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1 Introduction

This lecture note is dedicated to the household problem from the perspective of macroeconomics.
This means that we are concerned with the allocation of household resources over time. It is thus
a partial equilibrium approach.

The household problem, and its several extensions that we study next, has two applications:
first, as a building block of macroeconomic models usually featuring the supply side of savings and
the demand side in the asset markets, or a macroeconomic model for a small open economy facing
perfect international capital markets.

In this note the analysis is conducted in continuous time and within a deterministic setting.
That is, it is assumed that households have perfect information.

After studying the main concepts of intertemporal choice in a continuous-time setting we apply
them to both intertemporal additive and intertemporally dependent preferences, and several sources
of non-financial income.

We review the household problem in several environments: without resource constraints, with
an initial finite resource (cake eating problem), with borrowing constraints, with financial and non-
financial income, and with a stochastic horizon. We distinguish between the effect of anticipated
changes in income (both non-financial and financial) and non-anticipated income. We also introduce
endogenous time-use between working, and leisure and working and education.

This allows us to provide background to the benchmark household problem in macroeconomics:
the discounted infinite horizon problem in a complete market setting in which the rate of return
is equal to the rate of time preference but in which the household has a solvability (or non-Ponzi
game) constraint.

Although this model has a closed form (explicit) solution, we present (in subsection 4.2) the
method of comparative dynamics analysis applied to this case. This has an interest per se but also
is the only tool available to characterize the solution to the intertemporally dependent household
problem.

This model provides a relatively simple theory for one of the stylized facts in macroeconomics:
the relatively more persistent behavior of consumption relative to aggregate income.

In section 2 we present the benchmark intertemporal additive utility case. In section 3 we present
the household problem in the continuous time setting. In section 4 we consider the response of
the household to expected changes in income. In section 5 the existence of habit formation is
introduced and its comparative dynamics is studied. In section 6  two versions of the model with
endogenous labor supply are briefly discussed and solved.
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In the appendix we gather several proofs and useful methods for studying dynamic macroe-
conomic models in continuous time, in particular, functional derivatives (section A), comparative
dynamics method (section G), and two-stage optimal control problems (section F)

2 Intertemporaly additive utility functionals

In this section we provide some definitions regarding the intertemporal preference properties which
are implicit in intertemporal utility functionals. We start with the case of additive utility functionals
both in discrete and continuous time, in subsections 2.1 and 2.2. In section 5 we study, with the same
concepts, a non-additive intertemporal utility functional arising in the habit formation model.1 

2.1 Discrete time

In a discrete-time setting all variables are measured at discrete time intervals, or periods. Therefore,
the set of periods is T = { 0, 1, … , 𝑡, … , 𝑇 }. We denote consumption in period 𝑡 ∈ T is 𝑐𝑡 and the
sequence of consumption between periods 𝑡 = 0 and 𝑡 = 𝑇 by 𝑐 = {𝑐0, 𝑐1, … , 𝑐𝑡, … , 𝑐𝑇 }.

The value of a consumption sequence 𝑐 is measured by the utility functional

U[𝑐] = U[{𝑐0, 𝑐1, … , 𝑐𝑡, … , 𝑐𝑇 }].

  The functional U[𝑐] maps every consumption sequence into a number, which assesses the value of
the consumption sequence. The higher U[𝑐] is the higher is the value of a consumption sequence.

From the postulates from choice theory, we represent an order relationship between consumption
sequences by a cardinal relationship between their intertemporal utilities. That is, given two
consumption sequences 𝑐′ = {𝑐′

0, 𝑐′
1, … , 𝑐′

𝑡, … , 𝑐′
𝑇 } and 𝑐″ = {𝑐″

0 , 𝑐″
1 , … , 𝑐″

𝑡 , … , 𝑐″
𝑇 } the household is

indifferent between the two if and only if U[𝑐′] = U[𝑐″] and the household prefers 𝑐′ to 𝑐″ if and
only if U[𝑐′] > U[𝑐″].

In order to characterize the implicit properties introduced by the utility functional U[𝑐] con-
sider a given consumption sequence 𝑃𝑟𝑖𝑐𝑒𝑠𝑎𝑛𝑑𝑟𝑒𝑎𝑙𝑤𝑎𝑔𝑒𝑠𝑖𝑛𝑠𝑒𝑣𝑒𝑛𝑡𝑒𝑒𝑛𝑡ℎ − 𝑐𝑒𝑛𝑡𝑢𝑟𝑦𝑀𝑎𝑑𝑟𝑖𝑑 and in-
troduce a change in consumption at any point in time 𝑡, i.e, consider the change from 𝑐  =
{𝑐0, 𝑐1, … , 𝑐𝑡, … , 𝑐𝑇 } to 𝑐 + 𝑑𝑐 = {𝑐0, 𝑐1, … , 𝑐𝑡 + 𝑑𝑐𝑡, … , 𝑐𝑇 }, where 𝑑𝑐  = { 0, … , 0, 𝑑𝑐𝑡, 0, … 0}.
The value of the consumption sequence changes from U[𝑐] to  U[𝑐 + 𝑑𝑐] = U[𝑐] + 𝑑U[𝑐; 𝑐𝑡] where

𝑑U[𝑐; 𝑐𝑡] = 𝜕U[𝑐]
𝜕𝑐𝑡

  𝑑𝑐𝑡,

1For a thorough presentation of preference structures in macroeconomics, in discrete time, see Backus et al., 2004.
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  where 𝜕U[𝑐]
𝜕𝑐𝑡

is the own partial derivative for consumption at time 𝑡. We call it the marginal
utility of consumption at any time 𝑡 and denote it by

U𝑡[𝑐]  ≡ 𝜕U[𝑐]
𝜕𝑐𝑡

, for any  𝑡 ∈ T.

  Observe that U𝑡 [𝑐] is also a functional. Therefore we can define the second partial derivatives
derivatives

𝑈𝑡,𝑡′ [𝑐]  ≡   𝜕2U[𝑐]
𝜕𝑐𝑡 𝜕𝑐𝑡′

𝑐𝑡′ , given 𝑡, foe any  𝑡′ ∈ T,  

  which yields the change in the marginal utility of consumption at time 𝑡, 𝑑𝑐𝑡 , for a change in
consumption at time 𝑡′, 𝑑𝑐𝑡′ , where for 𝑡′ = 𝑡 we have a own derivative, and for 𝑡′ ≠ 𝑡 we have a
crossed derivative.

Now consider the following case: take the initial sequence 𝑐 = {𝑐0, 𝑐1, … , 𝑐𝑡0
, … , 𝑐𝑡0+𝜏 , … , 𝑐𝑇 }

and perturb it by changing consumption in two periods 𝑡0 and 𝑡1 = 𝑡0+𝜏 , to 𝑐+𝑑𝑐 =  {𝑐0, 𝑐1, … , 𝑐𝑡0
+

𝑑𝑐𝑡0
, … , 𝑐𝑡0+𝜏 + 𝑑𝑐𝑡0+𝜏 , … , 𝑐𝑇 }. The initial sequence has value U[𝑐] and the perturbed sequence has

value
U[𝑐 + 𝑑𝑐] = U[𝑐] + 𝑑U[𝑐]  = U[𝑐] + U𝑡0

[𝑐]  𝑑𝑐𝑡0
+ U𝑡1

[𝑐]  𝑑𝑐𝑡1
. 

 
We define intertemporal marginal rate of substitution, between periods 𝑡0 and 𝑡1 = 𝑡0 +𝜏 ,

as the change in consumption at 𝑡1 = 𝑡 + 𝜏 , where 𝜏 > 0, for one unit increase in consumption at
𝑡0, such that it leaves intertemporal utility constant, i.e., 𝑑U[𝑐] = 0:

𝐼𝑀𝑅𝑆𝑡0,𝑡1
= −

𝑑𝑐𝑡1

𝑑𝑐𝑡0

∣
U=constant

.

But, as
𝑑U[𝑐]  = U𝑡0

[𝑐]  𝑑𝑐𝑡0
+ U𝑡1

[𝑐]  𝑑𝑐𝑡1
  = 0

  then 𝐼𝑀𝑅𝑆𝑡0,𝑡1
is equivalent to the ratio between marginal utilities

𝐼𝑀𝑅𝑆𝑡0,𝑡1
(𝑐) =

U𝑡0
[𝑐]

U𝑡1
[𝑐] .

As the 𝐼𝑀𝑅𝑆 depends on a particular consumption sequence, we choose a stationary consump-
tion as a reference. A consumption sequence is stationary if 𝑐𝑡 = ̄𝑐, a positive constant, for every
𝑡 ∈ T. The value of a stationary consumption sequence is the functional

U [ ̄𝑐] = U[{ ̄𝑐, ̄𝑐, … , ̄𝑐, … , ̄𝑐}].
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  We say the utility functional U displays impatience  if, for a stationary consumption path,
such that 𝑐𝑡 = ̄𝑐, for every 𝑡, the intertemporal marginal rate of substitution is greater than one:
𝐼𝑀𝑅𝑆𝑡0,𝑡1

( ̄𝑐)  > 1.
This means that, given a time-independent stationary consumption sequence, the household

attaches a higher value for consumption closer in time to the present than to consumption further
away into the future. Equivalently, the household is willing to sacrifice a given amount of con-
sumption in the present if a higher level of consumption will be given in the future, and that level
increases with the time lag into the future in which it is made available.

The change in the marginal utility, 𝑈𝑡,𝑡′ [𝑐], also provides an insight concerning the implicit
consumption behavior which is formalized by the intertemporal utility functional U[𝑐].

The Allen-Uzawa elasticity of intertemporal substitution of consumption in period 𝑡0
by consumption in period 𝑡1 is defined by

𝜀𝑡0,𝑡1
= −

U𝑡0,𝑡1
[𝑐]  𝑐𝑡0

𝑈𝑡0
[𝑐] , for any 𝑡0, 𝑡1 ∈ T,

  which measures the relative change in the marginal utility of consumption at time 𝑡0 for a change
in consumption at time 𝑡1.

Considering a stationary consumption path, the utility functional displays one of the three
following properties 2:

• there is intertemporal complementarity if the marginal utility of consumption at time 𝑡0
increases with consumption at time any future date 𝑡1. In this case 𝜀𝑡0,𝑡1

( ̄𝑐) is negative;

• there is intertemporal independence if the marginal utility of consumption at time 𝑡0
does not change with consumption at any future time 𝑡1. In this case 𝜀𝑡0,𝑡1

( ̄𝑐) is equal to
zero;

• or there is intertemporal substitution if the marginal utility of consumption at time 𝑡0
decreases with consumption at time any future date 𝑡1. In this case 𝜀𝑡0,𝑡1

( ̄𝑐) is positive.

In order to measure intertemporal substitution/complementarity the definition of intertem-
poral elasticity of substitution is introduced

𝐸𝐼𝑆𝑡0,𝑡1
=

𝜕(𝑐𝑡1
/𝑐𝑡0

)
𝜕𝐼𝑀𝑅𝑆𝑡0,𝑡1

𝐼𝑀𝑅𝑆𝑡0,𝑡1

𝑐𝑡1
/𝑐𝑡0

.

2We are referring to complementarity and substitutability in the Edgeworth-Pareto, or uncompensated, sense not
in the Hicks-Allen, or compensated, sense. The issue of complementarity and substitutability should be dealt with
care. This is discussed in the next subsection.
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  which measures the elasticity of the consumption ratio as regards the elasticity of the 𝐼𝑀𝑅𝑆.
Expanding the definition, we have the equivalent formula

𝐸𝐼𝑆𝑡0,𝑡1
=

𝑐𝑡0
U𝑡0

+ 𝑐𝑡1
U𝑡1

𝑐𝑡0
U𝑡0

𝜀𝑡1,𝑡1
− 2 𝑐𝑡0

U𝑡0
𝜀𝑡0,𝑡1

+ 𝑐𝑡1
U𝑡1

𝜀𝑡0,𝑡0

 .

