
Asset prices and financial frictions

Paulo B. Brito
Advanced Macroeconomics (PhD in Economics): 2022-2023

ISEG
Universidade de Lisboa

pbrito@iseg.ulisboa.pt

6.12.2022

1



Contents

1 Introduction 4

2 Frictionless economies 5
2.1 Primitives: preferences and endowments . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 An Arrow-Debreu endowment economy . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 CRRA utility function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Consumption and the stochastic discount factor . . . . . . . . . . . . . . . . . 12
2.2.3 Characterization of the DSGE . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Finance economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Asset returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Households’ problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 DSGE for a finance economy . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Characterizing the DSGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.5 Comparing with the Arrow-Debreu model . . . . . . . . . . . . . . . . . . . . 18

3 Heterogeneous market participation 19
3.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 The households’ problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Specialists’ problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.3 Balance sheet constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.4 General equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Finding and characterizing the DSGE . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Share of specialists and leverage . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 Leverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.4 Dividend-price ratio in equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.5 Dynamics of N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.6 Dynamics of η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.7 Dynamics of q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.8 Equilibrium interest rate and volatility . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Risk aversion and endogenous risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 The logarithmic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Higher risk aversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2



Paulo Brito Advanced Macroeconomics 2022/2023 3

4 Technological illiquidity frictions 30
4.1 Unrestricted market participation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 Households’ optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2 Firm’ optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.3 The equilibrium in asset markets . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.4 Good’s market equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.5 Finding the equilibrium rate of return . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Limited asset market participation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Other frictions 36

A Arrow-Debreu equilibrium 39

B Solving the representative household problem in a finance economy 40
B.1 Solution by the principle of dynamic programming . . . . . . . . . . . . . . . . . . . 40
B.2 Solution by the stochastic Pontriyagin maximum principle . . . . . . . . . . . . . . . 42
B.3 Solution by martingale representation methods . . . . . . . . . . . . . . . . . . . . . 45



Paulo Brito Advanced Macroeconomics 2022/2023 4

1 Introduction

This note deals with general stochastic general equilibrium models in continuous time. In partic-
ular, we deal with macroeconomic finance variables as interest rates, asset prices, net wealth, and
leverage, with a view of dealing with macroeconomic fluctuations. The two major dimensions of the
analysis are related to the source of uncertainty and to the way it is propagated in the economy.

First, we assume there are aggregate stochastic shocks which hit the economy frequently. That
is, we will not deal with rare big shocks, driven by jump processes, but with continuous, small,
and imperfectly observed random perturbations driven by Itô processes affecting the fundamentals
of the economy. The two branches of financial economics, financial microeconomics and macroe-
conomics, can be distinguished by the type of risk they tend to address. While microfinance deals
mainly with idiosyncratic risk, and the insurance or sharing mechanisms provided by asset markets,
macrofinance is more concerned with the existence of aggregate risk and the way it is absorbed,
shared, amplified or smoothed out by the operating of asset markets. In this note we will assume
there is an exogenous source of risk which is introduced through supply shocks taking the form of
dividend or productivity random changes.

Second, the propagation of shocks may depend on the existence of frictions in the economy. We
take as a benchmark a frictionless, representative agent, endowment economy (see section 2) and
introduce progressively several frictions. In the literature followed in this note, there are frictions
if there is some type of heterogeneity among agents. Heterogeneity can be introduced through
differences in preferences, participation in financial markets, rates of return on assets, information,
for instance. In this note we consider only one type of friction: limited participation in section 3.
We will study the distortions introduced by this type of friction in a benchmark exchange economy
and in a production economy in which there are costs of adjustment of capital (in section 4).
Brunnermeier and Sannikov (2016) call this case technological illiquidity. We will see that, in some
cases, asset returns are not independent of the wealth distribution among heterogeneous agents.

The objective of this note is mainly pedagogical to make accessible some relevant recent research,
by providing some detail on the construction of the models and on the way they are related. We
will focus on the following papers: Basak and Cuoco (1998), Brunnermeier and Sannikov (2014)
and the survey Brunnermeier and Sannikov (2016).

In section 2 we present the benchmark frictionless economy. In 3 we present a model with
limited asset market participation and in section 4 a model with adjustment costs in investment.
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2 Frictionless economies

2.1 Primitives: preferences and endowments

The general equilibrium for a stochastic dynamic economy requires introducing assumptions re-
garding four elements: information environment, technology available, preference structure, and
existing market institutions. Next, we specify those elements for the simplest economies: the
endowment or exchange economies.

Information The information structure is specified by a the filtered probability space (Ω,F ,F, P )

where Ω is the space of admissible realizations, F is the set of all events belonging to the space Ω, and
the filtration, F =

(
F(t)

)
t∈R+

, is a flow of non-anticipating events such that F(s) ⊂ F(t), for s < t,
and limt→∞F(t) = F . In our case, the filtration is generated by a standard Wiener process, which
implies that, associated to the filtration, there is a flow of unconditional probabilities

(
P (t)

)
t∈R+

,
where P (t) = P (t, ω(t)) is the probability of occurrence of state ω = ω(t) at time t, such that the
process is Markovian and the conditional probability satisfies P (t + dt, ω

′
) − P (t, ω) ∼ N(0, dt),

where N(0, dt) is the Gaussian distribution with zero mean and standard deviation equal to dt.
This information structure is common knowledge to every agent.

The flow of consumption and endowments, C =
(
C(t)

)
t∈R and Y =

(
Y (t)

)
t∈R, are adapted

stochastic processes to the filtration F. This means that upper-case letters, C(t) and Y (t), denote
(ex-ante) Ft-measurable random variables for every t ∈ (0,∞). Ex-post realizations of those pro-
cesses are denoted by lower-case letters, that is C(t) = c(t) and Y (t) = y(t) denote the realizations
of the consumption and endowment processes at time t, respectively.

Resources There is only one good in the economy that can be supplied in one of the following
two types of frameworks: endowment or production economies. In the first type of economy, the
aggregate supply of the good is exogenous and it is assumed to be driven by a known stochastic
process. However, the realizations of this process over time are not perfectly observed by agents.

In a production economy there would be a decision on the level of input but the source of
uncertainty (productivity or dividend shocks) is driven by a time-varying exogenous shock, not
perfectly observed by producers. In the final sections, we will consider cases in which there are
some production and investment decisions for firms.

In our endowment economy, the output is driven by the diffusion equation (a linear stochastic
differential equation (SDE)) such a

dY (t)

Y (t)
= gdt+ σdW (t), for t > 0

Y (0) = y0 given for t = 0

(1)
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where, we assume for simplicity that the drift, g, and the volatility, σ, coefficients are constant and
known. The initial value of the endowment Y (0) = y0 is also known. Therefore, the sample paths
of the endowment have the following statistics

E [Y (t)] = y0 e
gt, V [Y (t)] = y0 e

gt
(
eσ

2t − 1
)
,

  meaning that: if g > 0 then limt→∞ E [Y (t)] = limt→∞V [Y (t)] = ∞, and the endowment is both
non-stationary and displays increasing volatility; or, if g = 0, then E [Y (t)] = y0 for each t ∈ [0,∞)

but limt→∞V [Y (t)] = ∞ (see Figure 1 ).
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Figure 1: Fundamentals: endowment dynamics for g > 0

Preferences The representative household preferences are be represented by the utility func-
tional, displaying additive preferences,

E0

[ ∫ ∞

0
u(C(t))e−ρtdt

]
(2)

  where ρ > 0 is the rate of time preference and u(.) is the instantaneous utility function, satisfying
u

′
(.) > 0, u

′′
(.) < 0 and u

′′′
(.) > 0. For any realization of the consumption process at time t,
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C(t) = c > 01 we define the coefficients of relative risk aversion and of relative prudence by

rr(c) ≡ −u
′′
(c)c

u′(c)
, πr(c) ≡ −u

′′′
(c)c

u′′(c)
.

  If rr(u) > 0 the utility function displays risk aversion and if rr(u) = 0 it displays risk neutrality.
In order to be able to derive clear results, and because this is the utility function most commonly
used in the literature, we assume a constant relative risk aversion (CRRA) utility function, for
evaluating every realization of the consumption process, C(t) = c

u(c) =


c1−γ − 1

1− γ
, if γ ̸= 1

ln (c), if γ = 1

(3)

  Because,
rr(u) = γ, and πr(u) = 1 + γ.

  the utility function displays risk aversion if γ > 0 and risk neutrality if γ = 0. If γ = 1 the utility
function is logarithmic and it is a special case of low risk aversion.

Observe that given the information structure the unconditional expected value is

E0

[ ∫ ∞

0
u(C(t))e−ρtdt

]
=

∫ ∞

0

∫
F(t)

u(C(t, ω(t))e−ρt dP (t, ω(t)) dt.

 

Asset markets The institutional structure, that is, the structure of markets, determines the type
of contracts available to the household and, therefore, the way households allocate their resources
between states of nature (insurance) or over time (savings and investments).

We consider next two market structures, and, therefore, two economies: an Arrow-Debreu 
economy  and a frictionless finance economy  in which there is one riskfree asset (in zero net
supply) and a risky asset. In both economies, the household is constrained in its allocations by an
intertemporal budget constraint, which is explicit in the Arrow-Debreu economy and is implicit in
the finance economy if a non-Ponzi game condition is introduced. In the finance economy there is
an instantaneous budget constraint, because agents trade continuously in the asset markets.

We will prove that the equilibrium allocations are equivalent in those two economies, in the
absence of frictions. This provides a benchmark to compare equilibrium allocations and prices for
finance economies with frictions.

