  where the wage rate is equal to the marginal productivity of labor: w(k, ℓ) = fℓ(k, ℓ). If the
utility and the production functions are sufficiently smooth, we can apply the implicit function
theorem to obtain the optimal work effort as a function of consumption and the stock of capital

ℓ = L(c, k).

  Because

Lc(c, k) = − u′′(c) fℓ(ℓ, k)

v′′(ℓ) + u′(c) fℓℓ(k, ℓ)
< 0

Lk(c, k) = − u′(c) fℓk(ℓ, k)

v′′(ℓ) + u′(c) fℓℓ(k, ℓ)
> 0

  the optimal work effort decreases with consumption (because consumption and work effort and
Edgeworth substitutable) and increases with the stock of capital, because it increases the wage rate
wk(k, ℓ) = fℓk(ℓ, k) > 0.

As we are able to isolate q, and we are able to obtain the optimal labor effort uniquely (if there
are no singularities) then the MHDS becomes

ċ =
c

σ(c)

(
R(k, c)− ρ

)
(31a)

k̇ = F (k, c)− c (31b)
k(0) = k0 (31c)
lim
t→∞

u′(c(t)) k(t) e−ρt = 0 (31d)

20From now, although we are refering to optimal allocations, we do not introduce the notation ∗ in cases in which
there is no ambiguity.
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Figure 4: Phase diagram for the endogenous labor model with an additive separable utility function:

u(c, ℓ) =
c1−θ − 1

1− θ
− ψ

ℓ1+ζ

1 + ζ
.

where the rate of return of capital is R(k, c) = r
(
k, L(c, k)

)
= fk

(
k, L(c, k)

)
and output Y (k, c) =

y
(
k, L(c, k)

)
= f

(
k, L(c, k)

)
are both functions of the stock of capital and consumption, because

the work effort is endogenous and depends on the leisure-consumption choices of the household.
Clearly, the reduced form rate of return decreasing with both consumption and the capital stock

Rc(c, k) = fkℓ(k, ℓ)Lc(c, k) < 0 and

Rk(c, k) = fkk(k, ℓ) + fkℓ(k, ℓ)Lk(c, k)

=
u′(c)

(
fkk(ℓ, k)fℓℓ(ℓ, k)− (fkℓ(ℓ, k)

2) + v′′(ℓ)fkk(k, ℓ)

v′′(ℓ) + u′(c) fℓℓ(k, ℓ)
< 0

  because of the concavity of f(·). Furthermore, we find that Yc(c, k) = fℓ(k, ℓ)Lc(c, k) < 0 and
Yk(c, k) = fk(k, ℓ) + fℓ(k, ℓ)Lk(c, k) > 0.

This implies that the isocline ċ = 0 is negatively sloped in the diagram (k, c) = 0 (and not
vertical as in the previous case) and the isocline k̇ = 0 is positively sloped (see Figure 4).  

We also observe in the phase diagram 4 that the stable manifold is positively sloped, which
means that along the optimal paths consumption and the capital stock are positively related.
Given the properties of function L(c, k) this implies that the adjustment of the labor effort is
ambiguous, because of its responds positively to the increase in wages but negatively to the increase
in consumption.

5.2 Non-additively separable utility

If the utility function is non-separable, we cannot separate the effect of consumption over q. This
means that the marginal utility of consumption responds to both changes in consumption and
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labor effort. In this case, we can use the implicit function theorem in equation (30a) and (30b) to
solve both consumption and labor effort as a function of the adjoint variable q, c = C(q, k) and
ℓ = L(q, k). In appendix D we prove that all the partial derivatives in functions C(·) and L(·) have
ambiguous signs. However, it we expect that Lk > 0 and Cq < 0     The MHDS becomes

q̇ = q
(
ρ− fk

(
k, L(q, k)

))
(32a)

k̇ = y
(
k, L(q, k)

)
− C(q, k) (32b)

lim
t→∞

q(t) k(t) e−ρt = 0 (32c)

We provide in the problem set 1 several particular cases of this model.

6 References

The original Ramsey model is presented in Ramsey, 1928 and was rediscovered by Cass, 1965 and
Koopmans, 1965.

There are several textbook presentations of this model: in continuous time, recent presentations
can be found in Heijdra, 2009, sec. 14.5 Acemoglu, 2009, ch.8, Romer, 2019, ch 2 and Alogoskoufis,
2019, ch. 4.

The model with endogenous labor can be found in Wickens, 2008, sec 4.6 (discrete time version)
and Heijdra, 2009, ch. 7.
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A Solving the Ramsey problem for θ = α

A.1 Using the PMP

Looking at the Euler equation (11b) we can write it ċ = γc(t)c(t), where γc is the (variable growth
rate of consumption. It has a solution of type

c(t) = c(0)e
∫ t
0 γ(s) ds, where γ(t) ≡ Akα−1(t)− ρ

α

  where we do no know c(0). The idea is to obtain it from the transversality condition (11d). There
is another difficulty related to the fact that γ is a function if k and the transversality equation also
depends on k. In order to circumvent both difficulties define

z(t) ≡ k(t)

c(t)

  Therefore, taking log derivatives of time and substituting equations (11a) and (11b) we find ´

ż

z
=
k̇

k
− ċ

c
= Akα−1 − c

k
−
(
Akα−1(t)− ρ

α

)
= −1

z
+
ρ

α

  which is a linear ODE (without time varying coefficients)

ż =
ρ

α
z − 1.