 
Example: The benchmark utility functional is the additive utility functional

U[𝑐] =
𝑇

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡) (1)

  where 𝛽 ≡ 1
1 + 𝜌 is the psychological discount factor and 𝜌 is the rate of time preference. As

𝜌 > 0 then 0 < 𝛽 < 1. It means that the value of a consumption sequence 𝑐 = {𝑐𝑡}𝑡∈T is equal
to the present value of the sequence of period utilities of consumption. It is therefore linear in the
utilities of consumption for every period.

Exercise: Prove that the utility functional (1) displays impatience, intertemporal indepen-
dence, and, if we define the elasticity of marginal substitution by

𝜎(𝑐) = −𝑢″(𝑐) 𝑐
𝑢′(𝑐)

  then the elasticity of intertemporal substitution is equal to the inverse of the elasticity of marginal
utility 𝐸𝐼𝑆𝑡0,𝑡1

( ̄𝑐) = 1
𝜎( ̄𝑐)

2.2 Continuous time

Let time be a non-negative real variable, 𝑡 ∈ T ⊆ ℝ+. Consumption at time 𝑡 is denoted by 𝑐(𝑡),
and the flow of consumption is 𝑐 = (𝑐(𝑡))𝑡∈T.

While the definition of marginal utility regarding intertemporal choice in discrete time is analo-
gous to the static choice among several goods, the definition of marginal utility in a continuous time
setting requires some background in functional differentiation, Allen-Uzawa because the change in
consumption at a point in time takes place within an infinitesimal time interval.

In this section we introduce the concepts of marginal utility, intertemporal marginal rate of
substitution, Allen-Uzawa elasticities and elasticity of intertemporal substitution for the benchmark
time additive utility functional. In section 5 we apply them to a particular type of intertemporally
dependent preferences.
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2.2.1 The benchmark utility functional

The benchmark intertemporal utility functional  in continuous time is

U [𝑐] = ∫
𝑇

0
𝑢(𝑐(𝑡))𝑒−𝜌𝑡𝑑𝑡, 𝜌 > 0 (2)

  where 𝑒−𝜌𝑡 is the psychological discount factor and 𝜌 > 0 is the rate of time preference. Again
𝜌 > 0 implies 𝑒−𝜌𝑡 ∈ (0, 1] if 𝑡 ∈ ℝ+. The utility function  𝑢(⋅) is assumed to be continuous,
differentiable (and at least second-order differentiable in most of the rest of this paper), increasing
and concave: that is 𝑢″(𝑐) < 0 < 𝑢′(𝑐).

As we saw in last subsection, a crucial feature of the allocation of consumption over time is the
intertemporal substitutability (or complementarity) of consumption. In a continuous time setting
the utility functional U [𝑐] is infinite-dimensional and consumption substitutability is related to
the change in consumption in two points in time. Consider times 𝑡0 and 𝑡0 + 𝜏 , and the changes
in consumption, 𝑑𝑐(𝑡0) and 𝑑𝑐(𝑡0 + 𝜏), such that the utility functional U [𝑐] remains constant. In
other words, we want to compare the value of the flows (𝑐(𝑡))𝑡∈T and ( ̂𝑐 (𝑡))𝑡∈T, where ̂𝑐 (𝑡) = 𝑐(𝑡)
if 𝑡 ≠ { 𝑡0, 𝑡0 + 𝜏} and ̂𝑐 (𝑡0) = 𝑐(𝑡0) + 𝑑𝑐(𝑡0) and ̂𝑐 (𝑡0 + 𝜏) = 𝑐(𝑡0 + 𝜏) + 𝑑𝑐(𝑡0 + 𝜏), such that
U[𝑐]  = U[ ̂𝑐]

There are two difficulties in dealing with intertemporal substitution/complementarity in con-
tinuous time.

The first difficulty is related to the economic definition of complementarity/substitutability. The
concepts of complementarity and substitutability are not unequivocal. In a static microeconomic
setting, preferences among different consumption bundles c = (𝑐1, … 𝑐𝑛) are represented by the
utility function 𝑢(c), and the household’s problem is maxc{ 𝑢(c) ∶ p ⋅ c ≤ 𝑦}, where p is the related
price vector and 𝑦 is income. In this setting we say two goods, indexed for instance by 𝑖 and 𝑗,

are substitutability in the Edgeworth-Pareto sense if 𝜕2𝑢(c)
𝜕𝑐𝑖 𝑐𝑗

< 0 and they are substitutable in the

Hicks-Allen sense if, at the optimum, the demand function is c = 𝐶(p, 𝑦) and 𝜕𝑐𝑖
𝜕𝑝𝑗

> 0. The first

type can be called uncompensated substitutability and the second compensated substitutability
because it takes into account a normalizing effect of the budget constraint. Given the difficulty of
defining an extension to the Hicksian sense of substitutability in continuous time 3 , the definition
we present next is an extension of the Edgeworth-Pareto concept.4

3For a discussion see Biswas, 1976, and Ryder and Heal, 1973 and Heal and Ryder, 1976.
4There are issues here that are more profound than they look at first. There is a long discussion between ordinalists

and cardinalists related to comparative statics. The most recent approach to microeconomics, the monotone compar-
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The second difficulty is mathematical. Although continuous time makes analytical derivations
of results easier, one has to specify the mathematical definition of intertemporal marginal rate of
substitution between times 𝑡0 and 𝑡0 + 𝜏 , because the time variations become infinitesimal, i.e.,
variations have a measure zero.

For the utility functional (2), we can use the concept of a Gâteaux derivative for a ”spike” varia-
tion of consumption at time 𝑡, introduced in the appendix A. Applying the definition of the integral
derivative, provided there, to equation (20), we obtain the marginal utility of consumption 
at a particular time 𝑡 = 𝑡𝑖 ∈ T is given by

 𝛿U[𝑐; 𝑡𝑖]  = U𝑡𝑖
≡ 𝑢′(𝑐(𝑡𝑖)) 𝑒−𝜌𝑡𝑖 , for any 𝑡𝑖 ∈ T,

  where 𝛿U[𝑐; 𝑡] is the integral derivative of the functional U[𝑐] for a Dirac-𝛿 variation in consumption
centered at 𝑡𝑖, 𝛿(𝑡 − 𝑡𝑖).  

Therefore, the intertemporal marginal rate of substitution  between consumption at time
𝑡0 and 𝑡1 = 𝑡0 + 𝜏 , for 𝜏 ≥ 0, if the intertemporal utility functional is (2) can be proved to be

IMRS𝑡0,𝑡1
  =

U𝑡0

U𝑡1

  = 𝑢′(𝑐(𝑡0))
𝑢′(𝑐(𝑡1))𝑒𝜌 𝜏 .

From our previous assumptions, we have IMRS𝑡0,𝑡1
  > 0 for any pair (𝑡0, 𝑡1). If there is a satiation

point, such that 𝑢′(𝑐𝑡𝑠
) = 0, then it is possible to have IMRS𝑡0,𝑡1

  < 0. We rule out this possibility
by assuming that for any pair (𝑡0, 𝑡1) there is local non-satiation, that is 𝑢′(𝑐(𝑡)) > 0 for 𝑡 = {𝑡0, 𝑡1}.

Using the second order Gâteaux derivatives for a ”spike” variation at the same time, 𝑡𝑖, and at
a different time, 𝑡𝑗 ≠ 𝑡𝑖, we obtain

𝛿2U[𝑐; 𝑡𝑖, 𝑡𝑖]  = U𝑡𝑖𝑡𝑖
≡ 𝑢″(𝑐(𝑡𝑖)) 𝑒−𝜌𝑡𝑖 , for any 𝑡 ∈ T.

  and 𝛿2U[𝑐; 𝑡𝑖, 𝑡𝑗] = U𝑡𝑖𝑡𝑗
= 0 for 𝑡𝑖 ≠ 𝑡𝑗 both in T.

This implies that the Allen-Uzawa elasticities are 5  are

𝜖𝑡𝑖,𝑡𝑖
  = 𝜎(𝑐(𝑡𝑖)) ≡ −𝑢″(𝑐(𝑡𝑖)) 𝑐(𝑡𝑖)

𝑢′(𝑐(𝑡𝑖))
 

ative statics approach, initiated by Milgrom and Shannon, 1994, associates substitutability defined in an ordinal way
with the property of supermodularity. If a utility function is continuous and differentiable, the Edgeworth-Pareto
substitutability criterium is equivalent to supermodularity.

5They are defined as

𝜖𝑡𝑖,𝑡𝑗   ≡ −𝛿2U[𝑐; 𝑡𝑖, 𝑡𝑗]  𝑐(𝑡𝑖)
𝛿U[𝑐; 𝑡𝑖] = −

U𝑡𝑖𝑡𝑗 𝑐(𝑡𝑖)
U𝑡𝑖

  for any 𝑡𝑖, 𝑡𝑗 ∈ T.
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  where 𝜎(𝑐(𝑡𝑖)) is the elasticity of the marginal utility 𝑢′(⋅), and

𝜖𝑡𝑖,𝑡𝑗
  = 0 if  𝑡𝑖 ≠ 𝑡𝑗.

 
Therefore the elasticity of intertemporal substitution6  

 𝐸𝐼𝑆𝑡0,𝑡1
= 𝑑 log (𝑐(𝑡0)/𝑐(𝑡1))

𝑑 log IMRS𝑡0,𝑡1

=

=
𝑐𝑡0

U𝑡0
+ 𝑐𝑡1

U𝑡1

𝑐𝑡0
U𝑡0

𝜖𝑡1,𝑡1
− 2 𝑐𝑡0

U𝑡0
𝜖𝑡0,𝑡1

+ 𝑐𝑡1
U𝑡1

𝜖𝑡0,𝑡0

 .
(3)

Applying to the intertemporal utility functional (2) yields

𝐸𝐼𝑆𝑡0,𝑡1
= 𝑐(𝑡0) 𝑢′(𝑐(𝑡0)) 𝑒−𝜌𝑡0 + 𝑐(𝑡1) 𝑢′(𝑐(𝑡1)) 𝑒−𝜌𝑡1

𝑐(𝑡0) 𝑢′(𝑐(𝑡0)) 𝑒−𝜌𝑡1 𝜎(𝑐(𝑡1)) + 𝑐(𝑡1) 𝑢′(𝑐(𝑡1)) 𝑒−𝜌𝑡0 𝜎(𝑐(𝑡0)) .

  If we consider a stationary flow of consumption, such that 𝑐(𝑡) = ̄𝑐 for any 𝑡 ∈ T, the benchmark
utility functional U[𝑐], in equation (2), displays: (1) impatience because 𝐼𝑀𝑅𝑆𝑡0,𝑡1

( ̄𝑐) = 𝑒𝜌 𝜏 >
1; (2) intertemporal independence because 𝜖𝑡0,𝑡1

( ̄𝑐) = 0; and (3) constant intertemporal
elasticity of substitution, which is qual to the inverse of the elasticity of the marginal utility of
consumption for a stationary consumption trajectory, because  𝐸𝐼𝑆𝑡0,𝑡1

= 1
𝜎( ̄𝑐) .

For the case in which the utility function is isoelastic (indeed a generalized logarithm),

𝑢(𝑐) = 𝑐1−𝜃 − 1
1 − 𝜃 ,

  we obtain 𝐸𝐼𝑆𝑡0,𝑡1
= 1

𝜃 , which led to the literature calling 𝜃 the inverse of the elasticity of
intertemporal substitution.