1Except for the case of rates of return, uppercase letters refer to random variables (i.e, a multivalued function),
and lowercase letters refer to realizations (i.e, a number). Therefore, these coefficients refers to the value of every
realization of consumption, for any time. or state of nature.
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2.2 An Arrow-Debreu endowment economy

The Arrow-Debreu’s economy2  is fundamentally characterized by the existence of a market
setting in which there are (real) intertemporal contingent contracts over the good. It is assumed
that there is a large (in fact infinite) number of contingent claim markets, operating at time t = 0,
in which agents can contract for delivery of one unit of the good, at any future moment and state
of nature. An agent can contract be delivered (to deliver) one unit of the good at time t, at a
particular state of nature ω(t), thus paying (receiving) a price at time t = 0. Therefore, a system of
Arrow-Debreu contracts provide a huge (mutual) insurance market covering consumption for every
future event by mean of forward contract.

The price of an Arrow-Debreu contract for delivery at (t, ω(t)), is denoted by Q(t, ω(t)). It is a
Ft-measurable random variable, and the price for the spot contract satisfies Q(0) = 1.

We assume a homogeneous agent endowment economy  in which the representative agent
faces the following constraint for its transactions in all the forward markets open at time t = 0,∫ ∞

0

∫
F(t)

(Y (t, ω)− C(t, ω))dQ(t, ω)dt = 0.

If we define the stochastic discount factor  as the Ft-adapted process
(
M(t)

)
t∈R+

such that
 dQ(t, ω) = M(t, ω)dP (t, ω), then the budget constraint can be equivalently written as the uncon-
ditional expected (that is, with information available at time t = 0) present value of the discounted
excess supply of the good in all times and states of nature

E0

[∫ ∞

0
M(t)(Y (t)− C(t))dt

]
= 0 (4)

where M(0) = 1.
The representative household problem  is to maximize the functional (2) subject to the

budget constraint (4)

max
C(·)

E0

[ ∫ ∞

0
u(C(t))e−ρtdt

]
subject to

E0

[∫ ∞

0
M(t)(Y (t)− C(t))dt

]
= 0.

(5)

given the endowment and the AD-price processes,
(
Y (t)

)
t∈R+

and
(
Q(t)

)
t∈R+

.3

2This is a continuous time version of the Lucas (1978) model.
3There are some technical conditions on the processes M , Y and C which basically amount to the guarantee of

boundedness: they should be class H functions, that is with bounded variance in finite time.
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Definition 1. An Arrow-Debreu general equilibrium (also called a simultaneous market equi-
librium), for an aggregate risk given by

(
W (t)

)
t∈R+

, is defined by the processes for consumption,
(Ceq(t))t∈R+, and for the stochastic discount factor (SDF) (M eq(t))t∈R+, given the flow of the
endowment (Y (t))t∈R+, such that:

1. the representative household solves its problem (5), that is, it maximizes the utility functional
(2) subject to the intertemporal budget constraint (4), given the SDF and endowment processes,

2. markets clear at every time and state of nature, that is C(t) = Y (t) at every time and state
of nature.

Finding the DSGE means finding (or at least characterizing) the processes
(
C(t)

)
t∈R+

and(
M(t)

)
t∈R+

.

Finding the equilibrium process for consumption The representative agent assumption
implies that the equilibrium process for consumption is very easy to find, from the goods market
equilibrium condition together with the assumption we have an endowment economy:

Ceq(t) = Y (t), for every t ∈ R+. (6)

Therefore dCeq(t) = dY (t), and from equation (1)

dCeq(t) = Ceq(t) (gdt+ σdW (t)) , t ≥ 0.

  consumption is perfectly correlated with the endowment. Then, as

E[Ceq(t)] = y0 e
gt, for every t ∈ R+,

  equilibrium consumption is non-stationary in average if g > 0 and is stationary in average if
g = 0. Furthermore, as

V[C(t)] = y20 e
gt
(
eσ

2t−1
)
,

the variance increases in time even in the case in which g = 0, if σ > 0.
Figure 1 depicts sample paths for the non-stationary case.

Finding the equilibrium stochastic discount factor At the equilibrium, the stochastic
discount factor  (see the appendix A) is the Ft adapted stochastic process

M eq(t) = e−ρtu
′
(Y (t))

u′(y0)
, for each t ∈ R+. (7)

Writing M(t)u
′
(y0) = e−ρt u

′
(Y (t)) we see that M(t) is the reciprocal of a market  intertemporal

marginal rate of substitution between the initial time t = 0 and any future time t > 0. The MRS is
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the sacrifice of consumption today, at t = 0, to get a unit increase in consumption in a future date
t > 0. It depends on the rate of time preference, on the utility function and the stochastic process
governing the availability of the endowment.

The flow
(
M eq(t)

)
t∈R+

is adapted stochastic process generated by the endowment process.
Using Itô’s lemma (see Appendix A) we find that the equilibrium stochastic discount factor also
follows a diffusion process

dM eq(t)

M eq(t)
= − (µm(t)dt+ σm(t)dW (t)) (8)

where the drift and the volatility are

µm(t) = ρ+ rr(Y (t))

(
g − 1

2
πr(Y (t))σ2

)
(9)

σm(t) = rr(Y (t))σ (10)

where rr(y) and πr(y) are the coefficients of relative risk aversion and the coefficient of prudence
associated to the utility function u(·).

Therefore, the stochastic discount factor (SDF) is governed by a backward diffusion process in
which:

• the diffusion coefficient has two terms: the first is the rate of time preference and the second
depends on the dynamic properties of the endowment and on the behavior towards risk. The
diffusion term increases with the average rate of growth and decreases with the volatility
coefficient of the endowment process, Y (t) ;

• the volatility coefficient is proportional to the volatility of the endowment process.

• the transmission of the growth and volatility of the endowment to the SDF is proportional
to the relative risk aversion coefficient.

2.2.1 CRRA utility function

The constant relative risk aversion (CRRA) utility function is particularly convenient because it is
characterized by constant coefficients of relative risk aversion and prudence, which result from its
homogeneity property. In this case, the SDF process has a constant drift coefficient

µm =

ρ+ γ
(
g − 1 + γ

2
σ2
)
, if γ ̸= 1

ρ+ g − σ2, if γ = 1
(11)

and a constant volatility coefficient

σm =

γ σ, if γ ̸= 1

σ, if γ = 1.
(12)
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We see that µm increases with ρ and g, decreaes with σ and has an ambiguous sign for γ, and
σm increases with γ and σ. Therefore, the degree of risk aversion parameter, γ influences µm in
qualitative way and influences σm only quantitatively.

We have the following possibilities.
First, If there is risk neutrality, that is, if γ = 0, then µm = ρ and σm = 0, and

E[M(t)] = e−ρt, V[M(t)] = 0,

which means that the stochastic discount factor is deterministic and is, on average, equal to the
(psychological) discount factor. Then the SDF is deterministic; Second, if there is risk aversion,
that is if γ > 0, then the SDF is a diffusion process with a constant drift and volatility coefficients,
given by (11) and (12). Therefore, the statistics for M 4 are

E[M(t)] = e−µmt, V[M(t)] = e−2µmt
(
eσ

2
mt−1

)
.

  In this case, the distributional dynamic properties of the stochastic discount factor depend on the
relationship between the parameters of the model, the rate of time preference, the rate of growth
of the endowment, and, in particular on the magnitude of the risk aversion parameter γ. While
σm > 0, the sign of µm is ambiguous. If µm < 0 we say there are bubbles  and if µm ≥ 0 bubbles
are ruled out.

There is a critical value of the degree of risk aversion γc = {γ > 0 : µm(γ) = 0}, that
separates the cases in which there are no bubbles from the cases in which there are bubbles.
Solving µm(γ) = 0, we find a value for the coefficient of risk aversion γ,

γc =
g

σ2
− 1

2
+

[(
g

σ2
− 1

2

)2

+
2ρ

σ2

] 1
2

  such that:

• if risk-aversion is low, such that 0 ≤ γ < γc then µm > 0. This implies

lim
t→∞

E[M(t)] = lim
t→∞

V[M(t)] = +∞

  and the SDF is non-stationary (there are bubbles);

• if risk aversion is high such that γ > γc then µm < 0 which implies the SDF is stationary and
the M(t) converges to zero

lim
t→∞

E[M(t)] = lim
t→∞

V[M(t)] = 0

 
4We use the results in https://pmbbrito.github.io/cursos/phd/ame/ame2223/ame2223_lecture6.pdf.

https://pmbbrito.github.io/cursos/phd/ame/ame2223/ame2223_lecture6.pdf
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• if γ = γc then µm = 0 and

E[M(t)] = 1, for all t ∈ [0,∞), lim
t→∞

V[M(t)] = ∞

  the process for M is stationary in average but the volatility increases unboundedly.

There is a necessary condition for ruling out bubbles: σ2

2 > g.
We see that bubbles can occur if the growth rate of the endowment is too large, is volatility of

the endowment is not large enough, or if the coefficient of risk aversion is too small.
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Figure 2: Stochastic discount factor for the no-bubble case

2.2.2 Consumption and the stochastic discount factor

We can determine the covariance between consumption and the stochastic discount factor

Cov[C(t),M(t)] = y0e
(ρ+(1+γ)(g− γ

2
σ2))t

(
eγσ

2t−1
)
.

  This means that consumption and the stochastic discount factor are negatively correlated:

Corr[C,M(t)] =
e−γσ2t − 1√(

eγσ2t − 1
) (

eσ2t − 1
) < 0
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2.2.3 Characterization of the DSGE

We conclude that, at the equilibrium: (1) consumption is perfectly correlated with the endowment;
(2) consumption and the stochastic discount factor are negatively correlated. The distributional
dynamics of consumption inherits those of the endowment.

Furthermore, the stochastic discount factor can be positively or negatively correlated with the
endowment. In the first case we say there are bubbles and in the second we say there are no
bubbles.

2.3 Finance economy

 

2.3.1 Asset returns

In a finance economy the intertemporal allocation of resources is done by trading in spot asset
markets that operate at every point in time. In the present continuous time framework, markets
are continuously open and trade is continuous. This allows for continuous changes in the allocations
of consumption relative to resources, over time and across states of nature, in alternative to trading
in forward market only at time t = 0, as in the Arrow-Debreu economy.