  This ODE has the solution
z(t) =

α

ρ
+
(
z(0)− α

ρ

)
e

ρ
α
t

  where we do not know z(0) = k(0)/c(0) because c(0) is unknown. We find c(0) by using the
transversality condition (11d). Substituting in the transversality condition (11d) yields

lim
t→∞

c(t)−α k(t) e−ρ t = lim
t→∞

c(t)1−α z(t) e−ρ t =

= lim
t→∞

c(t)1−α
[α
ρ
e−ρ t +

(k(0)
c(0)

− α

ρ

)
eρ
(

1−α
α

)
t
]
=

(because z(0) = k(0)/c(0))

= 0 + lim
t→∞

c(t)1−α
[(k(0)
c(0)

− α

ρ

)
eρ
(

1−α
α

)
t
]
=

(because lim
t→∞

e−ρ t = 0).

  It is equal to zero if and only if c(0) = ρ

α
k(0) because c(t) > 0 and limt→∞ eρ

(
1−α
α

)
t = ∞. Then,

z(t) = z̄ =
α

ρ
is a constant, which means that c(t) = ρ

α
k(t) for all t ∈ [0,∞).

Then, if we choose the optimal consumption rule, we can obtain the optimal path for capital by
solving problem (13). This is a Bernoulli ODE than can be transformed into a linear ODE. Define
x(t) ≡ k(t)1−α. Then

ẋ

x
= (1− α)

k̇

k
= (1− α)

(
Akα−1 − ρ

α

)
= (1− α)

(A
x
− ρ

α

)
,
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which is equivalent to the linear ODE

ẋ = (1− α)
(
A− ρ

α
x
)

  which has the solution
x(t) =

αA

ρ
+
(
x(0)− αA

ρ

)
e−ρ
(

1−α
α

)
t.

  By transforming back to k we find the optimal capital accumulation as a function of time (14).

A.2 Using the DPP

The HJB equation, if θ = α, is

ρ v(k) = max
c

{c1−α − 1

1− α
+ v′(k)

(
Akα − c

)}
   The optimality condition for consumption is

c−α = v′(k) ⇒ C(k) = (v′(k))−
1
α

  After substitutiong C(k) back in the HJB equation yields the implicit differencial equation for
v(k) over k,

ρ v(k) =
α

1− α
(v′(k))

α−1
α + v′(k)Akα − 1

1− α

  Although this is a highly non-linear equation we can obtain an explicit solution by using the
method of undetermined coefficients. Unfortunately, it does not provide a constructive way to
obtain the solution: we conjecture a functional form of the equation, depending on unknown
parameters; if the functional form is right, by substituting in the HJB equation, we would obtain
the values of those parameters. Of course that depends on our ability to conjecture the right explicit
functional form (assuming that it exists).

Let us conjecture that the solution is of type

v(k) = β0 + β1 k
1−α

  where β0 and β1 are arbitrary real coefficients. The derivative of this function is

v′(k) = β1 (1− α) k−α.

  Substituting in the HJB equation, we have

ρ
(
β0 + β1 k

1−α
)
=

α

1− α

(
β1 (1− α)

)α−1
α
k1−α +Aβ1 .(1− α)− 1

1− α

  We can find β0 and β1 by matching the term depending on k1−α and the constant term on both
sides of the equation β1, which means solving the system of equations

ρ β0 = Aβ1 .(1− α)− 1

1− α
,

ρ β1 =
α

1− α

(
β1 (1− α)

)α−1
α
.
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  Therefore the solution of the HJB equation is

v(k) =
1

ρ

(
A
(α
ρ

)α
− 1

1− α

)
+

1

1− α

(α
ρ

)α
k1−α

  and the optimal policy function is ´

c∗ = C(k) = v′(k)−
1
k =

ρ

α
k

  which is the same as the one we obtained by using the PMP. We follow the same approach to
find the optimal capital accumulation function k∗(t) and c∗(t).

B Solving the Ramsey problem for the case θ ̸= α

Consider the variational MHDS (18). The jacobian matrix, J , has a positive trace, tr(J) = ρ > 0

and a negative determinant, because

det(J) =
c̄r

′
(k̄)

θ
=
c̄α(α− 1)Ak̄α−2

θ
< 0

  Then, the eigenvalues are both real and

λs =
ρ

2
−
[(ρ

2

)2
− det(J)

]1/2
< 0, λu =

ρ

2
+

[(ρ
2

)2
− det(J)

]1/2
> 0.