2.2.2 Summing up: properties of the benchmark utility functional

The benchmark utility functional in the form presented in equation (2) rests on three main elements:

1. the generalized indirect utility is a linear functional of the flow of utility over time, and
displays non-satiation and intertemporal independence (in the Edgeworth-Pareto sense);

6 Expanding the expression we obtain

𝑑 log (𝑐(𝑡𝑖)/𝑐(𝑡𝑗))
𝑑 log IMRS𝑡𝑖,𝑡𝑗

=
𝑐(𝑡𝑖) U𝑡𝑖 + 𝑐(𝑡𝑗) U𝑡𝑗

𝑐(𝑡𝑗) U𝑡𝑗 U𝑡𝑖𝑡𝑖 − 2 𝑐(𝑡𝑖) U𝑡𝑖 U𝑡𝑖𝑡𝑗 + 𝑐(𝑡𝑖) U𝑡𝑖 U𝑡𝑗𝑡𝑗
.
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2. it has a (psychological) exponential discount factor, where the rate of time preference is
constant in time and it is taken as a parameter

3. the time horizon is finite and known

4. the household only measures its welfare by the flow of consumption.

We will consider next some of extensions to those assumptions.

3 The household problems in the continuous time setting

In this section we apply the previous concepts, in particular the continuous-time definition of
marginal utility, to the household problem with several types of constraints. We assume a deter-
ministic setting in which the household has perfect information.7

We start by dealing with the meaning of maximizing utility in an unconstrained problem in
subsection 3.1. In subsection 3.2 we consider the problem for a rentier, i.e., for an agent which
consumes out of an initial resource from which the only activity is to consume it over time. Next, in
subsection 3.3 we consider the problem for a rentier which is also an investor. Section 3.4 considers
the case in which the household has both financial and non-financial income. All those models
consider a finite and known horizon.

In subsection 3.5 we present a justification for considering an infinite-horizon, and solve the
infinite-horizon household problem. This model is the benchmark partial equilibrium model in
intertemporal macroeconomics. It can also be seen as a simple model for a small open economy
facing a perfect international capital market 8

3.1 Maximizing utility without constraints

We address the first problem: finding the maximum consumption path in an unconstrained setting.
In other words, we want to find a consumption trajectory (𝑐(𝑡))𝑡∈T, where T = [0, 𝑇 ], that the
household would choose in the case it has no constraints.

The problem is to find the maximum value of the utility aggregator (or intertemporal utility
functional)

 U[𝑐∗]  = max
𝑐(⋅)

∫
𝑇

0
𝑢(𝑐(𝑡)) 𝑒−𝜌𝑡𝑑𝑡 (P1)

7This line of research can be traced back to Fisher, 1930. For seminal papers on the household problem in finite
horizon see Yaari, 1964 and infinite horizon see Arrow and Kurz, 1969.

8For a discrete time version see Uribe and Schmitt-Grohé, 2017, ch 2.
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  where we denote 𝑐∗ = (𝑐∗(𝑡))𝑡∈T the maximum utility consumption path.
If 𝑐∗ is optimum, then any arbitrary perturbation 𝜑 will not change the intertemporal utility,

that is U[𝑐∗ + 𝜑]  = U[𝑐∗]. Therefore, at the optimum

𝑑U[𝑐; 𝜑]  = ∫
𝑇

0
𝑢′(𝑐∗(𝑡)) 𝑒−𝜌𝑡  𝜑(𝑡) 𝑑𝑡 = 0

  This is a linear functional which can be solved, because 𝜑(𝑡) ≠ 0 for every 𝑡 ∈ T 9  if and only if

𝑢′(𝑐∗(𝑡)) 𝑒−𝜌𝑡 = 0, for every 𝑡 ∈ T.  (P1:foc)

  The optimum level of consumption, because 𝑒−𝜌𝑡 ∈ (0, 1), depends on the properties of the utility
function 𝑢(⋅):

1. if the utility function has the Inada property, i.e, if lim𝑐→∞ 𝑢′(𝑐) = 0, then the optimum will
be reached for 𝑐∗(𝑡) = ∞ for any 𝑡;

2. however, if the utility function does not have the Inada property, then the optimum can be
reached for a finite level of consumption. If there is a satiation point, that is a point 𝑐𝑠 ∈ ℝ+
such that 𝑢′(𝑐𝑠) = 0, then the optimum will consist in consuming at that satiation point at
every moment time 𝑐∗(𝑡) = 𝑐𝑠 for any 𝑡.

Exercise: Prove that the utility function of the isoelastic type 𝑢(𝑐) = 𝑐1−𝜃 − 1
1 − 𝜃 , for 𝜃 > 0 has

the Inada property, and therefore the optimum consumption is 𝑐∗(𝑡) = ∞ for every 𝑡.
Exercise: Prove that the quadratic utility function 𝑢(𝑐) = 𝑐 − 𝛽

2 𝑐2, for 𝛽 > 0 has a satiation
point, and find it.

The intuition for this result is obvious: if there are no constrains on consumption and the utility
function displays non-satiation, then optimal consumption would be infinite for every point in time,
as in the Cockaigne land. If there is a satiation point, the household will consume permanently at
that point over time.

 

3.2 Maximizing utility for a rentier household

Consider the problem for a rentier: it has an initial stock of net wealth, 𝑎0 > 0 which is used to
finance the purchase of consumption goods over its lifetime. Assume prices are always equal to one.
10

9See Gel’fand and Fomin, 1963, p.9
10This problem is sometimes called the cake-eating problem, see Romer, 1986.

https://en.wikipedia.org/wiki/Cockaigne
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Consider, again, any two moments 𝑡 and 𝑡+𝜏 . Assuming that the rentier still possesses the stock
level 𝑎(𝑡) at time 𝑡, and that it consumes a constant quantity 𝑐(𝑡) during any period of length 𝜏 ,
what will be the stock of wealth remaining at time 𝑡+𝜏 ? It is easy to see that 𝑎(𝑡+𝜏) = 𝑎(𝑡)−𝑐(𝑡) 𝜏 .
If the time interval shrinks to zero, the infinitesimal change in its wealth is

lim
𝜏→0

𝑎(𝑡 + 𝜏) − 𝑎(𝑡)
𝜏 = ̇𝑎(𝑡) = −𝑐(𝑡). 

For an equivalent way to see this, given the initial wealth 𝑎0, and that consumption is reducing it
over time, the level of wealth at any time 𝑡 will be

𝑎(𝑡) = 𝑎0 − ∫
𝑡

0
𝑐(𝑠) 𝑑𝑠.

  We can find the instantaneous budget constraint by taking time derivatives to both sides, yielding
again ̇𝑎(𝑡) = −𝑐(𝑡).

From now on we assume that the initial value of wealth is finite, positive and known, that is
𝑎(0) = 𝑎0 > 0.

Does the optimal consumption path changes as regards problem (P1), i.e., does existence of an
initial finite resource constrains consumption ? The answer is, not necessarily, because it depends
on the assumptions we introduce regarding the domain of 𝑎.

3.2.1 Unlimited borrowing

Consider a first case: the future net wealth level 𝑎 can take any real value, that is the agent
can borrow without limit. As 𝑎 denotes the stock of net wealth we assume that −∞ < 𝑎(𝑡) < ∞
for any time 𝑡 > 0.

The problem of the household becomes

max
𝑐(⋅)

∫
𝑇

0
𝑢(𝑐(𝑡)) 𝑒−𝜌𝑡𝑑𝑡

subject to 
̇𝑎(𝑡) = −𝑐(𝑡), for 𝑡 ∈ T

 𝑐(𝑡) ∈ ℝ+

𝑎(0) = 𝑎0 > 0 given
𝑎(𝑡) ∈ ℝ ∪ ∞

(P2)
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We show in the appendix B that the optimality condition for this problem is the same as the
solution of problem (P1), in equation (P1:foc):

𝑢′(𝑐∗(𝑡)) 𝑒−𝜌𝑡 = 0, for every 𝑡 ∈ [0, 𝑇 ].  (P2:foc)

 
Again, if the utility function has the Inada property (v.g, if it has not a satiation point) then

the household will want to consume an infinite amount at every point in time. This means that
𝑎 becomes negative and unbounded just immediately after 𝑡 = 0 and the initial constraint of the
resource is not active.

3.2.2 Limited borrowing

A second, more realistic case is the one in which the household faces a lower bound on 𝑎,
that we denote by 𝑎. If he cannot borrow then 𝑎 ≥ 0. If he can become a net debtor until some
prescribed limit, then he faces a borrowing constraint 𝑎 < 0 which is finite. This can be seen as a
case in which there is a financial friction.

We assume this constraint is active at every point in time, and the household has an initial net
wealth level which is positive. The problem is now:

max
𝑐(⋅)

∫
𝑇

0
𝑢(𝑐(𝑡)) 𝑒−𝜌𝑡𝑑𝑡

subject to 
̇𝑎(𝑡) = −𝑐(𝑡), for 𝑡 ∈ T

𝑐(𝑡) ∈ ℝ+

𝑎(𝑡) ∈ [𝑎, ∞), for every 𝑡 ∈ [0, 𝑇 ]
𝑎(0) = 𝑎0 > max{0, 𝑎}  given

 

(P3)

Let us assume that the utility function 𝑢(𝑐) has the Inada property: 𝑢″(𝑐) < 0 < 𝑢′(𝑐) and
lim𝑐→0 𝑢′(𝑐) = ∞ and lim𝑐→∞ 𝑢′(𝑐) = 0. In order to make the analysis clear let us assume that the

utility function is 𝑢(𝑐) = 𝑐1−𝜃 − 1
1 − 𝜃 , for 𝜃 > 0. This yields 𝑢′(𝑐) = 𝑐−𝜃

The introduction of the borrowing constraint carries two important consequences: first, we
assume that initial level of wealth is above the lower limit for 𝑎, 𝑎 (which can be positive or
negative); second, as the utility function would induce an unconstrained household to consume an
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infinite amount at every point in time, then the borrowing constraint will be active at some point
in time, say 𝑡 ∈ (0, 𝑇 ]. The time of activation of the constraint will be higher than zero because the
initial level of wealth is by assumption bigger than the lower limit, 𝑎0 > 𝑎 but it is endogenous.
This raises a natural question: is it optimal to hit the constraint earlier or at the horizon 𝑇 ?

The optimality conditions are (see Appendix C)

⎧{{{{
⎨{{{{⎩

𝑐(𝑡)−𝜃  𝑒−𝜌𝑡 = 𝜆(𝑡)
̇𝑎 = −𝑐(𝑡)

𝜆̇ = −𝜂(𝑡)
𝜂(𝑡)(𝑎(𝑡) − 𝑎) = 0, 𝜂(𝑡) ≥ 0, 𝑎(𝑡) ≥ 𝑎 for 𝑡 ∈ (0, 𝑇 ]
𝜆(𝑇 ) = 0.

(P3:foc)

Therefore, we can divide the solution in two periods: the period [0, 𝑡) in which the constraint is not
active, and we have 𝜂(𝑡) = 0 which implies 𝜆(𝑡) = 𝜆0 is a constant, consumption is positive and
the net wealth diminishes over time, because we still have 𝑎0 > 𝑎(𝑡) > 𝑎; and, the period [𝑡, 𝑇 ] in
which the constraint is active, and we have 𝜂(𝑡) > 0, 𝜆̇ < 0, consumption is equal to zero and net
wealth is at the borrowing limit.