We assume that there are two assets, one risk free and one risky asset, and therefore there
are two asset markets. While the risky asset is in positive aggregate net supply, the risk free
is in aggregate zero net supply. We consider a representative household economy in which the
representative agent can have long or short positions in every asset, that is, it can be a borrower
or a lender.

The risk free asset price, at time t, is denoted by B(t), and follows the deterministic process

dB(t) = r(t)B(t) dt,

where r(t) is the risk-free interest rate. The return is R(t) =
∫ t
0 r(s)ds, and follows the deterministic

process dR(t) = r(t) dt. The interest rate r(·) is exogenous to the household level, that is, households
are price talkers. However, the interest rate is endogenous at the aggregate because we are assuming
a closed economy. Therefore, its general equilibrium level is endogenous.

The risky asset has the price, at time t, denoted by S(t), and it entitles to (or generates a
liability of) a gain process G(t) = S(t) +

∫ t
0 D(s)ds, where D is the dividend. We assume that the

dividend is exogenous and follows a diffusion process

dD(t)

D(t)
= gdt+ σdW (t). (13)
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This dividend process corresponds to the fundamentals for this economy, as the endowment
process was to the AD economy. To make the general equilibrium of the two economies comparable,
we introduce the same parameters for the drift and the volatility components of the dividend process
as we did for the parameters of the endowment process in the Arrow-Debreu economy.

The price-dividend ratio  relates the asset price with the dividend through the equation

S(t) = q(t)D(t).

 
Although the change in market pice of the risky asset is endogenous, we conjecture  that it

follows the linear diffusion process
dS(t)

S(t)
= µs(t)dt+ σs(t)dW (t),

where µs and σs, if this conjecture is right, can be determined in equilibrium as a function of
fundamentals. If this is the case, the return for holding the risky asset is also endogenous and
follows the process

dG(t) = S(t)
(
µ̃s(t)dt+ σs(t)dW (t)

)
, (14)

where the instantaneous rate of return for the risky asset is5

µ̃s(t) = µs(t) +
1

q(t)
.

    In the literature the excess return of the risky asset as regards the risk free asset, also called
risk premium, normalized by the standard deviation of the risky asset is called the Sharpe ratio

X(t) =
µ̃s(t)− r(t)

σs(t)
.

 

2.3.2 Households’ problem

The households net wealth is invested in risk free and risky assets. Denoting net wealth, at time t,
by N(t), we have N(t) = B(t)+S(t). If the share of the risky asset is denoted by w(t) ≡ S(t)/N(t),
then the households’ budget constraint is

dN(t) = N(t)

(
(1− w(t)) r(t) dt+ w(t) (µ̃s(t)dt+ σs(t)dW (t))

)
− C(t)dt (15)

5To prove this, we differentiating the gain yields

dG(t) = dS(t) +
∂

∂t

(∫ t

0

D(s) ds
)
dt = dS(t) +D(t) dt = S(t)

(
µs(t)dt+ σs(t) dW (t)

)
+

S(t)

q(t)
dt.
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where we assume that wealth at the initial time is observed (deterministic) N(0) = n0.
As the risky asset is in positive aggregate net supply, we will have w(t) > 0, and because agents

can take long or short positions in the risk-free asset, w(t) has a free upper bound. If agents leverage
their position on the risky asset by risk-free borrowing then w(t) > 1. If agents cannot take short
positions on the risk-free asset then w(t) would be constrained to be smaller than one.

The household’s problem is

max
C(·),w(·)

E0

[ ∫ ∞

0
u(C(t))e−ρtdt

]
subject to

dN(t) = N(t)

(
(1− w(t)) r(t) dt+ w(t) (µ̃s(t)dt+ σs(t)dW (t))

)
− C(t)dt

N(0) = n0 given.

(16)

We assume that households are homogenous as regards preferences, information, and initial
wealth.

2.3.3 DSGE for a finance economy

Definition 2. General equilibrium for an unconstrained finance economy It is the alloca-
tions (Ceq(t), Beq(t), Seq(t))t∈R+ and the returns (Req(t), Geq(t))t∈R+ such that, given the aggregate
risk process (W (t))t∈R+ and the dividend process (D(t))t∈R+:

1. the representative household solves its problem, that is, it maximizes the utility functional (2)
subject to the instantaneous budget constraint (15), given the assets’ rates of return processes;

2. markets clear: Ceq(t) = D(t), Beq(t) = 0, and Seq(t) = N eq(t), at every time and state of
nature. 

2.3.4 Characterizing the DSGE

Solution to the household problem In the appendix B  we show that we can find an explicit
solution to the household problem (16): first, for every point in time (and state of nature) the
optimal consumption is proportional to net wealth,

C∗(t) = θ(t)N(t), where θ(t) ≡ 1

γ

[
ρ+ (γ − 1)

(
r(t) +

1

2γ

(
µ̃s(t)− r(t)

σs(t)

)2
)]

, (17)

  and, second, the optimal share of net wealth invested in the risky asset is

w∗(t) =
µ̃s(t)− r(t)

γ σs(t)2
. (18)
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  This means that the demand for the risk-free asset is B∗(t) = (1 − w∗(t))N(t) and the demand
for the risky asset is S∗(t) = w∗(t)N∗(t).

Observe that both decision variables depend on the Sharpe ratio:

θ(t) ≡ 1

γ

[
ρ+ (γ − 1)

(
r(t) +

X(t)2

2 γ

)]
,

and
w∗(t) =

X(t)

γ σs(t)
.

 
Substituting the consumption and the portfolio weights, equations (17)  and (18), in the budget

constraint, equation (15), we find optimal net wealth dynamics at the household level
dN∗(t)

N∗(t)
= µn(t)dt+ σn(t)dW (t) (19)

where

µn(t) =
1

γ

[
r(t)− ρ+

1 + γ

2γ

(
µ̃s(t)− r(t)

σs(t)

)2
]

σn(t) =
1

γ

(
µ̃s(t)− r(t)

σs(t)

)
.

 

Equilibrium in asset markets  
As the risk-free asset is in zero net supply, then the equilibrium condition for the risky asset

is N eq(t) = S∗(t) where S∗(t) is the demand for risky assets by households, S∗(t) = w∗(t)N(t).
Therefore, at the equilibrium we have

weq(t) = 1,

  that has several consequences:
First, using the optimal portfolio weight in equation (18) we find the equilibrium Sharpe ratio

is proportional to the volatility of the risky asset

Xeq(t) =
µ̃s(t)− r(t)

σs(t)
= γσs(t).

Second, the expected change in the risky asset rate of return is equal to the risk-free rate of return
plus Xσs,

E[dG(t)]

S(t) dt
= µ̃s(t) = µs(t) +

1

q(t)
= r(t) + γ(σs(t))

2, (20)

Third, the diffusion and volatility coefficients in equation (19) become

µn(t) =
1

γ

(
r − ρ+

γ(1 + γ)

2
σs(t)

2
)
, and σn(t) = σs(t).
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Good market equilibrium  
The goods’ market clearing condition is Ceq(t) = D(t). Therefore, the equilibrium consumption

process is generated by

dCeq(t) = Ceq(t)
(
g dt+ σ dW (t)

)
, for t ∈ R+

  which is analog to the equilibrium consumption in the Arrow-Debreu economy.
From equation (17) and the goods market equilibrium condition we have Ceq(t) = θeq(t)N eq(t) =

D(t) where
Ceq(t)

N eq(t)
= θeq(t) =

1

γ

[
ρ+ (γ − 1)

(
r +

γ

2
σs(t)

2
)]

.

  Furthermore, because Seq(t) = N eq(t) and S(t) = q(t)D(t) then there is an equilibrium equation
for the price-dividend ratio qeq(t) θeq(t) = 1 yielding

q(t)

(
ρ+ (γ − 1)

(
r(t) +

1

2γ
(γσs(t))

2

))
= γ. (21)

The relationship q(t) θ(t) = 1 involves an indeterminacy as regards the time evolution of both
variables. However, as in equilibrium C is perfectly correlated to D, and we assume it is also
perfectly correlated with N , then N is also perfectly correlated with D then 1

qeq = θeq is a constant
(time-independent) to be determined.

To have a determinate equilibrium, we should have

dC(t)

C(t)
=

dN(t)

N(t)
=

dD(t)

D(t)
,

which is equivalent to  an equality between the two diffusion processes

µn(t)dt+ σn(t)dW (t) = gdt+ σdW (t).

  Matching the diffusion and the volatility terms, we find

g =
1

γ

(
r − ρ+

γ (1 + γ)

2
σ2
s

)
(22)

σ = σs. (23)

Solving equations (20), (21), (22), and (23) for q, r, µs and σs we obtain the equilibrium values
for the rate of interest,

req(t) =

ρ+ γ
(
g −

(
1 + γ

2

)
σ2
)
, if γ > 0 and ̸= 1

ρ+ g − σ2, if γ = 1

for every t ∈ [0,∞) (24)
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for the equilibrium price-dividend ratio

qeq(t) =


(
ρ+ (γ − 1)(g − γσ2)

)−1
, if γ > 0 and ̸= 1

ρ−1, if γ = 1
for every t ∈ [0,∞) (25)

and for the drift and volatility of the rate of return of the risky asset

µeq
s = g − γ

(
1− γ

2

)
σ2, and σeq

s = σ

as a function of the fundamentals and of the behavioral parameters.
The equilibrium rate of return for the risky asset, dG

eq(t)

S(t)
= µ̃s,eqdt+σs,eqdW (t), follows

a diffusion process

dGeq(t)

S(t)
=


(
ρ+ γg + γ

(
1− γ

2

)
σ2

)
dt+ σdW (t), if γ > 0 and ̸= 1

(ρ+ g) dt+ σdW (t), if γ = 1.