Therefore the steady state (c̄, k̄) is a saddle point.
The eigenvector matrix associated to J 21 is(

1 1

λu λs

)

  and therefore, the general solution is(
k(t)− k̄

c(t)− c̄

)
= h1

(
1

λu

)
neλst + h2

(
1

λs

)
eλut,

  where h1 and h2 are arbitrary constants. We determine them by requiring that the solution will
converge asymptotically to a steady state and the predetermined variable k satisfies k(0) = k0. As
the explosive dynamics is generated by eλu t we set h2 = 0 and by setting h1 = k(0)− k̄ the initial
condition is satisfied. Then we obtain the approximate solution (19).

C Proof of equation (27)

Solving the household’s Euler equation (22a) for the isoelastic case we get

c(t) = c(0)e
∫ t
0 γc(s)ds, for γc(t) =

r(t)− ρ

γ

21We determine the column P j by solving the homogeneous system (J−λjI)P
j = 0, where I is the (2×2) identity

matrix, for non-zero solutions.
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  on the other hand integrating the budget constraint we get and substituting consumption yields

a(t) = e
∫ t
0 r(s)ds a0 +

∫ t

0
e
∫ t
s r(z)dzw(s)ds− c(0)

∫ t

0
e
∫ t
s r(z)dz e

∫ s
0 γc(z).dzds

  Therefore, after some algebra we have

c(t)−θ a(t) e−ρt = c(0)−θ

[
a0 + ht(0)− c(0)

∫ t

0
e−

∫ s
0 γ(z)dzds

]

  where γ(t) =
(θ − 1)r(t) + ρ

θ
and ht(0) =

∫ t
0 e

−
∫ s
0 r(z) dz w(s) ds. The transversality equation,

limt→∞ c(t)−θ a(t) e−ρt = 0, holds if and only if

c∗(0) =
a0 + h∞(0)∫∞

0 e−
∫ s
t γ(z)dzds

  which is the optimal initial level of consumption from the point of view of the household equation.
Therefore, households consumption for any time t ∈ (0,∞) becomes

c∗(t) =

(
a0 + h∞(0)

)
e
∫ t
0 γc(s)ds∫∞

0 e−
∫ s
t γ(z)dzds

  and the optimal level of net wealth at time t is

a∗(t) = e
∫ t
0 r(s)ds

(
a0 + ht(0)− c∗(0)

∫ t

0
e−

∫ s
0 (r(z)−γc(z))dzds

)
=

= e
∫ t
0 r(s)ds

(
a0 + h∞(0)− h∞(t)e−

∫ t
0 r(s)ds − c∗(0)

∫ t

0
e−

∫ s
0 γ(z))dzds

)
=

= −h∞(t) + e
∫ t
0 r(s)ds

(
c∗(0)

∫ ∞

0
e−

∫ t
0 γ(s)dsdt− c∗(0)

∫ t

0
e−

∫ s
0 γ(z))dzds

)
=

= −h∞(t) + c∗(0) e
∫ t
0 r(s)ds

(∫ ∞

0
e−

∫ t
0 γ(s)dsdt−

∫ t

0
e−

∫ s
0 γ(z))dzds

)
=

= −h∞(t) + c∗(t) e
∫ t
0 γ(s)ds

(∫ t

0
e−

∫ s
0 γ(s)dsdt+ e−

∫ t
0 γ(s)ds

∫ ∞

t
e−

∫ s
t γ(z)dzds−

∫ t

0
e−

∫ s
0 γ(z))dzds

)
=

= −h∞(t) + c∗(t)

∫ ∞

t
e−

∫ s
t γ(z)dzds

which solving for c∗(t) is equation (27). We have used the fact that h∞(0) = ht(0)+e−
∫ t
0 r(s)dsh∞(t).

D Behavioral functions for the non-additive separable model

Differencing the optimality conditions, equation (30a) and (30b), we have(
ucc(c, ℓ) ucℓ(c, ℓ)

ucℓ(c, ℓ) uℓℓ − q fℓℓ(k, ℓ)

) (
dc

dℓ

)
=

(
1 0

fℓ(k, ℓ) qfℓk(k, ℓ)

) (
dq

dk

)
.

  Writing 
dc

dq

dc

dk
dℓ

dq

dℓ

dk

 =

(
Cq(q, k) Ck(q, k)

Lq(q, k) Lk(q, k)

)
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  we have (
Cq Ck

Lq Lk

)
=

(
ucc(c, ℓ) ucℓ(c, ℓ)

ucℓ(c, ℓ) uℓℓ − q fℓℓ(k, ℓ)

)−1 (
1 0

fℓ(k, ℓ) qfℓk(k, ℓ)

)

=
1

D

(
uℓℓ − q fℓℓ(k, ℓ) −ucℓ(c, ℓ)

−ucℓ(c, ℓ) ucc(c, ℓ)

)(
1 0

fℓ(k, ℓ) qfℓk(k, ℓ)

)

=
1

D

(
uℓℓ − q fℓℓ(k, ℓ)− ucℓ(c, ℓ)fℓ(k, ℓ) −ucℓ(c, ℓ) q fℓk(k, ℓ)

−ucℓ(c, ℓ) + ucc(c, ℓ)fℓ(k, ℓ) ucc(c, ℓ) q fℓk(k, ℓ)

)

  where D ≡ uccuℓℓ − u2cℓ − quccfℓℓ has an ambiguous sign.
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