That is, we have the following solutions for consumption and net wealth:

1. if 𝑡  < 𝑇 then

𝑐(𝑡) =
⎧{
⎨{⎩

𝜆− 1
𝜃

0 𝑒𝛾𝑐 𝑡 for 𝑡 ∈ [0, 𝑡)
0  for 𝑡 ∈ (𝑡, 𝑇 ]

  here 𝛾𝑐 = −𝜌
𝜃 < 0 is the (negative) rate of growth of consumption, and

𝑎(𝑡) =
⎧{
⎨{⎩

𝑎0 + 𝜆− 1
𝜃

0
𝛾𝑐

(1 − 𝑒𝛾𝑐 𝑡) for 𝑡 ∈ [0, 𝑡)

𝑎 for 𝑡 ∈ (𝑡, 𝑇 ],

  where 𝜆0 is unknown and can only be determined when 𝑡 is found. At time 𝑡 we have
𝑐(𝑡+) = 𝑐(𝑡−) = 0. This is only possible if 𝜆0 = ∞ which implies that 𝑎(𝑡−) = 𝑎 = 𝑎0. This
is not possible for 𝑡 < 𝑇 , because we have assumed that 𝑎 < 𝑎0;

2. if 𝑡  = 𝑇 then, from 𝑎 = 𝑎0 + 𝜆− 1
𝜃

0
𝛾𝑐

(1 − 𝑒𝛾𝑐 𝑇 ) we can determine 𝜆0 as

𝜆− 1
𝜃

0 = 𝛾𝑐
𝑎 − 𝑎0

1 − 𝑒𝛾𝑐𝑇
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Figure 1: Solution to (P3) problem for 𝜌 = 0.02, 𝜃 = 2 and 𝑎0 > ̄𝑎

  and obtain the optimum consumption

𝑐∗(𝑡) = 𝛾𝑐
𝑎 − 𝑎0

1 − 𝑒𝛾𝑐𝑇 𝑒𝛾𝑐𝑡 𝑡 ∈ [0, 𝑇 ).

Observe that consumption solution is valid for the open set 𝑡 ∈ [0, 𝑇 ). 11  In the limit 𝑡 ↑ 𝑇 ,
we have 𝑐(𝑇 +) = 𝛾𝑐

𝑎 − 𝑎0
1 − 𝑒𝛾𝑐𝑇 𝑒𝛾𝑐𝑇 > 0 (recall that 𝛾𝑐 < 0). At time 𝑡 < 𝑇 , because we assumed

that 𝑎 < 𝑎0, we have 𝜂(𝑡) = 0, which impies 𝜆(𝑡) is finite and constant, and therefore the
marginal utility of consumption is also constant. But as 𝑎(𝑇 ) = 𝑎 at 𝑡 = 𝑇 , then we have
𝜂(𝑇 ) > 0, and 𝜆(𝑇 ) = 0 there should exist a discontinuous jump consumption to an infinite
level, because the marginal utility of consumption would be infinite, which is not admissible.

The optimum net wealth stock evolves according to

 𝑎∗(𝑡) = 𝑎0 + 𝑎 − 𝑎0
1 − 𝑒𝛾𝑐𝑇 (1 − 𝑒𝛾𝑐 𝑡) for 𝑡 ∈ [0, 𝑇 ].

11The first order condition for 𝑇 , (𝑐(𝑇 )−𝜃 𝑒−𝜌𝑇   = 𝜆(𝑇 ) is not well defined because the transversality condition is
𝜆(𝑇 ) = 0, which would imply an infinite consumption, which is not possible.
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Figure 1 displays the solution. if the household attributes an unlimited utility to consumption
when it is close to zero, if the utility function has the Inada properties, if there is a financial
constraint, and the household has perfect foresight, it will stay away from the borrowing constraint
before the problem’s horizon 𝑇 . It finds optimal to exhaust his possibilities for borrowing only at
the last moment.

Exercise If the utility function displays satiation what will be the solution to the problem ?
 

3.3 Maximizing utility for an investor household

Usually, at any point in time, the stock of net wealth generates a net income equal to 𝑟(𝑡) 𝑎(𝑡),
where 𝑟 is the interest rate. The income flow is a source of earnings if the household is a net creditor
(if 𝑎(𝑡) > 0) but it is a source of expenditure if the household is a net debtor (if 𝑎(𝑡) < 0). We
assume that the interest rate is given to the household, and to simplify, that it is constant. Because
we are dealing with real variables, 𝑟 refers to the real interest rate.

Again we assume that the utility function has the Inada property and that, justified by the
results in the last subsection, there is a terminal constraint on the level of net wealth.

Assuming an isoelastic utility function, the problem is

max
𝑐(⋅)

∫
𝑇

0

𝑐(𝑡)1−𝜃 − 1
1 − 𝜃 𝑒−𝜌𝑡𝑑𝑡

subject to 
̇𝑎(𝑡) = 𝑟 𝑎 − 𝑐(𝑡), for 𝑡 ∈ T

 𝑎(0) = 𝑎0 > 𝑎 given
 𝑎(𝑇 ) ≥ 𝑎

(P4)

Observe that we are using what we have learned in the previous subsection, and set the financial
constraint at the terminal time, 𝑇 , and not for every point in time.

In appendix D we prove that optimal consumption path is (𝑐∗ (𝑡))𝑡∈[0,𝑇 ], where

𝑐∗(𝑡) = ((𝑟 − 𝛾𝑐)(𝑎0 − 𝑎 𝑒−𝑟 𝑇 )
1 − 𝑒(𝛾𝑐−𝑟)𝑇 ) 𝑒𝛾𝑐𝑡, for every 𝑡 ∈ [0, 𝑇 ]  (4)

where the rate of growth of consumption is

𝛾𝑐 ≡ 𝑟 − 𝜌
𝜃
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  and the optimal net wealth is generated by the function

𝑎∗(𝑡) = 𝑒𝑟 𝑡𝑎0 − 𝑎0 − 𝑎 𝑒−𝑟 𝑇

1 − 𝑒(𝛾𝑐−𝑟)𝑇 (𝑒𝑟 𝑡 − 𝑒𝛾𝑐 𝑡), for every 𝑡 ∈ [0, 𝑇 ]. (5)
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Figure 2: Solution to (P4) problem for several values of 𝑟: for 𝑟 < 𝜌 (dashed lines), 𝑟 = 𝜌 (solid
lines) and 𝑟 > 𝜌 (dotted lines)

The following observations can be made: first, as the sign of 𝛾𝑐 is the same as 𝑟 − 𝜌 then if
𝑟 > 𝜌, consumption will grow over the lifetime, it will remain constant if 𝑟 = 𝜌 and will diminish if
𝑟 < 𝜌. Second, for any value of the parameters, the initial and the terminal values of net wealth are
𝑎(0) = 𝑎0 and 𝑎(𝑇 ) = 𝑎, which means that the time profile of consumption (and savings) featuring
more or less consumption (or less or more savings) in the beginning of the period or at the end of
the period, depend on the relative value of the parameters, 𝜌 and 𝜃 and on the market interest rate
𝑟. In particular, if 𝜃 is higher than the absolute value of 𝛾𝑐 will be lower. Figure 2 illustrates the
solution fot those three cases: we see that both consumption and financial wealth is permanently
higher the higher 𝑟. At the terminal time, in all cases the net wealth converges to the credit limit,
although consumption is still higher if 𝑟 is higher.

 

3.4 Maximizing utility with non-financial income

In the previous model the path of income is 𝑦(𝑡) = 𝑟 𝑎(𝑡) because there is only financial income.
In this subsection we assume that the household is entitled, in addition, to a non-financial

stream of income (𝑤(𝑡))𝑡∈T, where 𝑤(𝑡) > 0 for every 𝑡. It can be labor income or any other
type of non-financial income. In the case of labor income, we assume that the household supplies
inelastically a constant flow of working hours (or effort) normalized to one.
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We consider now the following problem

max
𝑐(⋅)

∫
𝑇

0

𝑐(𝑡)1−𝜃 − 1
1 − 𝜃 𝑒−𝜌𝑡𝑑𝑡

subject to 
̇𝑎(𝑡) = 𝑟 𝑎 + 𝑤(𝑡) − 𝑐(𝑡), for 𝑡 ∈ T

 𝑎(0) = 𝑎0 > 𝑎 given
 𝑎(𝑇 ) ≥ 𝑎

(P5)
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Figure 3: Solution to (P5) problem for several values of 𝑟: for 𝑟 < 𝜌 (dashed lines), 𝑟 = 𝜌 (solid
lines) and 𝑟 > 𝜌 (dotted lines)

Using the same approach as in the previous problem, we can prove that the solution is

𝑐∗(𝑡) = ((𝑟 − 𝛾𝑐)(𝑎0 + ℎ0 − 𝑎 𝑒−𝑟 𝑇 )
1 − 𝑒(𝛾𝑐−𝑟)𝑇 ) 𝑒𝛾𝑐𝑡, for every 𝑡 ∈ [0, 𝑇 ] (6)

and
𝑎∗(𝑡) = 𝑒𝑟 𝑡 (𝑎0 + ℎ0) − 𝑎0 + ℎ0 − 𝑎 𝑒−𝑟 𝑇

1 − 𝑒(𝛾𝑐−𝑟)𝑇 (𝑒𝑟 𝑡 − 𝑒𝛾𝑐 𝑡), for every 𝑡 ∈ [0, 𝑇 ]. (7)

where
ℎ0 = ∫

𝑇

0
𝑒−𝑟 𝑡 𝑤(𝑡) 𝑑𝑡

  is the human capital of the household at time 𝑡 = 0. Comparing with the previous problem,
we see that while in the previous problem, consumption and savings essentially led net wealth to
go from 𝑎0 to 𝑎, in this case, the initial total wealth is 𝑎0 + ℎ0 and the terminal wealth is still 𝑎.
This means that the present flow of consumption in this problem is much higher than in the former
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problem. See Figure 3 with uses the same cases as Figure 2. Observe that human wealth decreases
with 𝑟, which mean that ℎ0 is different for the three cases, which leads to a different levels for the
initial wealth.

Furthermore, if human wealth can be seen as a collateral for net borrowing, it is possible that
the lower limit on net financial wealth 𝑎 might be reduced by the existence of human wealth which
could be offered (or accepted) as a collateral.

A final observation is interesting: we can interpret 𝑎0 +ℎ0 −𝑎 𝑒−𝑟 𝑇 as total wealth perceived by
the household. If the household can be a net debtor in the terminal time then 𝑎  < 0. This means
that consumption depends on the sum of the initial financial wealth, 𝑎0, in the human capital -
the present value of wages - ℎ0, and  of the present value of the terminal credit available. Then
𝑎0 + ℎ0 − 𝑎 𝑒−𝑟 𝑇 > 𝑎0 + ℎ0.

 

3.5 Infinite horizons

We saw that the determination of the initial level of consumption 𝑐(0), and therefore, the level of
consumption is dependent on the horizon of the problem, 𝑇 , and on the terminal constraints on
wealth. In this section we present the infinite-horizon case.

There are two main justifications for considering the infinite horizon case: first, the existence of
incomplete information on the terminal time, and second, the existence of concern by the household
of the utility of its family beyond the life of those living at time 𝑡 = 0. We call the second case the
dynastic model.12

The uncertain horizon In order to study this case we assume that the lifetime 𝑇 is stochastic.
Let the cumulative distribution of lifetime be 𝐹(𝑇 ) = ∫𝑇

0 𝑓(𝑡)𝑑𝑡 ∈ (0, 1) for 𝑇 ∈ (0, ∞) and
the density function 𝑓(𝑡) follow a Poisson process, with the instantaneous probability of death 𝜇,
𝑓(𝑡) = 𝜇 𝑒−𝜇𝑡. Then 𝐹(𝑇 ) = 1 − 𝑒−𝜇𝑇 . Off course 𝐹 ′(𝑡) = 𝑓(𝑡), 𝐹(0) = 0 and 𝐹(∞) = 1.

Let 𝑈(𝑇 ) = ∫𝑇
0 𝑢(𝑐(𝑡)) 𝑒−𝜌𝑡 𝑑𝑡 be the utility functional for an household having horizon 𝑇 and let

the intertemporal utility with a stochastic lifetime be given by the expected utility functional 

U [𝑐]  = ∫
∞

0
 𝑓(𝑇 ) 𝑈(𝑇 )  𝑑𝑇 = ∫

∞

0
𝑓(𝑇 ) ∫

𝑇

0
𝑢(𝑐(𝑡)) 𝑒−𝜌𝑡 𝑑𝑡 𝑑𝑇 .