(26)

Figure 3 presents an illustration of the dynamics of the rate of return for the risky asset.
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Figure 3: The rate of return for the risky asset: parameters σ = 0.085, ρ = 0.02, g = 0.015, γ = 6

and r(0) = 0.05

2.3.5 Comparing with the Arrow-Debreu model
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The stochastic discount factor process at the equilibrium (see the Appendix B.3) follows the
process

dM(t) = −M (rdt+XdW (t))

  where X is the market price of risk:
X =

µ̃s − r

σs
.

  If we substitute the equilibrium rates of return for the risk-free and risky asset from equation
(24)  and (26), respectively, we find that Xeq = γσ

Comparing with the solution we found for the Arrow-Debreu economy, in equations (11) and
(12), we observe that µm = req and σm = Xeq = γ σ. Therefore, the implied equilibrium
stochastic discount factor for this finance economy is the same as in the Arrow-Debreu
economy, in which the endowment is exogenously supplied to the household.

This means that those two institutional settings provide equivalent market mechanisms to gen-
erate an equilibrium intertemporal allocations of resources. This also means that the financial
markets in this unconstrained finance economy are complete.

In both economies we conclude that the only source of aggregate risks are fundamental
exogenous aggregate risks  introduced by (W (t))t≥0.

3 Heterogeneous market participation

In the previous section we assumed households are homogeneous. Among several dimensions of
heterogeneity, one that i empirically relevant is related to the fact that there is heterogeneity in
financial market participation: one a relatively small fraction of households invest in risk bearing
assets. The model in the previous section is consistent with a case in all households have the same
portfolio structure, independently of their level of financial wealth, which is counterfactual.

In this section we consider a first type of financial friction originated by limited asset market
participation. This means that there are agents which do not participate in the risky asset market
while others do. This introduces heterogeneity in the composition of the net wealth  among
economic agents.

Limited asset market participation generates one form of illiquidity, in the sense that some
agents cannot fully insure against uncertainty, which has consequences on the risk bearing and
hedging of agents, and, possibly on the existence of an endogenous source of macroeconomic
risk. This endogenous source of risk adds to the exogenous aggregate risks which is the same as
in the case of the frictionless economy that we studied in the last section. In this case, there is an
additional source of uncertainty which channels productivity uncertainty through the distribution
of dividend income.
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Again we assume that there are two assets: a risk-free asset in zero net supply, and a risky asset
in positive net supply. There are two groups of homogeneous agents: there is a group of households
that cannot hold the risky asset (called households  in the literature) and other group of agents
that participate in both markets (called specialists in several papers). Both groups share the same
information and preferences. We continue to assume that the only source of income is financial
income. There are several explanations for this difference in participation, v.g., informational
constraints or existence of transaction costs.

Because non-participants (households) can only hold the risk-free asset, and because it is in
zero net supply, the participants (specialists) finance their holdings of risky assets by holding short
positions (i.e, taking loans) in the risk-free asset. This implies that the fluctuations in fundamentals
are completely absorbed by the specialists. We will see that the distribution of net wealth varies
and drives the dynamics of the equilibrium rates of return, because their level of wealth is one of
the determinants of the demand for risky assets thus influencing its price. If we assume there are
no arbitrage opportunities, then the risk free rate of return is also affected.

We will also see that the type of utility function has a relevant effect on the equilibrium prop-
erties: if the utility function is logarithmic an endogenous source of risk does not exist,
but if the utility function displays a higher level of risk aversion there is an endogenous
source of risk. This is natural, because the concavity of the utility function is related to the risk
aversion behavior.

We present next a version of the Basak and Cuoco (1998) model (see Brunnermeier and Sannikov
(2016) for a discussion).

3.1 The model

 
In this subsection we present the DSGE of this model and in the next subsection we solve and

characterize it. We assume that the only source of heterogeneity is the asset market participation,
which means that the preferences and information of both households and specialists is the same.

3.1.1 The households’ problem

Non-participating households, denoted by an index h, consume Ch and hold net wealth, Nh, by
solving the problem

max
Ch

E0

[ ∫ ∞

0

(Ch(t))1−γ − 1

1− γ
e−ρtdt

]
  subject to the budget constraint,

dNh(t) =
(
r(t)Nh(t)− Ch(t)

)
dt, t ∈ [0,∞)
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  where Nh(0) = nh
0 is given, and r(t) is again the rate of return of the risk free asset, which is

taken as given by the household. The first order condition is

Ch(t) = θh(t)Nh(t), where θh(t) =
ρ+ (γ − 1)r(t)

γ
. (27)

  Therefore, at the optimum, the net wealth of the household is driven by

dNh(t)

Nh(t)
=

(
r(t)− ρ

γ

)
dt, (28)

where Nh(0) is given.

3.1.2 Specialists’ problem

Participating, or specialist, households can participate in both asset markets. They solve the
problem

max
Cx,wx

E0

[ ∫ ∞

0

(Cx(t))1−γ − 1

1− γ
e−ρtdt

]
  where, Cx and wx denote consumption and the weight of the risky asset in net wealth, respectively,
subject to the budget constraint

dNx(t) = [r(t)(1− wx(t)) dt+ µ̃s(t)w
x(t)] Nx(t)dt+ σs(t)w

x(t)Nx(t)dW (t)− Cx(t)dt

  where Nx(0) = nx
0 is given. These households are also price takers in both asset markets, where

the rate or return for the risky asset is as in equation (14), which is taken as given by these
households.

This is the same problem as the problem for the representative agent in the frictionless financial
economy we presented in the previous section. As in that model, we assume that there are exogenous
dividends accruing to the holders of the risky asset following the process given in equation (13).

Cx(t) = θx(t)Nx(t), where θx(t) ≡ 1

γ

[
ρ+ (γ − 1)

(
r(t) +

1

2γ

(
µ̃s(t)− r(t)

σs(t)

)2
)]

(29)

  the portfolio weight of the risky asset is

wx(t) =
1

γ

(
µ̃s(t)− r(t)

(σs(t))2

)
. (30)

  The net wealth for a participating household is driven by the diffusion equation

dNx(t)

Nx(t)
= µx

n(t)dt+ σx
n(t)dW (t) (31)
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where

µx
n(t) =

1

γ

[
r(t)− ρ+

1 + γ

2γ

(
µ̃s(t)− r(t)

σs(t)

)2
]

σx
n(t) =

1

γ

(
µ̃s(t)− r(t)

σs(t)

)
.

 

3.1.3 Balance sheet constraints

Denoting by Bh(t) and Bx(t) the stocks of bonds for non-participating and participating households,
respectively, and by S(t) the stock of risky assets, we specify the balance sheet constraint for non-
participating households as Nh(t) = Bh(t), and for participating households as Nx(t) = Bx(t) +

S(t). All those variables are in nominal terms.
We assume that Bh(t) ≥ 0, meaning that non-participating households are lenders and par-

ticipating households are borrowers in the risk-free asset market. Therefore Bx(t) corresponds
to risk-free financing of purchases of risky assets by participating agents, and −Bx(t)/S(t) is the
leverage ratio. This is equivalent to setting wx(t) ≥ 1.

3.1.4 General equilibrium

 

Definition 3. General equilibrium for the limited participation finance economy It is de-
fined by the allocations (Ch,eq(t), Cx,eq(t), Bh,eq(t), Bx,eq(t), Seq(t))t∈R+ and the returns (req(t), rs,eq(t))t∈R+

such that, given the aggregate risk process (W (t))t∈R+:

1. non-participating and participating households solve their particular problems, taking as given
the rates of return of the risk free and risky assets;

2. aggregate net wealth:

N eq(t) = Nh.eq(t) +Nx,eq(t), for each t ∈ [0,∞) (32)

 

3. markets clear: the good’s market clearing condition is

Ceq(t) = Ch,eq(t) + Cx,eq(t) = D(t),

  where C(t) is aggregate consumption; the risk-free market clearing condition is

Beq(t) = Bh,eq(t) +Bx,eq(t) = 0
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  and the risky asset market clearing condition is

Seq(t) = N eq(t).

 

3.2 Finding and characterizing the DSGE

 
In the rest of this section all variables refer to equilibrium values, and, to lighten the text we

do not denote it explicitly.

3.2.1 Consumption

As in the previous models, from the equilibrium in the product market we have C(t) = D(t), and,
therefore,

dC(t) = C(t)
(
g dt+ σ dW (t)

)
, for t ∈ R+.

 

3.2.2 Share of specialists and leverage

Denoting the share of the specialists in the total net wealth of the economy

η(t) ≡ Nx(t)

N(t)
.

  In equilibrium, from the balance sheet constraints, and from the equilibrium conditions for the
asset markets, equation (32), we find that the share of the specialists in total wealth is equal to

η(t) ≡ Nx(t)

N(t)
=

Nx(t)

S(t)
.

However, from equation (30) we have wx(t) =
S(t)

Nx(t)
implying that

η(t) =
1

wx(t)
.

Then differently from the frictionless case, wx ≥ 1 because the position of the specialists in the risky
asset is leveraged. This implies that the share of the risky asset in the portfolio of the specialists,
is constrained to be smaller or equal to one: η(t) ∈ (0, 1].   There is also a relationship between
the Sharpe ratio and η, at equilibrium,

X(t) =
µ̃s(t)− r(t)

σs(t)
= γ

σs(t)

η(t)
, (33)

  which means that it depends on the share of specialists in the aggregate net worth.
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3.2.3 Leverage

 
The leverage of this economy can be measured by the weight of bonds in the balance-sheet of

non-particpating households relative to the stock of risky assets, in the balance-sheet of participating
households. Then, as

ℓ(t) = −Bx(t)

S(t)
=

Bh(t)

S(t)
=

Nh(t)

N(t)
= 1− η(t)

then η measures implicitly the degree of leverage of the economy: the higher η is the smaller the
degree of leverage is.

3.2.4 Dividend-price ratio in equilibrium

The aggregate consumption, using the consumption optimality conditions, equations (27) and (29),
and the definition of η, is

C(t) = Ch(t) + Cx(t) =

= θh(t)Nh(t) + θx(t)Nx(t) =

=
(
θh(t)η(t) + θx(t)(1− η(t)

)
N(t).

  The good’s market clearing condition is C(t) = D(t) leads to

D(t) =
(
θh(t)η(t) + θx(t)(1− η(t)

)
N(t).

 
Recalling the definition of the price dividend ratio q(t)D(t) = S(t) and because S(t) = N(t) at

the equilibrium, then (
θh(t)η(t) + θx(t)(1− η(t)

)
N(t) = D(t) =

N(t)

q(t)
,

  which implies (
θh(t)η(t) + θx(t)(1− η(t)

)
q(t) = 1.

This condition compares with an analogous constraint for the frictionless finance economy in the
last section where θ(t) q(t) = 1.

Substituting θh(t) and θx(t), from equations (27) and (29), this is equivalent to[
ρ+ (γ − 1)

(
r(t) + η(t)

1

2γ

(
µ̃s(t)− r(t)

σs(t)

)2 )]
q(t) = γ,
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  and, from equation (33), the dividend-price ratio in equilibrium is a function of the share of
participants in total wealth

1

q(t)
=

1

γ

{
ρ+ (γ − 1)

(
r(t) +

1

2γ

(
γ σs(t)

)2( 1

η(t)

))}
. (34)

  If we compare with the analogous equation for the frictionless economy, in equation (21), we see
that the wealth distribution variable has an influence in the way volatility is transmitted to the
dividend-price ratio.

3.2.5 Dynamics of N

The aggregate net wealth change is dN(t) = dNh(t)+dNx(t). Then, from equations (28), (31) and
(33)

dN(t)

N(t)
= (1− η(t))

dNh(t)

Nh(t)
+ η(t)

dNx(t)

Nx(t)

= µs(t)dt+ σs(t)dW (t).

  The drift for the rate of return of the risky asset (see equation (14) for the process followed by
the return of the risky asset) in equilibrium

µs(t) = µ̃s(t)−
1

q(t)
=

1

γ

[
r(t)− ρ+ γ

(
1 + γ

2

)
(σs(t))

2

η(t)

]
, (35)

depends on the rate of interest r(t), the volatility σs(t), and the asset distribution η(t).
This allows us to obtain the dynamics for the share of the specialists on total wealth, η, and a

dynamic equation for the equity price ratio, q, which can be seen as two state variables driving the
equilibrium rates of return.

3.2.6 Dynamics of η

As η(t) = 1− Nh(t)

N(t)
then, using Itô’s formula

dη(t) = −Nh(t)

N(t)

[
dNh(t)

Nh(t)
− dN(t)

N(t)
+

(
dN(t)

N(t)

)2
]
=

= −(1− η(t))

[(
r(t)− ρ

γ

)
dt− (µs(t)dt+ σs(t)dW (t)) + (σs(t))

2dt

]
=

= −(1− η(t))

[(
r(t)− ρ

γ
− µs(t) + (σs(t))

2

)
dt+ σs(t)dW (t)

]
.
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Substituting the drift of the risky asset price process, in equation (35), we obtain the equation for
the dynamics of the wealth distribution

dη(t) = (1− η(t))

[
(σs(t))

2

η(t)

(
1 + γ

2
− η(t)

)
dt+ σs(t)dW (t)

]
. (36)

This equation can be written as a diffusion process

dη(t) = (1− η(t)) [µη(t, η(t))dt+ σs(t)dW (t)] , (37)

  where the drift component,

µη(η) ≡
(σs)

2

η

(
1 + γ

2
− η

)
,

  is negatively related to η if γ ≥ 1.

3.2.7 Dynamics of q

The dividend-price ratio, 1/q(t), also follows a diffusion process. Applying Itô’s formula, to 1/q(t) =

D(t)/N(t), we get

d

(
1

q(t)

)
=

dD(t)

N(t)
− D(t)

N(t)

dN(t)

N(t)
− dD(t)

N(t)

dN(t)

N(t)
+

D(t)

N(t)

(
dN(t)

N(t)

)2

=

=
D(t)

N(t)

{
dD(t)

D(t)
− dN(t)

N(t)
− dD(t)

D(t)

dN(t)

N(t)
+

(
dN(t)

N(t)

)2
}

=

=
1

q(t)

{
gdt+ σdW (t)− µs(t)dt− σs(t)dW (t)− σσs(t)dt+ (σs(t))

2dt
}
.

  Therefore, the dividend-price ratio also follows a diffusion process

d

(
1

q(t)

)
=

1

q(t)
{µq(t)dt+ σqdW (t)} (38)

where

µq(t) = g +
ρ− r(t)

γ
−
(
1 + γ

2

)
(σs(t))

2

η(t)
+ σs(t) (σs(t)− σ)

σq(t) = σ − σs(t)

  From the last equation we find that the net-wealth volatility can have two components

σs(t) = σ + σq(t)

  where the first is a fundamental (exogenous) component and the second is an endogenous
component.
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3.2.8 Equilibrium interest rate and volatility

  In equation (34) we find there is a contemporaneous relationship between the dividend-price
ratio and the distributional of wealth η. Taking derivatives of equation (34), and observing that
dr(t) = r(t)dt and dσs(t) = σs(t)dt, we find

d

(
1

q(t)

)
=

[(
γ − 1

γ

)
r(t) + (γ − 1) (σs(t))

2

(
1

η(t)

)]
dt+

(
γ − 1

2

)
(σs(t))

2d

(
1

η(t)

)
.

  Matching the drift and diffusion terms of this equation and equation (38)  yields a non-linear
equation system in req(t) and σeq

s (t)
µq (r(t), σs(t), η(t)) =

(
γ − 1

γ

)
r(t) + (γ − 1) (σs(t))

2

(
1

η(t)

)
+

(
γ − 1

2

)
(σs(t))

2(1− η(t))µη(t, η(t))

σq (σs(t)) = −
(
γ − 1

2

)
(1− η(t))(σs(t))

3.

(39)
  This system does not seem to have closed form solution. However, in the general case, of an
isoelastic utility function, the risk-free interest rate and the asset return volatility depend on the
distribution of net wealth. This distinguishes this economy from the frictionless case.

3.3 Risk aversion and endogenous risk

As the solution clearly depends on the degree of risk aversion, let us consider first the benchmark
case of a logarithmic utility function, i.e., γ = 1.

3.3.1 The logarithmic case

Setting γ = 1 in system (39), we find that the price dividend ratio is stationary

q(t) =
1

ρ
, for any t ∈ [0,∞).

  Therefore, there is no endogenous risk, that is σeq
s (t) = σ and the rate of return of the risky

asset follows the process
drs,eq(t) = (g + ρ) dt+ σdW (t), (40)

  which is the same process as for the frictionless economy (see equation (26)).
The interest rate of debt contracts is positively correlated with the distribution of wealth pa-

rameter, η

req(t) = ρ+ g − σ2

η(t)
, (41)



Paulo Brito Advanced Macroeconomics 2022/2023 28

  meaning that if η is low the demand for leverage by the participants is high. This exerts an
upward pressure on the risk free interest rate, because of the dynamics of η. Substituting γ = 1 in
equation (37) we determine the process followed by the wealth distribution:

dη(t)

η(t)
=

(
1− η(t)

η(t)

)2

σ2dt+

(
1− η(t)

η(t)

)
σdW (t). (42)

 
Figure 4 illustrates one sample path for η, in the upper left subfigure, and one hundred sample

paths, in the upper right subfigure. In the lower subfigure we substitute the first sample in equation
(41) to obtain a sample path for the rate of return of the risk free asset. Although it looks as random,
the effect of uncertainty is contemporaneous (as if it were a random variable) and not dynamic as
in the equilibrium process for the rate of return of the risk free asset in equation (40). This is the
case because the instantaneous change of the wealth distribution is associated to a random change
in the demand for risk free bounds to which the rate of interest responds contemporaneously

In Figure 4 we see that the interest rate η converges asymptotically to one. In fact η = 1, if we
look at equation (42) we see that the skeleton (i.e., the diffusion part) has η = 1 as a steady state.
This steady state is an absorbing state because

d

dη

(
1− η

η

)2

< 0

  if 0 < η < 1. This means that, asymptotically, all financial wealth will be concentrated on the
specialists. This result can be changed if we introduced labor and human capital which would
imply that the non-specialists would have positive total wealth. In this case the net wealth of the
financially limited agents will converge to their human wealth.

The main difference from the non-financially constrained economy is that the short run in-
terest rate responds to the leverage of the economy, i.e, to 1−η: we see that the the lower
the interest rate the higher instantaneous leverage. This process discourages further loans
from the financially constrained households, which drives up the interest rate and reduces leverage.

3.3.2 Higher risk aversion

In a scenario with higher risk aversion, that is with γ > 1, we would have to solve system (39) in
order to obtain the equilibrium expressions for r(t) and σs(t). It does not seem to have a closed
form solution.

However, we can determine the volatility of the risky asset, σs, from the second equation

σq
q

=
σs − σ

q
=

(
γ − 1

2

)
(1− η)(σs)

3. (43)



Paulo Brito Advanced Macroeconomics 2022/2023 29
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Figure 4: The limited participation model: logarithmic utility
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  We readily see that it is higher than the fundamental volatility, that is σs ≥ σ, for 0 < η ≤ 1,
meaning that when agents are highly risk averse the existence of limited participation generates
endogenous volatility and that this volatility is a function of the asset distribution. In equation (43)
we readily see that asset volatility is positively related to leverage  ( if we set σs = σs(η)

we have σ
′
s(η) < 0). This means that:

• if the leverage ratio is low, i.e., η is close to one, then the endogenous component of volatility
will be low and the volatility of the risky asset will approach the fundamental volatility;

• if the leverage ratio is high, i.e., η is close to zero, the endogenous component of volatility is
high and the volatility of the risky asset will be higher than the fundamental volatility.