  We can prove that

U [𝑐] = ∫
∞

0
𝑢(𝑐(𝑡)) 𝑒−(𝜌+𝜇)𝑡 𝑑𝑡. (8)

12One of the first contributions is Arrow and Kurz, 1969.
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To prove this observe that

U [𝑐]  = ∫
∞

0
 𝐹 ′(𝑇 ) 𝑈(𝑇 )  𝑑𝑇 .

  Using integration by parts,13  we have

U[𝑐]  = 𝐹(𝑇 ) 𝑈(𝑇 )∣
∞

𝑇 =0
− ∫

∞

0
 𝐹 (𝑇 ) 𝑈 ′(𝑇 )  𝑑𝑇

= 𝐹(∞) 𝑈(∞) − 𝐹(0) 𝑈(0) − ∫
∞

0
 𝐹 (𝑇 ) 𝑒−𝜌𝑇 𝑢(𝑐(𝑇 )) 𝑑𝑇 because  𝑈 ′(𝑇 ) =  𝑒−𝜌𝑇 𝑢(𝑐(𝑇 ))

= 𝑈(∞) − ∫
∞

0
(1 − 𝑒−𝜇𝑇 )𝑒−𝜌𝑇 𝑢(𝑐(𝑇 )) 𝑑𝑇

= ∫
∞

0
𝑢(𝑐(𝑇 )) 𝑒−𝜌𝑇 𝑑𝑇 − ∫

∞

0
(1 − 𝑒−𝜇𝑇 )𝑒−𝜌𝑇 𝑢(𝑐(𝑇 )) 𝑑𝑇

= ∫
∞

0
𝑢(𝑐(𝑇 )) 𝑒−𝜌𝑇 𝑑𝑇 − ∫

∞

0
𝑢(𝑐(𝑇 )) 𝑒−𝜌𝑇 𝑑𝑇 + ∫

∞

0
𝑒−(𝜌+𝜇) 𝑇 𝑢(𝑐(𝑇 )) 𝑑𝑇

= ∫
∞

0
𝑢(𝑐(𝑇 )) 𝑒−(𝜌+𝜇)𝑇 𝑑𝑇 .

  Therefore, interpreting the discount factor as the sum of the rate of time preference plus the
instantaneous mortality rate for an uncertain lifetime model with a Poisson distribution of the time
of death, justifies assuming an utility functional for a single agent with an infinite horizon, as in
equation (8).14 

The dynastic model   Another interpretation for an infinite horizon is the dynastic interpreta-
tion that is mathematically equivalent. In this case the economic agent can be seen as an household
which cares for the utility not only of the present but for all future generations. In this case we
have

∫
∞

0
𝑢(𝑐(𝑡)) 𝑒−𝜌𝑡 𝑑𝑡

 
We consider now the following problem, in which the rate of time preference can include the

mortality rate or not.
13Assuming that some mathematical requirements are satisfied, implying the boundedness of 𝑢(𝑐).
14Yaari, 1964 was one of the first contributions for solving this problem.
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max
𝑐(⋅)

∫
∞

0

𝑐(𝑡)1−𝜃 − 1
1 − 𝜃 𝑒−𝜌𝑡𝑑𝑡

subject to 
̇𝑎(𝑡) = 𝑟 𝑎 + 𝑤(𝑡) − 𝑐(𝑡), for 𝑡 ∈ ℝ+

 𝑎(0) = 𝑎0 given
  lim

𝑡→∞
𝑎(𝑡) 𝑒−𝑟 𝑡 ≥ 0

(P6)

The terminal condition is called the non-Ponzi game condition, it means that in present value terms
the household will not be a net debtor asymptotically.

Observe that the model with finite horizon and a Poisson distributed horizon reduces to this
model if there is an annuity market in which the household could receive a rate or return equal to
𝜇 and its net wealth would be repossessed by the issuer in the event of death.15

Another interpretation is that the three constraints imply that the household consumption path
is sustainable, or that it is solvent. In order to see this, solving the household budget constraint,
̇𝑎(𝑡) = 𝑟 𝑎 + 𝑤(𝑡) − 𝑐(𝑡), together with the initial condition, 𝑎(0) = 𝑎0, yields

𝑎(𝑡) = 𝑒𝑟 𝑡(𝑎0 + ∫
𝑡

0
𝑒−𝑟 𝑠 (𝑤(𝑠) − 𝑐(𝑠)) 𝑑𝑠).

  Multiplying both sides by the discount factor 𝑒−𝑟 𝑡 and taking the limit to infinity, yields

lim
𝑡→∞

𝑒−𝑟 𝑡𝑎(𝑡) = 𝑎0 + ℎ0 − ∫
∞

0
𝑒−𝑟 𝑡 𝑐(𝑡)𝑑𝑡

  where we used the definition of human capital at time 𝑡 = 0,

ℎ0 ≡ ∫
∞

0
𝑒−𝑟 𝑡 𝑤(𝑡)𝑑𝑡.

  If the non-Ponzi game condition holds then we obtain the following intertemporal budget con-
straint

∫
∞

0
𝑒−𝑟 𝑡 𝑐(𝑡) 𝑑𝑡 ≤ 𝑎0 + ℎ0

  which means that the present value of consumption is smaller than the initial total net wealth
which is equal to the sum of the financial and human wealth.

15This is the Yaari, 1965 model.
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From now on, we assume that 𝑟 > 0 and 𝑤 is constant. Then ℎ0 = 𝑤
𝑟 .

By applying the principle of dynamic programming 16 we can obtain explicitly the optimal
policy function

𝑐∗ = 𝐶(𝑎) = (𝑟 − 𝛾)(𝑎 + 𝑤
𝑟 ).

If 𝜃 ≥ 1, the rate of growth of net wealth is smaller than the interest

𝛾 ≡ 𝑟 − 𝜌
𝜃 < 𝑟,

  which implies implies that optimal consumption is a positive function of total net wealth, financial
and human, and the propensity to save is endogenously determined as a function of the difference
𝑟 − 𝛾.

If we substitute optimal consumption in the budget constraint we have

̇𝑎 = 𝑟 𝑎 + 𝑤 − (𝑟 − 𝛾)(𝑎 + 𝑤
𝑟 )

= 𝛾 (𝑎 + 𝑤
𝑟 )

= 𝛾 (𝑎 − ̄𝑎) 

  where the steady state level of net financial wealth is the symmetric of human wealth

̄𝑎 = −ℎ0 = −𝑤
𝑟 .

Solving this differential equation, taking 𝑎(0) = 𝑎0 yields

𝑎∗(𝑡) = ̄𝑎 + (𝑎0 − ̄𝑎) 𝑒𝛾 𝑡, for 𝑡 ∈ [0, ∞)

  or, equivalently
𝑎∗(𝑡) = −ℎ0 + (𝑎0 + ℎ0) 𝑒𝛾 𝑡, for 𝑡 ∈ [0, ∞).

The optimal consumption trajectory is (𝑐∗ (𝑡))𝑡∈[0,∞) where

𝑐∗(𝑡) = (𝑟 − 𝛾) (𝑎0 − ̄𝑎) 𝑒𝛾 𝑡, for each  𝑡 ∈ [0, ∞)

 
Therefore, the dynamics of both consumption and asset accumulation depends is determined

by the rate of growth 𝛾. There are three possible cases:
16Appendix E.
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First case: if the household is less patient than the market, that is if 𝑟 < 𝜌 then 𝛾 < 0 and,
assuming that the initial level of net wealth is above the natural debt limit −ℎ0 = −𝑤/𝑟 then its
net asset position will evolve towards the natural debt limit lim𝑡→∞ 𝑎∗(𝑡) = −ℎ0 and consumption
will converge to zero, lim𝑡→∞ 𝑐∗(𝑡) = 0. This is Case 1 in Figure 4. Observe that the optimal initial
optimal consumption is such that the household has negative savings

𝑐∗ (0) = (𝑟 − 𝛾) (𝑎0 + 𝑤
𝑟 ) > 𝑟 𝑎0 + 𝑤.

The household will have negative savings in the adjustment to its steady state position, i.e, 𝑐∗ (∞) =
0. This explains why the optimal adjustment path in Case 1 in Figure 4 is always above the isocline
for 𝑎, i.e, the locus of points such that 𝑐(𝑡) = 𝑟 𝑎(𝑡) + 𝑤.

Second case: if the household is more patient than the market, that is if 𝑟 > 𝜌 then 𝛾 > 0 and, as-
suming that the initial level of net wealth is above the natural debt limit  −ℎ0 = −𝑤/𝑟 then both
the asymptotic level of wealth and consumption will be unbounded lim𝑡→∞ 𝑎∗(𝑡) = lim𝑡→∞ 𝑐∗(𝑡) =
+∞. This is Case 3 in Figure 4. Observe that the optimal initial optimal consumption is such that
the household has positive savings at time 𝑡 = 0

𝑐∗ (0) = (𝑟 − 𝛾) (𝑎0 + 𝑤
𝑟 ) < 𝑟 𝑎0 + 𝑤,

and will keep having positive savings along the adjustment path. In this case, there is not a steady
state.

Third case: , if the household is as patient as the market, that is if 𝑟 = 𝜌 then 𝛾 = 0 and,
assuming that the initial level of net wealth is above the natural debt limit −ℎ0 = −𝑤/𝑟, the
solution is stationary 𝑎∗(𝑡)  = 𝑎0 and 𝑐∗ (𝑡) = 𝑟 𝑎0 + 𝑤 for all 𝑡 ∈ [0, ∞). This is Case 2 in Figure
4. In this case the household has no incentives for having negative or positive savings, because the
rate of return for savings is equal to the cost, measured by 𝜌.

What is the role of the parameter 𝜃 in the solution ? As we saw the higher 𝜃 is the lower is the
𝐸𝐼𝑆, which means that the cost of transfering consumption between moments in time, in utility
terms, is higher. We see that although it does not affect the sign of 𝛾, it reduces its absolute value.
For any point in time it also increases the propensity to consume out of total net wealth, this means
that savings will be smaller instantaneously and the transfer of consumption between periods will
be smaller as well. Therefore, it tends to generate a smoother behavior of consumption.

The previous results contrast with those we obtained for the finite horizon case. In particular,
it is not possible to have an unbounded net asset position. The reason for this is related to the fact
that the terminal condition is specified as the limit to infinity, and given the fact that it involves
discounting at a rate which is higher, in absolute value, than the rate of growth of the wealth
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Figure 4: Phase diagrams for the dynastic household problem.

position, it allows for an unbounded evolution of net financial wealth. On the other hand, if the
agent is more impatient than the market, i.e, if 𝜌 > 𝑟, the solution for consumption looks similar
to the problem for an agent that depletes a given stock of wealth (i.e, to problem (P2)).

The previous results were obtained in a partial equilibrium setting. The only case which can be
valid in both partial equilibrium and general equilibrium settings is the last one. This is the case
of a representative agent dynamic general equilibrium (DGE).

In a DGE setting the situation in which an agent could have an unbounded asset position would
be impossible, unless in the economy there is an infinite aggregate net supply of assets, which is
not a realistic situation. Therefore, in a DGE setting, we would expect that an unbounded level of
assets would lead the interest rate to be reduced and possibly converge to the rate of time preference
or to an average rate of time preference. Symmetrically, if a big mass of agents would carry on
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having negative savings an increase of the interst rate would be expected.

3.6 Linear utility and the indeterminacy problem

 
If the utility function is linear, say 𝑢(𝑐) = 𝑐 it is clear that the elasticity of intertemporal

substitution will be infinite. It corresponds to setting 𝜃 = 0 in the isoelastic utility function. We
will show next that the simple household problem will have an indeterminate solution (i.e, an
infinite number of solutions).