4 Technological illiquidity frictions

In this section we present a version of a model presented in Brunnermeier and Sannikov (2016)
in which there are, in the words of those authors, technological illiquidity. In this model the
dividends’ process and the capital accumulation processes are endogeneized (following a model
by Bernanke et al. (1999)) with two assumptions: (1) the production function displays constant
returns to scale; and (2) there are adjustments costs in investment having a convex deterministic
component and a linear stochastic component. The last assumption is the source of technological
illiquidity.

We first consider the frictionless financial markets version and then present the limited market
participation version. In order to isolate the source of market volatility generated by technologic
liquidity we assume that preferences and information are homogeneous and the utility function is
logarithmic.

4.1 Unrestricted market participation

There are two dimensions of the technology in this economy: first, the production function displays
constant returns to scale, Y (t) = AK(t); second, the investment technology involves adjustment
costs taking the form convex costs for installing capital. In particular, we assume that investment
expenditures, I(t) = ι(t)K(t), generate a deterministic increase in gross capital Φ(ι)K(t), where
Φ(0) = 0, Φ′′

(ι) < 0 < Φ
′
(ι), and have a random component, capturing fundamental uncertainties

in the investment process.
The capital accumulation equation follows the diffusion equation, featuring stochastic adjust-

ment costs in investment,
dK(t)

K(t)
= (Φ(ι(t))− δ) dt+ σdW (t)
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  where δ is the depreciation rate. We denote µk(t) = Φ(ι(t))− δ and σk = σ.
Investment in physical capital generates a dividend, which is equal to output subtracted by the

investment expenditures,
D(t) = (A− ι(t))K(t).

  Denoting the asset value of the firm by S(t), the return for holding the capital of the firm is the
sum of the changes in capital gains and dividends

drs(t) =
dS(t)

S(t)
+

D(t)

S(t)
dt.

  Writing the balance-sheet condition S(t) = q(t)K(t), where q is called Tobin’s q, the return for
holding the capital is

drs(t) =
d (q(t)K(t))

q(t)K(t)
+

D(t)

q(t)K(t)
dt.

  We conjecture  that the relative price of capital q(t) is driven by a diffusion process

dq(t)

q(t)
= µq(t)dt+ σq(t)dW (t)

  where µq(t) and σq(t) are to be determined in equilibrium.
If this conjecture is right, the capital gains dynamics is driven by the equation, after applying

Itô’s formula,

d (q(t)K(t))

q(t)K(t)
=
(
µq(t) + µk(t) + σq(t)σk(t)

)
dt+

(
σq(t) + σk(t)

)
dW (t)

=
(
µq(t) + Φ(ι(t))− δ + σq(t)σ

)
dt+

(
σq(t) + σ

)
dW (t)

  where σ represents fundamental, exogenous, volatility and σq is the endogenous volatility com-
ponent.

At last, we obtain the process followed by the rate of return from investment in the risky asset

drs(t) = [d(q(t), ι(t)) + Φ(ι(t))− δ + σq(t)σ + µq(t)] dt+ (σq(t) + σ) dW (t). (44)

where the dividend-price ratio
d(q(t), ι(t)) ≡ A− ι(t)

q(t)

  is a negative function of both the relative price of capital and the investment rate.
Using our previous notation, this is equivalent to

drs(t) = µ̃s(t)dt+ σs(t)dW (t),
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  where

µ̃s(t) = d(q(t), ι(t)) + Φ(ι(t))− δ + µq(t) + σq(t)σ

σs(t) = σq(t) + σ

 
If we assume that there is no heterogeneity and no financial frictions, this return is received by

the representative household which own the firms, and has the balance sheet constraint

B(t) + q(t)K(t) = N(t),

  where B(t) is the household stock of risk-free assets and N(t) is the household net wealth.

Definition 4. General equilibrium Is defined by the allocations (Ceq(t), ieq(t), Beq(t),Keq(t))t∈R+

and the returns (req(t), rs,eq(t))t∈R+ such that, given the aggregate risk process (W (t))t∈R+:

1. the representative household solves its problem, that is, it maximizes the utility functional (2)
subject to the instantaneous budget constraint (15), given the asset income processes;

2. the representative firm maximizes its profits π(ι) = qΦ(ι)− ι, at every point in time;

3. markets clear: Ceq(t) + Ieq(t) = Y (t), Beq(t) = 0, and Seq(t) = N eq(t), at every time and
state of nature. 

4.1.1 Households’ optimality

If we assume a logarithmic utility function, the households’ problem is

max
C(·),w(·)

E0

[ ∫ ∞

0
ln (C(t)) e−ρtdt

]
subject to

dN(t) = N(t)

(
(1− w(t)) r(t) dt+ w(t) (µ̃s(t)dt+ σs(t)dW (t))

)
− C(t)dt

N(0) = n0 given.

(45)

The optimality condition for the household is proportional to net wealth

C(t) = ρN(t), (46)

  and the demand for the two assets is B(t) = (1− w(t))N(t) and S(t) = w(t)N(t), where

w(t) =

(
µ̃s(t)− r(t)

(σs(t))2

)
=

X(t)

σs(t)
. (47)
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As in the previous model the net wealth dynamics is driven by a diffusion process

dN(t)

N(t)
= µn(t)dt+ σn(t)dW (t) (48)

where

µn = r − ρ+

(
µ̃s − r

σs

)2

σn =
µ̃s − r

σs
.

 

4.1.2 Firm’ optimality

Firm’s problem is to maximize profits by choosing investment ι. As firm’s profit is

π(ι) = qΦ(ι)− ι,

  then the optimum investment condition is

qΦ
′
(i) = 1.

  From the implicit function theorem, investment is an increasing function of the relative price of
capital,

ι(t) = Ψ(q(t)), Ψ
′
(q) > 0.

  This implies that the dividend-price ratio is decreasing with q, D

S
= d̂(q) = d(q,Ψ(q)), for

d̂
′
(q) < 0.

4.1.3 The equilibrium in asset markets

The aggregation and market equilibrium for the risk free asset, Beq(t) = 0, and N eq(t) = Seq(t) =

qeq(t)Keq(t)  implies
weq =

q(t)K(t)

N(t)
= 1.

There are two implications: first
q(t)K(t) = N(t) (49)

and
µ̃s(t) = r(t) + (σs(t))

2. (50)
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4.1.4 Good’s market equilibrium

The goods’ market equilibrium condition, is

AK(t) = C(t) + ι(t)K(t).

  As at the equilibrium C(t) = ρ q(t)K(t), then A = ρ q(t) + ι(t). Therefore, the equilibrium
dividend per unit of capital is equal to the rate of time preference,

d̂(q) = ρ.

 
This condition together with the optimality condition for firms yield a system of two equations

in (q, ι), ρ q + ι = A

qΦ
′
(ι) = 1

(51)

which has an unique solution for q and ι, q̄ = q̄(A, ρ) and ῑ = ῑ(A, ρ), both positively related to
productivity and negatively related to the rate of time preference 6.

4.1.5 Finding the equilibrium rate of return

As the price of capital, and the investment rate, is stationary at the equilibrium we obtain µeq
q =

σeq
q = 0. Therefore

d (q(t)K(t))

q(t)K(t)
= (Φ (ῑ(A, ρ))− δ) dt+ σdW (t).

 
The dynamics for the net wealth, from the solution of the household problem is

dN(t)

N(t)
=
(
r(t)− ρ+ (σs(t))

2
)
dt+ σs(t)dW (t).

  From the market equilibrium condition (49) we should have

d (q(t)K(t))

q(t)K(t)
=

dN(t)

N(t)
.

  Matching the two equations allows us to find the equilibrium asset return volatility, σs(t) = σ,
and equilibrium risk-free interest rate

req(t) = ρ+R(A, ρ)− σ2. (52)
6To see this take the total differential to the second equation: dqΦ

′
(ι) + qΦ

′′
(ι)dι = 0. Because Φ(.) is increasing

and concave then this equation features a positive relation between q and ι. As the other equation features a negative
relation, therefore the system has one unique and positive solution.
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  where the net rate of return on capital is

R(A, ρ) ≡ Φ(ῑ(A, ρ))− δ.

 
Because RA =

∂R

∂A
> 0 this means that an increase in productivity will increase the risk-free

interest rate. Substituting in equation (50) we determine the equilibrium process for the rate of
return for capital

dreqs (t) = µ̃eq
s dt+ σeq

s dW (t) = (ρ+R(A, ρ)) dt+ σdW (t), (53)

 
Furthermore, the equilibrium rate of growth of aggregate net wealth is N(t) = q̄(A, ρ)K(t),

dN eq(t)

N eq(t)
= (R(A, ρ)− ρ) dt+ σdW (t)

  
The rate of growth increases with the productivity, and, again the uncertainty is driven by the

fundamentals.

4.2 Limited asset market participation

Now the balance sheet constraints are: for households Bh(t) = Nh(t) and for specialists S(t) +

Bx(t) = Nx(t), where S(t) = q(t)K(t). The aggregate net wealth is N(t) = Nh(t) +Nx(t).
Again we denote the weight of specialists on the aggregate wealth by η(t) = Nx(t)/N(t).
Assuming again that the risk-free asset is in zero net supply the market equilibrium condition

is Bh(t) + Bx(t) = 0. Consolidating the accounts and using this market equilibrium condition we
obtain again S(t) = q(t)K(t) = N(t).