Consider the household problem with a linear utility function

max
𝑐(⋅)

  ∫
∞

0
 𝑐(𝑡) 𝑒−𝜌 𝑡 𝑑𝑡

subject to 
̇𝑎  = 𝑟 𝑎 − 𝑐

𝑎(0) = 𝑎0, fixed 
lim

𝑡→∞
 𝑒−𝑟 𝑡 𝑎(𝑡) ≥ 0

(P7)

  In this case we write the Hamiltonian function as

𝐻(𝑎, 𝑐, 𝜆0, 𝜆) = 𝜆0 𝑐 + 𝜆 (𝑟 𝑎 − 𝑐)

where 𝜆0 ∈ {0, 1} is a number and 𝜆 is a function of time. The first order conditions (observe that
the Hamiltonian function is a concave, although not strictly concave function of (𝑐, 𝑎)) are

𝜆0 = 𝜆(𝑡), 𝑡 ∈ T
𝜆̇  = 𝜆 (𝜌 − 𝑟), 𝑡 ∈ T
0 = lim

𝑡→∞
 𝜆(𝑡) 𝑎(𝑡)𝑒−𝜌𝑡

̇𝑎  = 𝑟 𝑎 − 𝑐
𝑎(0) = 𝑎0.

Setting 𝜆0 = 1 then 𝜆(𝑡) = 1 for every 𝑡 ∈ [0, ∞), which implies 𝜆̇  = 0. Therefore, a solution to
this problem does not exist if 𝑟 ≠ 𝜌. A solution only exists if 𝑟 = 𝜌, which we assume to be the
case from now on. Solving the budget constraint and substituting in the transversality condition
we should have 𝑎0 = ∫∞

0  𝑒−𝜌 𝑠  𝑐(𝑠) 𝑑𝑠. As there are no more constraints on the functional form
for 𝑐(𝑡), as in the case with constant elasticity of substitution, the solution for 𝑐 is indeterminate.
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That is, there is an infinite number of consumption trajectories that satisfies that constraint. In
particular, a constant consumption path 𝑐(𝑡) = 𝑐∗ = 𝜌 𝑎0 is a solution.

Setting 𝜆0 = 0 then 𝜆(𝑡) = 0 for every 𝑡 ∈ [0, ∞), which implies 𝜆̇  = 0. However, this does
not require that an existence condition is 𝑟 = 𝜌. However, even if we assume that 𝑟 − 𝜌 can have
any sign, the transversality condition will be satisfied for any trajectories of 𝑎 and 𝑐. Again, the
solution is indeterminate.

From the economic point of view the problem is misspecified. To have an unique solution as
in the previous cases, either we introduce more curvature in the utility function, or we introduce
some adjustment costs in consumption, or bounds in the net asset position of the household.

4 Expected changes in income

 
In this section we continue to assume the time additive dynastic model and study the effects of

an anticipated and unanticipated changes in income. In the first case, we assume a deterministic
setting, and assume the time of the switch is perfectly anticipated by the household.

4.1 Future changes in income

We consider the problem

max
𝑐(⋅)

∫
∞

0

𝑐(𝑡)1−𝜃 − 1
1 − 𝜃 𝑒−𝜌𝑡𝑑𝑡

subject to 

̇𝑎(𝑡) =
⎧{
⎨{⎩

 𝑟 𝑎 + 𝑤1 − 𝑐(𝑡), for 0 ≤ 𝑡 < 𝜏
 𝑟 𝑎 + 𝑤2 − 𝑐(𝑡), for 𝜏 ≤ 𝑡 < ∞

 

𝑎(0) = 𝑎0 given
  lim

𝑡→∞
𝑎(𝑡) 𝑒−𝑟 𝑡 ≥ 0

(P8)

where the switching time, 𝜏 , such that 0 < 𝜏 < ∞, is known. This can be the case if there are
two stages in lifetime: work/retirement, employed/unemployed. We could also consider the case in
which a change of the interest rates is perfectly anticipated by the hpusehold.

The optimal path for consumption (𝑐∗(𝑡))
𝑡∈[0,∞)

is such that

𝑐∗(𝑡) = (𝑟 − 𝛾) (𝑎∗
1 + 𝑤2

𝑟 ) 𝑒𝛾 (𝑡−𝜏), for 𝑡 ∈ [0, ∞),
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where again 𝛾 ≡ 𝑟−𝜌
𝜃 , and the optimal level of net wealth at the switching time is

𝑎∗(𝜏) = 𝑎∗
1 = 𝑒𝛾 𝜏 (𝑎0 + 𝑤1

𝑟  (1 − 𝑒−𝑟 𝜏) + 𝑤2
𝑟   (𝑒−𝑟 𝜏   − 𝑒−𝛾 𝜏)).

  and the optimal path for the net asset position is (𝑎∗(𝑡))
𝑡∈[0,∞)

for

𝑎∗(𝑡) =
⎧{
⎨{⎩

−𝑤1
𝑟 + (𝑎∗

1 + 𝑤2
𝑟 ) 𝑒𝛾 (𝑡−𝜏) + (𝑤1

𝑟 − 𝑤2
𝑟 ) 𝑒𝑟(𝑡−𝜏), for  𝑡 ∈ [0, 𝜏)

−𝑤2
𝑟 + (𝑎∗

1 + 𝑤2
𝑟 ) 𝑒𝛾 (𝑡−𝜏), for  𝑡 ∈ [𝜏, ∞).

 

  The proof is in appendix F. 17   Figure 5 illustrates the possible dynamics for the case in which
𝑤2 < 𝑤1, and can be compared to the analog phase diagrams in Figure 4.

The following remarks are important:
First, although there is a jump in the non-financial income 𝑤, both paths for consumption and

net asset position are continuous at 𝜏 , i.e. 𝑐∗(𝜏−) = 𝑐∗(𝜏) and 𝑎∗(𝜏−) = 𝑎∗(𝜏). This is the case
because the Euler equation is jointly solved with the transversality condition (for 𝑡 → ∞), which
means that the consumption decision at time 𝑡 = 0 fully anticipates the future change in income.
This implies that the dynamics of asset accumulation, which is specified by the budget constraint,
also responds to the that anticipation.

Second, while consumption is continuously differentiable at the switching time 𝑡 = 𝜏 , the net
asset position is not, yielding 𝑑

𝑑𝑡𝑎∗(𝜏−) ≠ 𝑑
𝑑𝑡𝑎∗(𝜏). The reason for this is that although consumption

fully anticipates the changes in income over lifetime, when there is a switch in income, there will
be an immediate effect in savings, and therefore in the change in net asset accumulation.

Third, the initial consumption level will be somewhere between the initial consumption levels
associated to permanent non-financial incomes 𝑤1 and 𝑤2, say 𝑐1(0) and 𝑐2(0). If we assume that
𝑤1 > 𝑤2 then optimal initial consumption level 𝑐∗0 satisfies

𝑐2(0)  < 𝑐∗(0) < 𝑐1 (0) ⟺ (𝑟 − 𝛾)(𝑎0 + 𝑤2
𝑟 ) < 𝑐∗ (0) < (𝑟 − 𝛾)(𝑎0 + 𝑤1

𝑟 ).

This can be seen in subfigures (a) and (c) of Figure 5.
At last, the solution tends asymptotically to the solution of a problem in which the non-financial

income would be permanently equal to 𝑤2 as in the cases depicted in Figure 4. Observe that, even
in the case in which 𝑟 = 𝜌, the solution will not be stationary, because savings will have to adjust.
However consumption will be stationary.

17This is a two-stage optimal control problem and the first-order necessary conditions and its heuristic derivation
can be found in https://pmbbrito.github.io/cursos/phd/ame/ame2122/ame2021_lecture5.pdf.

https://pmbbrito.github.io/cursos/phd/ame/ame2122/ame2021_lecture5.pdf
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(c) Case 3: 𝑟 > 𝜌

Figure 5: Phase diagrams for the dynastic household problem. Solid curves represent the isocline
for 𝑎 and the dashed curves represent the solution paths associated to 𝑤 = 𝑤1 (upper curves) and
to 𝑤 = 𝑤2 < 𝑤1 (lower curves).

4.2 Unexpected changes in income and comparative dynamics

In aggregate terms, in actual economies, one would expect that no agent would have an unbounded
net wealth level, both as a net creditor or as a net debtor, because the individual agent interest
rate would eventually be endogenous to its level of wealth. This means that it will become a large
agent, if it is a creditor, or eventually it will face a borrowing constraint, if it is a debtor.

Therefore, if we consider problem (P6) as representative of an aggregate economy the natural
case to take is the second, that is the case in which 𝑟 = 𝜌. This is indeed the simplest model for a
small open economy facing perfect international capital markets.
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In addition to those already presented, another reason for considering infinite horizons is related
to the use of this model as (or within) an aggregate business cycle model in which we are interested
in studying deviations from a stationary trend. We can show that the infinite horizon version of
the previous models produces stationary solutions, i.e. steady states and deviation from steady
states.

In this section we study the comparative dynamics for a shock in the non-financial income 𝑤, in
order to discuss the theory provided by this model on the relationship between consumption and
income. Furthermore, we want to have a comparison with the same type of results for the habit
formation model that we present in the next section 5.

There are two types of changes in income with a bearing on the solution of this model: antici-
pated and non-anticipated changes. Anticipated changes are already incorporated in the solution
of the model, as we saw in the previous subsection. Non-anticipated changes can be seen as shocks
occurring at time 𝑡 = 0 and we can adapt the results of the previous section to study that case.

However, we dedicate this section to the study of non-anticipated changes by a comparative
dynamics exercise. In the rest of this subsection we consider again problem (P6) in the case in
which 𝑟 = 𝜌. The optimality conditions are

̇𝑎 = 𝜌 𝑎 + 𝑤 − 𝐶(𝑞) (9a)
̇𝑞 = 0 (9b)

𝑐(𝑡) = 𝐶(𝑞) ≡ 𝑞(𝑡)− 1
𝜃 (9c)

𝑎(0) = 𝑎0, (9d)

which comprise the instantaneous budget constraint, the adjoint equation, the static optimality
condition and the initial level for the net wealth.

From equation (9d) as net wealth 𝑎 is given initially, we call it pre-determined variable, and the
adjoint variable 𝑞, or consumption 𝑐, which is monotonously related to 𝑞 by equation (9c), as is a
non-predetermined variable. As 𝑞(𝑡) = 𝑢′(𝑐(𝑡)) (9b) can be equivalently written as 𝑑𝑢′(𝑐(𝑡))

𝑑𝑡   = 0:
marginal utility is constant.

Equation (9b) implies that 𝑞 is constant, which implies that 𝑐 is constant as well, as we saw in
the last section. Therefore, there are potentially an infinite number of steady states, from equation
(9a), comprising all combinations of 𝑎 and 𝑞 that satisfy

𝑐 = 𝜌 𝑎 + 𝑤

  However, from the fact that 𝑎 is pre-determined we can tie down the steady state which interests
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Figure 6: Effect of a non-anticipated increase in income. The line corresponds to the isocline for 𝑎,
𝑐 = 𝑤 + 𝜌 𝑎. A shock in income, 𝑤, moves the isocline up, leading the economy to jump from point
𝐴 to point 𝐵.

us to be
̄𝑐 = 𝐶( ̄𝑞) = 𝜌 𝑎0 + 𝑤.

 
This steady state value for 𝑐 is dependent on the value of non-financial income 𝑤, which lead

us to write ̄𝑐 = ̄𝑐(𝑤).
A comparative dynamics exercise asks the following question: given an initial value of 𝑤, say

𝑤0, what is the effect on the solution to the problem if 𝑤0 increases to 𝑤1 = 𝑤0 + 𝑑𝑤, starting from
a steady state ?

In the appendix G we prove that the multipliers are

⎧{
⎨{⎩

𝑑𝑐(𝑡) = 𝑑𝑤
𝑑𝑎(𝑡) = 0

for any 𝑡 ∈ (0, ∞),

  that is, consumption immediately and completely adjusts to innovations in income, which means
that they are perfectly correlated. There is no transitional dynamics. A phase diagram is presented
in Figure 6.