The good’s market equilibrium condition is

AK(t) = C(t) + ι(t)K(t)

  where aggregate consumption is

C(t) = Ch(t) + Cx(t) = ρ(Nh(t) +Nx(t)) = ρN(t) = ρ q(t)K(t).

  assuming again a logarithmic utility function.
Therefore, we have again

A− ι(t) = ρ q(t).
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  This equation together with the optimality condition for investment by the firm, q(t)Φ′
(ι(t)) = 1,

implies that both q and ι are constant as in the previous section, and functions of (A, ρ), q = q̄(A, ρ)

and ι = ῑ(A, ρ).
This implies that the equilibrium value of capital follows the process

d (q(t)K(t))

q(t)K(t)
= (Φ (ῑ(A, ρ))− δ) dt+ σdW (t) = R(A, ρ)dt+ σdW (t).

  In order to derive the equilibrium dynamics for the aggregate demand of risky assets, which
satisfies S(t) = N(t) = Nh(t) +Nx(t), we have

dN(t) = dNh(t) + dNx(t) =

= Nh(t)(r(t)− ρ)dt+Nx(t)

(
r(t)− ρ+

(
µ̃s(t)− r(t)

σs(t)

)2

+
µ̃s(t)− r(t)

σs(t)
dW (t)

)
=

= N(t)

[(
r(t)− ρ+ η(t)

(
µ̃s(t)− r(t)

σs(t)

)2
)
dt+ η(t)

(
µ̃s(t)− r(t)

σs(t)

)
dW (t)

]
=

= N(t)

[(
r(t)− ρ+

(σs(t))
2

η(t)

)
dt+ σs(t)dW (t)

]
 

Matching again the two diffusion processes, because at the equilibrium N(t) = q(t)K(t), we
find σeq

s (t) = σ and

req(t) = ρ+R(A, ρ)− σ2

η(t)

  the process for the return of the risky asset is the same as in equation (53), and is independent
from the distribution of wealth, η

The risk-free interest rate is, as in the model in section 3. We also find that the dynamics for
the wealth distribution is driven by the equation

dη(t)

η(t)
=

(
1− η(t)

η(t)
σ

)2

dt+

(
1− η(t)

η(t)
σ

)
dW (t).

 

5 Other frictions

The models we have presented are very simple. Most models do not display endogenous risk, with
the exception of the model in which there is limited participation and non logarithmic preferences.

In order to obtain richer dynamics other type of frictions can be introduced. Most of the
frictions are generated by some sort of discontinuity. But the number of frictions considered in the
literature is huge.
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Brunnermeier and Sannikov (2014) consider a model in which both households and specialists
invest in two assets, risky and riskless, and there is some sort of heterogeneity affecting the rate of
return of the risky capital (µ̃s and/or σs). If there are no more requirements on structure of the
balance sheet of the agents, the model will display results similar to those in section 4. However,
if there is a requirement that the specialists keep a higher share of investment in equity and the
non-specialists are constrained to lend in the risk-free markets, this introduces another mechanism
for the share of wealth η affecting the volatility σs away from the fundamentals.

Kiyotaki and Moore (1997) consider a case in which loans to firms, because of asymmetries of
information, require a collateral. This means that loans cannot be higher than a given proportion of
net wealth, v.g Bh(t) ≤ κNx(t). This generates an amplification mechanism contracting investment
when asset prices are depressed.

He and Krishnamurty (2012) and He and Krishnamurty (2013) assume that households do not
invest directly in the risky asset but invest through an intermediary. This generates an agency
problem because households and intermediaries have asymmetric information regarding the market
conditions for risky assets. In order to secure financing from households, via risk-free assets, the
intermediary has to consider incentive compatible contracts with the household. In depressed
markets for the risky asset, the intermediary may be constrained from investing in the risky asset
because it should satisfy the incentive compatibility constraint for securing financing from the
households.
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Appendix

A Arrow-Debreu equilibrium

Given the assumptions on boundedness we can form the Lagrangean

L = E0

[∫ ∞

0

(
u(C(t))e−ρt + λM(t)(Y (t)− C(t))

)
dt

]
where λ is a constant. The f.o.c are

u
′
(c(t, ω))e−ρt = λm(t, ω), for each (t, ω(t)) ∈ R+ ×Ft.

As, at time t = 0 we have u
′
(c(0)) = λ, where consumption is deterministic, which allows us to

determine λ. Then we can write
u

′
(c(t, ω))

u′(c(0))
= eρtm(t, ω), for each (t, ω(t)) ∈ R+ ×Ft.

The market clearing condition i satisfied, if we have demand equal supply for every time and state
of nature. That is , ceq(t, ω) = y(t, ω) for each (t, ω(t)) ∈ R+×Ft. Therefore, we get equilibrium
stochastic discount factor  for any state of nature

meq(t, ω) = e−ρtu
′
(y(t, ω))

u′(y(0))
, for each (t, ω) ∈ R+ ×Ft.

  or, equivalently, M eq(t) = e−ρtu
′
(Y (t))

u′(y(0))
for every t ∈ R+. This proves equation (7). 

To derive equation (8) we write m = f(t, y). Observing that Y follows the stochastic differential
equation (1) and

ft(t, y) = −ρm,

fy(t, y) = −m
u′′(y)

u′(y)
= −m

rr(y)

y
,

fyy(t, y) = m
(u′′′(y)
u′(y)

)
= m

rr(y)

y
,
πr(y)

y

where rr(·) and  πr(·) are the coefficients of relative risk aversion and prudence, respectively. From
Itô’s lemma

dM = ft(t, Y )dt+ fy(t, Y )dY +
1

2
fyy(t, Y )(dY )2

=
(
ft(t, Y ) + fy(t, Y ) g Y +

1

2
fyy(t, Y )

(
σ Y
)2)

dt+ fy(t, Y )σ Y dW

=
(
− ρM −M rr(Y ) g +

1

2
M r(y)πr(Y )σ2

)
dt−M rr(Y )σ dW,

yielding equation (8).
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B Solving the representative household problem in a finance econ-
omy

Here we consider the representative household problem in a finance economy, when it participates
in all the financial markets and chooses consumption and its financial portfolio to maximize an
intertemporal utility functional,

max
c,w

E0

[∫ ∞

0
u(C(t))e−ρtdt

]
(54)

subject to the instantaneous budget constraint, in its differential representation,

dN(t) = {[r(t)(1− w(t)) + µs(t)w(t)]N(t) + y(t)− c(t)} dt+ w(t)σs(t)N(t)dW (t). (55)

where N(0) = n0 is given and N(.) is bounded, v.g., limt→∞N(t) ≥ 0. This is a stochastic
optimal control problem with infinite horizon, and two control variables. There are three different
methods to solve this problem: (1) dynamic programming; (2) stochastic control; and (3) martingale
methods.

B.1 Solution by the principle of dynamic programming

Next we solve it by using the principle of dynamic programming (see Fleming and Rishel (1975) or
Seierstad (2009)). This is the most common method of solution.

Let the realization at an arbitrary time t of the stochastic processes for consumption, non-
financial income, portfolio weights, and net financial wealth be C(t) = c, Y (t) = y, w(t) = w, and
N(t) = n. We use the same notation for the rate of return processes: r(t) = r, µs(t) = µs and
σs(t) = σs.

The Hamilton-Jacobi-Bellman equation is a second order ODE in implicit form, for the value
function V (n),

ρV (n) = max
c,w

{
u(c) + V ′(n)[(r(1− w) + µsw)n+ y − c] +

1

2
w2n2(σs)

2V ′′(n)

}
. (56)

The policy functions for consumption and portfolio composition, c∗ and w∗, are obtained from the
equations

u′(c∗) = V ′(n), (57)

w∗ =
1

rr(n)

(
µs − r

(σs)2

)
(58)

where
rr(n) = −v′′(n)n

v′(n)
, πr(n) = −v′′′(n)n

v′′(n)
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  are the coefficients of relative risk aversion and prudence for the value function, and µs − r

σs
is

the Sharpe index.

We obtain an explicit solution to the problem, if the utility function is isoelastic u(c) = c1−γ − 1

1− γ
.

In this case we conjecture that the solution for equation (56) is of the form

V (n) = x

(
A(n)1−γ + β

1− γ

)
where x and β are unknown constants, and

A(n) =
y

r
+ n.

  If the agent does not receive a non-financial income then y = 0 and A(n) = n, as in the frictionless
finance economy in subsection 2.3.  In both cases note that A′(n) = 1.

If the conjecture is correct, then V ′(n) = x(A(n))−γ , V ′′(n) = −xγ(A(n))−(1+γ), and V ′′′(n) =

xγ(1 + γ)(A(n))−(2+γ), and the coefficient of relative risk aversion is

rr(n) =
γ n

A(n)
.

  Therefore, the optimal policy functions for consumption is

c∗ = x
− 1

γA(n)

  and for the weight of the risky asset on net wealth is

w∗ =

(
µs − r

(σs)2

)
A(n)

γn
. (59)

Substituting the trial function for v(n) and optimal policies in the HJB equation (56), after
some algebra yields

1 + ρ β x

1− γ
= xA(n)1−γ

( ρ

γ − 1
+ r +

1

2 γ

(µs − r

σs

)2
+

γ

1− γ
x
− 1

γ

)
Setting to zero both sides of the equation, by solving to β the left hand side and to x the right
hand side, we obtain

x =

{
ρ

γ
+

(
γ − 1

γ

)[
r +

1

2γ

(
µs − r

σs

)2
]}−γ

,

and xβ = −1
ρ . Therefore,

v(n) =

{
ρ

γ
+

(
γ − 1

γ

)[
r +

1

2γ

(
µs − r

σs

)2
]}−γ (A(n)1−γ

1− γ
− 1

ρ (1− γ)

)
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   Therefore, the optimal policy for consumption, is obtained by substituting x, yielding

C∗ =

{
ρ

γ
+

(
γ − 1

γ

)[
r +

1

2γ

(
µs − r

σs

)2
]}

A(N). (60)

  Therefore, the SDE for the optimal new wealth becomes, after substituting optimal consumption
and portfolio policies, equations (60) and (59), in the budget constraint (55)

dN∗ =
A(N)

γ

{[
r − ρ+

(1 + γ)

2γ

(
µs − r

σs

)2
]
dt+

(
µs − r

σs

)
dW (t)

}
(61)

 
In the case of a logarithmic utility function we have:

w∗ =

(
µs − r

σ2
s

)
A(N)

N
(62a)

C∗ = ρA(N(t)) (62b)

dN∗ = A(N)

{[
r − ρ+

(
µs − r

σs

)2
]
dt+

(
µs − r

σs

)
dW (t)

}
(62c)

If the agent does not receive non-financial income and has a logarithmic utility function the
solution simplifies to

w∗ =

(
µs − r

σ2
s

)
(63a)

C∗ = ρN(t) (63b)

dN∗ = N(t)

{[
r − ρ+

(
µs − r

σs

)2
]
dt+

(
µs − r

σs

)
dW (t)

}
(63c)

 
References: Merton (1971), Merton (1990), Duffie (2001) and (Cvitanić and Zapatero, 2004,

p. 395-398).

B.2 Solution by the stochastic Pontriyagin maximum principle

Next we consider again the problem of maximizing the intertemporal utility functional (54) subject
to the stochastic differential equation (55) where we assume there is no non-financial income, that
is Y (t) = 0.

In this case there are two control variables, C and w, but one control variable, w, affects the
volatility term. Because of the last fact we have to introduce two dynamic adjoint functions p and
P and two static ones, q and Q.
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The adjoint equations aredp(t) = − [(r + (µ− r)w(t)) p(t) + σw(t)q(t)] dt+ q(t)dW (t)

limt→∞ p(t) = 0

  anddP (t) = −
[
2 (r + (µ− r)w(t))P (t) + (σw(t))2P (t) + 2σw(t)Q(t)

]
dt+Q(t)dW (t)

limt→∞ P (t) = 0.

  To find the optimal controls we write the generalized Hamiltonian

G(t,N,C,w, p, P ) = e−ρtC
1−γ

1− γ
+ p [ (r + (µ− r)w)N − C] +

1

2
σ2w2N2P

  and
H(t,N,C,w) = G(t,N,C,w, p, P ) + σwN (q − Pσw∗N) .

  The optimal controls, C∗ and w∗ are found by maximizing function H(t,N,C,w) for C and w.
Therefore, we find

C∗(t) = e
− ρ

γ
t
p(t)

− 1
γ (64)

  and the condition

p(t)(µ− r)N∗(t) + w∗(t)σ2N∗(t)2P (t) + σN∗(t) (q(t)− σw∗(t)N∗(t)P (t)) = 0

  which is equivalent to p(t)(µ− r)N∗(t) + σq(t)N∗(t) = 0. Therefore we find

q(t) = −p(t)

(
µ− r

σ

)
,

  and, substituting in the adjoint equation,

dp(t) = −p(t)

(
rdt+

(
µ− r

σ

)
dW (t)

)
.

  Observe that the structure of the model is such that the shadow value of volatility functions P

and Q have no effect in the shadow value functions associated with the drift component p and q,
which simplifies the solution.

Applying the Itô’s formula to consumption (64), and using this expression for the adjoint vari-
able q, we find

dC(t) = −ρ

γ
C(t)dt− C(t)

γp(t)
dp(t) +

(1 + γ)

γ

C(t)

p2(t)
(dp(t))2 =

= −ρC(t)

γ
dt+

C(t)

γ

(
rdt+

(
µ− r

σ

)
dW (t)

)
+ C(t)

(1 + γ)

2γ

(
µ− r

σ

)2

dt =

=
C(t)

γ

{(
r − ρ+

(1 + γ)

2

(
µ− r

σ

)2
)
dt+

(
µ− r

σ

)
dW (t)

}
.
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  Now, we conjecture that consumption is a linear function of net wealth C = θN . If this is the
case this would allow us to obtain the optimal portfolio composition w∗. If the conjecture is right
then we will also have

dC(t) = θdN(t)

= θN(t) [ (r + (µ− r)w − ξ) dt+ σwdW (t)]

= C(t) [ (r + (µ− r)w − ξ) dt+ σwdW (t)]

  This can only be consistent with the previous derivation if
1

γ

[
r − ρ+

(1 + γ)

2

(
µ− r

σ

)2
]

= r + (µ− r)w − θ

1

γ

(
µ− r

σ

)
= σw

  Solving for θ and w we obtain the optimal controls

θ =
1

γ

[
ρ+ (γ − 1)

(
r +

1

2γ

(
µ̃s − r

σs

)2
)]

w∗ =
1

γ

(
µ− r

σ2

)
  Substituting in the budget constraint we have the optimal net wealth process

dN∗(t)

N∗(t)
= µndt+ σndW (t)

  where

µn =
1

γ

[
r − ρ+

(1 + γ)

2γ

(
µ− r

σ

)2
)

(65)

σn =
1

γ

(
µ− r

σ

)
(66)

which can be explicitly solved with the initial condition N∗(0) = n0. We also find that

dC∗(t)

C∗(t)
= µndt+ σndW (t)

  the rates of return for consumption and wealth are perfectly correlated.
References (Yong and Zhou, 1999, chap. 3)
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B.3 Solution by martingale representation methods

Suppose there is financial market with two assets, one risk-free asset with value B and one risky
asset with value S following the processes {(B(t), S(t)), t ≥ 0} represented by

dB(t) = r(t)B(t)dt, B(0) = 1

dS(t) = µs(t)S(t)dt+ S(t)σs(t)dW (t), S(0) = S0.

Then asset 1 is risk-free and asset 2 is risky.
We can show that e−

∫ t
0 r(s)dsS(t) can be converted into a martingale. Applying the Itô’s

lemma we get

d
[
e−

∫ t
0 r(s)dsS(t)

]
= S(t)d

[
e−

∫ t
0 r(s)ds

]
+ e−

∫ t
0 r(s)dsdS(t)

= e−
∫ t
0 r(s)ds

[
− r(t)S(t)dt+ µs(t)S(t)dt+ σs(t)S(t)dW (t)

]
= e−

∫ t
0 r(s)ds

[
(µs(t)− r(t))S(t)dt+ σs(t)S(t)dW (t)

]
.

If , in general µs(t) ̸= r(t) then e−
∫ t
0 r(s)dsS(t) is not a martingale, with the initial probability

distribution P . That is EP
[
d
[
e−

∫ t
0 r(s)dsS(t)

]]
̸= 0

From the Girsanov theorem, we can find a Ft-adapted process Xt and a new Wiener process
W̃ (t) with probability measure Q and with density ξt relative to P , such that

dP (t) = ξ(t)dQ(t)

i.e., for which
ξ(t) = e

∫ t
0 X(s)dW (s)− 1

2

∫ t
0 X(s)2ds

with
∫ t
0 X(s)2ds < ∞, is a martingale. The new process is defined as

dW (t) = dW̃ (t)−X(t)dt.

Applying that result we get

d[e−
∫ t
0 r(s)dsS(t)] = e−

∫ t
0 r(s)ds

[
(µs(t)− r(t))S(t)dt+ σs(t)S(t)dW (t)

]
= e−

∫ t
0 r(s)ds

[
(µs(t)− r(t))S(t)dt+ σs(t)S(t)

(
dW̃ (t)−X(t) dt

)]
= e−

∫ t
0 r(s)ds

{[
µs(t)− r(t)− σs(t)X(t)

]
S(t) dt+ σs(t)S(t) dW̃ (t)

}
= e−

∫ t
0 r(s)dsσs(t)S(t)dW̃ (t).

Then EQ
[
d
[
e−

∫ t
0 r(s)dsS(t)

]]
= 0 if and only if

X(t) =
µs(t)− r(t)

σs(t)
.
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This process is called market price of risk.
For convenience, we rewrite the instantaneous budget constraint

dN(t) =

{[
r(t)(1− w(t)) + µs(t)w(t)

]
N(t) + Y (t)− C(t)

}
dt+ w(t)σs(t)N(t)dW (t),

and N(0) = N0 and assume that Y (t) follows equation (1) .
Consider the process

dM(t) = −X(t)M(t)dW (t)

also called in the literature the state density process, where X(t) is the market price of risk. The
process

M(t) = e−
∫ t
0 r(s)dsM(t)

is called the state density deflator. Using the Itô’s lemma (prove this) it has the differential
representation

dM(t) = −M(t) (r(t)dt+X(t)dW (t)) .

Now consider the deflated value of wealth defined as

Z(t) = M(t)N(t)

which is a Ft-measurable. By using the Itô’s lemma its differential representation is 7

dZ(t) = Z(t)[σs(t)w(t)−X(t)]dW (t) +M(t)(Y (t)− C(t))dt

then
Z(T ) = Z(t) +

∫ T

t
M(s)(Y (s)− C(s))ds+

∫ T

t
Z(s)[σs(s)w(s)−X(s)]dW (s)

Under certain conditions, a self-financing strategy holds, i.e,

Et[Z(T )] = Z(t) + Et

[∫ T

t
M(s)(Y (s)− C(s))ds

]
If we set t = 0 and take T = ∞ and assume that there are no bubbles

E0[ lim
t→∞

M(t)N(t)] = N0

7Exercise: prove this result by using the following version of the Itô’s lemma: for y = f(x1, x2)

dy =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

1

2

∂2f

∂x2
1

(dx1)
2 +

1

2

∂2f

∂x2
2

(dx2)
2 +

∂2f

∂x1∂x2
dx1dx2.
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then we get the intertemporal budget constraint as

E0

[∫ ∞

0
M(s)(Y (s)− C(s))ds

]
= 0

which is formally identical to the restriction for the consumer problem in the Arrow-Debreu econ-
omy. This means that the state price deflactor and the stochastic discount factor are equal.

An equivalent result would be obtained if the the household chose

w(t) =
X(t)

σs(t)
,

  which is the solution obtained by the other two methods.
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