Therefore, in the benchmark infinite horizon model of the household behavior, in a deterministic
setting, non-anticipated changes in income will be immediately spent in consumption. Therefore,
this model displays a counterfactual perfect correlation between consumption and income and a
potentially volatile behavior of consumption.
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This is a consequence of the assumption 𝑟 = 𝜌, which is what one would expect to be the case
for a representative household in the long run.

Thus, we need some mechanism allowing for an incomplete translation of income shocks to
consumption expenditures changes, if we were interested in replicating a consumption adjustment
closer to stylized facts. Unfortunately this comes at a cost of increasing the dimension of the model.

5 Intertemporally dependent preferences

There are several ways to introduce intertemporally dependent preferences.18  In this section we
consider the habit formation model.

There are two types of models dealing with habit formation: the internal habit formation (also
called habit persistence) model and the external habit formation model. In the first type of models
household have an internal pattern of consumption that only changes marginally and in the second
they follow an external pattern of consumption. While in the first the pattern of consumption, or
habit, is built over time internally, in the second type of models it is an externality. This is why
the second type of habits involve ”going along with the Joneses’ (see Abel, 1990). In this sense,
classifying the two types of models within the same category can be misleading

Next we present the preferences under (internal) habit formation, in subsection 5.1 and in
subsection 5.2 we extend the previous household consumption model with habit formation.

5.1 Preferences under habit formation

In section 2, we saw that if the intertemporal utility functional is additive, in the utility of con-
sumption for different moments in time, it displays intertemporally independent preferences, in
the sense that the history of consumption until time 𝑡, i.e., 𝑐𝑡 = (𝑐(𝑠))𝑡

𝑠=0, does not influence the
valuation of consumption at time 𝑡, 𝑢(𝑐(𝑡)). We also saw that this leads to large shifts in consump-
tion after innovations, which is counter-factual.   In the habit formation utility functional past
consumption affects the evaluation of consumption for every point in time.

Assume that the household has a consumption pattern, that we call habit, and denote by ℎ(𝑡).
Habits are formed from past consumption. Therefore, in this model, current consumption 𝑐(𝑡)
has two effects: first, it is an immediate source of utility, and, second, it marginally changes the
pattern of consumption. In this sense there is a ”technology” in changing habits through current

18For the relationship between the habit preference model and alternative specifications of intertemporally depen-
dent preferences see Shi and Epstein, 1993. On the relationship between addiction and satiation see Iannaccone,
1986.
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consumption which we assume to be linear and have a parameter 𝜂. However, habits record the
past consumption history with some rate of decay which we assume to be also equal to 𝜂.

The following version is a simplified version of the model:19 

U[𝑐]  = ∫
𝑇

0
𝑢(𝑐(𝑡), ℎ(𝑡)) 𝑒−𝜌 𝑡 𝑑𝑡

  where ℎ(𝑡) is the habits at time 𝑡, which are

ℎ(𝑡) = 𝑒−𝜂 𝑡(ℎ0 + 𝜂 ∫
𝑡

0
𝑒𝜂 𝑠 𝑐(𝑠) 𝑑𝑠)

  where 𝜂 > 0 represents both the effect present consumption in the stock of habits and the rate
of decay (or forgetting) of habits. This is a stock (pre-determined) variable which can be seen as
the solution to the problem

⎧{
⎨{⎩

ℎ̇ = 𝜂 (𝑐(𝑡) − ℎ) for 𝑡 ∈ T

ℎ(0) = ℎ0 for 𝑡 = 0.
  In this case the utility at time 𝑡 is a function of the consumption and the habits, 𝑢(𝑡) =
𝑢(𝑐(𝑡), ℎ(𝑡)), where we assume that the marginal utility of consumption is positive 𝑢𝑐(𝑐, ℎ) ≡
𝜕𝑢(𝑐, ℎ)

𝜕𝑐   > 0 but the marginal utility of habits is negative 𝑢ℎ(𝑐, ℎ) ≡ 𝜕𝑢(𝑐, ℎ)
𝜕ℎ   < 0. We also

assume that the utility function is continuous and smooth.
Using the concepts introduced in section 2, the marginal utility for consumption at time 𝑡 is

now

U𝑡 ≡  𝛿U[𝑐; 𝑡]  = 𝑒−𝜌𝑡(𝑢𝑐(𝑐(𝑡), ℎ(𝑡)) + 𝜂 ∫
̄𝑡

𝑡
𝑒−(𝜂+𝜌) (𝑠−𝑡)𝑢ℎ(𝑐(𝑠), ℎ(𝑠)) 𝑑𝑠) , for any 𝑡 ∈ T.

where ̄𝑡 = max  T. The intertemporal marginal rate of substitution between 𝑡0 and 𝑡1 = 𝑡0 + 𝜏 is
now

𝐼𝑀𝑅𝑆𝑡0,𝑡1
=

𝑒𝜌 𝜏(𝑢𝑐(𝑐(𝑡0), ℎ(𝑡0)) + 𝜂 ∫ ̄𝑡
𝑡0

𝑒−(𝜂+𝜌) (𝑠−𝑡0)𝑢ℎ(𝑐(𝑠), ℎ(𝑠)) 𝑑𝑠) 

𝑢𝑐(𝑐(𝑡1), ℎ(𝑡1)) + 𝜂 ∫ ̄𝑡
𝑡1

𝑒−(𝜂+𝜌) (𝑠−𝑡1)𝑢ℎ(𝑐(𝑠), ℎ(𝑠)) 𝑑𝑠 
.

  For a stationary consumption path, such that 𝑐(𝑡) = ̄𝑐 and ℎ(0) = ̄𝑐, implying ℎ(𝑡) = ̄𝑐, for any
𝑡 ∈ T, we find 20

Ū𝑡 =  𝛿U[ ̄𝑐; 𝑡]  = 𝑒−𝜌𝑡  Ū′

19The first papers are Wan, 1970 and Ryder and Heal, 1973.
20Setting ℎ0 = ̄𝑐, we find ℎ(𝑡) = ̄𝑐 for any 𝑡 ∈ T and therefore, we write 𝑢𝑐( ̄𝑐) = 𝑢𝑐( ̄𝑐, ̄𝑐) and 𝑢ℎ( ̄𝑐) = 𝑢ℎ( ̄𝑐, ̄𝑐) .
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  where we define
Ū′ ≡ 𝑢𝑐( ̄𝑐) + 𝜂

𝜂 + 𝜌𝑢ℎ( ̄𝑐)

  and assume that Ū′ > 0. For any other moment in time 𝑡′ ≠ 𝑡 we have the marginal utility
Ū𝑡′ = 𝑒−𝜌𝑡′  Ū′.

This implies that the 𝐼𝑀𝑅𝑆𝑡0,𝑡1
= 𝑒𝜌 𝜏 is the same as in the additive model, which means that

preferences with habit formation display impatience  as in the additive model.
The change in marginal utility is now given by the second-order functional derivative

U𝑡𝑖,𝑡𝑗
≡  𝛿2U[𝑐; 𝑡𝑖, 𝑡𝑗]  =

= 𝜂 𝑒−𝜌𝑡𝑖 ( ∫
𝑡𝑖

𝑒−(𝜂+𝜌)(𝑡−𝑡𝑖) 𝑢ℎ𝑐(𝑐(𝑡), ℎ(𝑡)) 𝑑𝑡 + 𝜂 ∫
𝑡𝑗

𝑒−(𝜂+𝜌)(𝑡−𝑡𝑖)−𝜂(𝑡−𝑡𝑗) 𝑢ℎℎ(𝑐(𝑡), ℎ(𝑡)) 𝑑𝑡)

  and for a stationary consumption path, we find

Ū𝑡𝑖,𝑡𝑗
= 𝜂 𝑒−𝜌 𝑡𝑗−𝜂(𝑡𝑗−𝑡𝑖) Ū″

where we define
Ū″ ≡ 𝑢ℎ𝑐( ̄𝑐) + 𝜂

2𝜂 + 𝜌  𝑢ℎℎ( ̄𝑐).

  The Allen-Uzawa elasticities, associated to a stationary consumption path, depend only on the
time difference between 𝑡 and 𝑡′

𝜖𝑡,𝑡′ = − Ū𝑡,𝑡′ ̄𝑐
Ū𝑡

= 𝑒−(𝜌+𝜂) (𝑡′−𝑡)𝜎ℎ( ̄𝑐)

  where we define
𝜎ℎ( ̄𝑐) = −𝜂 Ū″ ̄𝑐

Ū′ .

  As 𝑒−(𝜌+𝜂) (𝑡′−𝑡) ∈ (0, 1) then we have intertemporal substitutability if Ū″ < 0, implying 𝜎ℎ( ̄𝑐) > 0,
independence if Ū″ = 0, implying 𝜎ℎ( ̄𝑐) = 0, and intertemporal complementarity if Ū″ > 0, implying
𝜎ℎ( ̄𝑐) < 0.

As, in general 𝜎ℎ( ̄𝑐) ≠ 0 then, using the definition of the elasticity of intertemporal substitution
given in equation (3), yields

𝐸𝐼𝑆𝑡0,𝑡1
= 1

𝜎ℎ( ̄𝑐)   ( 1 + 𝑒−𝜌𝜏

1 + 𝑒−𝜌𝜏 − 2 𝑒−(𝜌+𝜂)𝜏 ).

  Comparing with the additive model, in this case the 𝐸𝐼𝑆 can have any sign, depending on the
elasticity 𝜎ℎ( ̄𝑐), and its magnitude is a function of the lag between the two moments, 𝜏 . If there
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is intertemporal substitution we see that lim𝜏→0 𝐸𝐼𝑆𝑡,𝑡+𝜏 = +∞ and if lim𝜏→∞ 𝐸𝐼𝑆𝑡,𝑡+𝜏 = 1
𝜎ℎ( ̄𝑐) ,

which means that for any 0 < 𝜏 < ∞, the intertemporal elasticity of substitution will be bigger in
absolute value than the inverse of 𝜎ℎ( ̄𝑐), ∣𝐸𝐼𝑆𝑡,𝑡+𝜏 ∣ > 1

𝜎ℎ( ̄𝑐) .
There are two benchmark utility functions displaying habit formation in the literature: the

additive habits model (see Constantinides, 1990),

𝑢(𝑐, ℎ) = 𝑣(𝑐 − 𝜁 ℎ), for 𝜁 > 0

  and the multiplicative habits model (see Carroll, 2000)

𝑢(𝑐, ℎ) = 𝑣(𝑐 ℎ−𝜁), for 0 < 𝜁 < 1

  where 𝜁 measures the force of habits, i.e, the relative weight of habits as regards present consump-
tion. In both models the utility of consumption is measured against the change of a monotonous
function of habits.

If we assume multiplicative habits such that

𝑢(𝑐, ℎ) = 1
1 − 𝜃((𝑐 ℎ−𝜁)1−𝜃 − 1) (10)

and evaluate it at a stationary path such that ℎ(𝑡) = 𝑐(𝑡) = ̄𝑐, for any 𝑡, then we obtain

Ū′ = (𝜂 (1 − 𝜁) + 𝜌
𝜂 + 𝜌 ) ̄𝑐𝜁 (𝜃−1)−𝜃 > 0

Ū″ = 𝜁((𝜃 − 1)(𝜌 + 𝜂 (2 − 𝜁)) + 𝜂
2 𝜂 + 𝜌 ) ̄𝑐𝜁 (𝜃−1)−𝜃−1 > 0

  if 𝜃 ≥ 1 and 0 < 𝜁 < 1. Therefore,

 𝜎ℎ( ̄𝑐) = −𝜂 𝜁
(𝜂 + 𝜌)((𝜃 − 1)(𝜌 + 𝜂 (2 − 𝜁)) + 𝜂)

(2 𝜂 + 𝜌) (𝜂 (1 − 𝜁) + 𝜌) < 0 (11)

which means that this model displays intertemporal complementarity (in the Edgeworth-
Pareto sense).

Exercise Prove this.

Exercise Find the 𝐸𝐼𝑆 of the additive habit formation model where

𝑢(𝑐, ℎ) = 1
1 − 𝜃((𝑐 − 𝜁 ℎ)1−𝜃 − 1)

  and find its intertemporal dependence properties.
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5.2 Partial equilibrium under habit formation

The extension of the household problem (P6) with habit formation becomes:

max
𝑐(⋅)

∫
∞

0
𝑢(𝑐(𝑡), ℎ(𝑡)) 𝑒−𝜌𝑡𝑑𝑡

subject to 
̇𝑎(𝑡) = 𝑟 𝑎 + 𝑤(𝑡) − 𝑐(𝑡), for 𝑡 ∈ ℝ+

 ℎ̇(𝑡) = 𝜂 (𝑐 − ℎ) for 𝑡 ∈ ℝ+

 𝑎(0) = 𝑎0 given
 ℎ(0) = ℎ0 given
  lim

𝑡→∞
𝑎(𝑡) 𝑒−𝑟 𝑡 ≥ 0

(P9)

where, if we assume the multiplicative habit formation model, we have 𝑢𝑐(𝑐, ℎ) > 0, 𝑢ℎ(𝑐, ℎ) < 0,
𝑢𝑐𝑐(𝑐, ℎ) < 0, 𝑢𝑐ℎ(𝑐, ℎ) = 𝑢ℎ𝑐(𝑐, ℎ) > 0 and 𝑢ℎℎ(𝑐, ℎ) has an ambiguous sign.

Exercise Compute those derivatives for the general case and for the case in which 𝑐 = ℎ.

Observe that we now have two state variables, 𝑎 and ℎ and just one control variable 𝑐. This
means that we have two initial conditions, one for each pre-determined (or state) variable, 𝑎(0) = 𝑎0
and ℎ(0) = ℎ0.

Assume from now on that 𝑟 = 𝜌. This implies, using the intuition from subsection 3.5, that the
consumption path is bounded, and therefore the stock of habits is bounded as well.

The current-value Hamiltonian function is now

𝐻 = 𝐻(𝑐, ℎ, 𝑎, 𝑞ℎ, 𝑞𝑎) ≡ 𝑢(𝑐, ℎ) + 𝑞𝑎(𝜌 𝑎 + 𝑤 − 𝑐) + 𝑞ℎ 𝜂 (𝑐 − ℎ)

  where 𝑞𝑎 is the adjoint variable associated to the stock of net wealth 𝑎 and 𝑞ℎ is the adjoint
variable associated with the stock of habits ℎ.
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Using the Pontriyagin’s maximum principle the optimality conditions for problem (P9) are

̇𝑎 = 𝜌 𝑎 + 𝑤 − 𝑐, (12a)
ℎ̇ = 𝜂 (𝑐 − ℎ), (12b)
̇𝑞𝑎 = 0, (12c)
̇𝑞ℎ = (𝜌 + 𝜂) 𝑞ℎ − 𝑢ℎ(𝑐, ℎ), (12d)

𝑢𝑐(𝑐(𝑡), ℎ(𝑡)) = 𝑞𝑎(𝑡) − 𝜂 𝑞ℎ(𝑡), (12e)
𝑎(0) = 𝑎0, (12f)
ℎ(0) = ℎ0 (12g)

and the transversality conditions.
As in problem (P6), with an intertemporally additive utility functional, the static arbitrage

condition (12e) can be implicitly solved for optimal consumption. Consumption is not only a
function of shadow value of net financial asset, as in problem (P6), but it is also a function of the
stock of habits and of its shadow value

𝑐 = 𝐶(ℎ, 𝑞𝑎, 𝑞ℎ),

  with partial derivatives

𝐶ℎ = −𝑢𝑐ℎ (𝑐, ℎ)
𝑢𝑐𝑐 (𝑐, ℎ) > 0, 𝐶𝑞𝑎

  = 1
𝑢𝑐𝑐 (𝑐, ℎ) < 0, 𝐶𝑞ℎ

= − 𝜂(𝑐, ℎ)
𝑢𝑐𝑐 (𝑐, ℎ) > 0.

  Therefore consumption decreases with the shadow value of the financial asset but increases with
both the level and the value of the stock of habit.

As we are interested in comparing the dynamic comparative statics properties of this model
with the non-habit formation model, studied in subsection 4.2, we deal with the case in which
the initial condition is a steady state, and introduce a perturbation in non-financial income from
𝑤 = 𝑤0 to 𝑤 = 𝑤1 = 𝑤0 + 𝑑𝑤.

As in that model equation (12c) implies that the steady state exists but there is potentially an
infinite number of steady states. Furthermore, equation (12b), evaluated at the steady state yields

̄𝑐 = ℎ̄.
Anchoring again the steady state by the initial value of financial wealth 𝑎0, a steady state only

exists if the initial value of habits satisfies ℎ̄ = ℎ0 = 𝜌 𝑎0 + 𝑤0, which we assume is the case from
now on.
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Therefore, the steady state, for 𝑤 = 𝑤0, is determined from the equations

̄𝑎 = 𝑎0 (13a)
ℎ̄ = ℎ0 = 𝜌 𝑎0 + 𝑤0 (13b)

̄𝑐(𝑤0) = 𝜌 𝑎0 + 𝑤0 (13c)

̄𝑞ℎ(𝑤0) = 𝑢ℎ( ̄𝑐(𝑤0), ℎ0)
𝜌 + 𝜂   (13d)

̄𝑞𝑎(𝑤0) = 𝑢𝑐( ̄𝑐(𝑤0), ℎ0) + 𝜂
𝜌 + 𝜂    𝑢ℎ( ̄𝑐(𝑤0), ℎ0) (13e)

  This steady state, projected in the space (𝑎, 𝑐) is shown by point 𝐴 in Figure 7.

Assuming a multiplicative habits model with utility function

𝑢(𝑐, ℎ) = (𝑐 ℎ−𝜁)1−𝜃 − 1
1 − 𝜃

  we find the steady state values for 𝑞𝑎 and 𝑞ℎ

̄𝑞𝑎 = 𝜌 + 𝜂 (1 − 𝜁)
𝜂 + 𝜌 (𝑤0 + 𝜌𝑎0)−𝜃(1−𝜁)−𝜁

̄𝑞ℎ = − 𝜁
𝜂 + 𝜌(𝑤0 + 𝜌𝑎0)−𝜃(1−𝜁)−𝜁

 

  Exercise Prove this.

Exercise Find the steady state for the additive habits model.

The Jacobian of the MHDS, evaluated at the steady state is a four dimensional matrix which
can be found in Appendix H. This Jacobian has four eigenvalues, one is equal to zero, another is
equal to 𝜌 (as in the additive model), and we have two more eigenvalues

𝜆𝑠 = 𝜌
2 − √(𝜌

2)
2

− 𝑆, 𝜆𝑢 = 𝜌
2 + √(𝜌

2)
2

− 𝑆 

  In the appendix H we prove that

𝑆 ≡ −𝜂((𝜌 + 𝜂)𝑢̄𝑐𝑐 + (2𝜂 + 𝜌)(𝑢̄ℎ𝑐 + 𝜂𝑢̄ℎℎ)
𝑢̄𝑐𝑐

).
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  If 𝑆 < 0 then 𝜆𝑠 < 0 < 𝜆𝑢
21 and the model can display transition dynamics converging to a

steady state.
Using the notation same notation as in subsection 5.1 we can write

𝑆 = −𝜂 (2𝜂 + 𝜌)
𝑢̄𝑐𝑐

 ( 𝜌 + 𝜂
2𝜂 + 𝜌𝑢̄𝑐𝑐 + Ū″)

  which means that 𝑆 is negative if consumption is intertemporally substitutable or independent,
i.e., Ū″ ≤ 0, or if it is intertemporally complementary, i.e., Ū″ > 0, the concavity of the utility
function 𝑢̄𝑐𝑐 dominates the intertemporal complementarity effect.

For the multiplicative case we found that there is intertemporal complementarity (see equation
(11)), and, furthermore, we also have

𝑆 = −𝜁 (𝜌 + 𝜂(1 − 𝜁)) (𝜃 (1 − 𝜁) + 𝜁)
𝜃   < 0

  which means that we have the last case: although there is intertemporal complementarity, if
0 < 𝜁 < 1, it is dominated by the decreasing marginal utility relative to instantaneous consumption.
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Figure 7: Effect of a non-anticipated increase in 𝑤 in the habit formation model

It can be shown that if there is an increase in the wage rate by 𝑑𝑤 > 0 the (linearly approximate)
dynamics that unfolds is the following (see Figure 7):

21These two eigenvalues also satisfy 𝜆𝑠 + 𝜆𝑢 = 𝜌 and 𝜆𝑠 𝜆𝑢 = 𝑆.
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1. at the time of the shock consumption increases discontinuously from point 𝐴 to point 𝐵;

2. this introduces a change in the stock of net wealth but also a change in the stock of habits;

3. however, as the stock of habits only changes slowly, the increase in wage is not completely
used in the purchase of goods, which generates positive savings;

4. changes in savings increases the stock of net wealth which increases further consumption, the
stock of habits and savings;

5. eventually, a new steady state will be reached. A new steady state, depicted as point 𝐶 will
only be reached when we have again ̄𝑐(𝑤1) = ℎ̄(𝑤1) = ̄𝑎(𝑤1).

There are two noteworthy dynamic features of this model. First, there is a mechanism for
stability which takes the form of a decay in habit formation (in equation ℎ̇ = 𝜂 (𝑐 − ℎ)). Second,
this model still has a degenerate nature related to the fact that the interest rate is independent of
the level of net wealth of the agent and we have assumed it is equal to the rate of time preference.
We deal with the degenerate nature of the model by ”anchoring” the solution. Differently from
the the time-additive case, we do not anchor the solution to 𝑎0 but by a steady state relationship
between the stock of habits and net wealth by ℎ̄ = 𝜌 ̄𝑎 + 𝑤.

The lower subfigure in Figure 7 shows the (approximate) trajectories for income 𝑦(𝑡) = 𝜌𝑎(𝑡)+𝑤
and consumption after the shock in non-financial income. As can be seen, they are positively but
not perfectly correlated, and consumption has a slower adjustment, for the reasons just explained.
This type of behavior replicates more closely the stylized facts than the additive model, which is
the reason why habit formation is usually incorporated in applied DGE models addressing policy
issues.

6 Endogenous labor supply

 
Up to this point we assumed that non-financial income is exogenous. The models which were

presented cover the case in which non-financial income is composed of wages and the labor supply
is inelastic, that is, labor supply is independent of changes in wages.

In this section it is assumed that labor supply is endogenous. We present next two extension,
which are related to time use. In subsection 6.1  we present a model in which there is a choice of
labour or leisure, and in subsection 6.2 the choice of working or tudying.
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6.1 Choice between labor and leisure

 
Working has a benefit, because it increase non-financial income, but has a cost, because in

most cases working involves (not necessarily pleasant) effort. A benchmark approach is to consider
that labour takes time from leisure (or any other pleasant not-for income) activities. We formalize
the value that the household attaches to those activities by assuming that they enter the utility
function. We thus assume that the utility function is 𝑢(𝑐, ℓ), where 𝑐 is consumption and ℓ is the
effort dedicated to work. Therefore, we assume that 𝑢𝑐(𝑐, ℓ) > 0, 𝑢ℓ(𝑐, ℓ) < 0. We assume that
there are diminishing marginal utility on both activities, by requiring 𝑢𝑐𝑐(𝑐, ℓ) < 0 and 𝑢ℓℓ(𝑐, ℓ) > 0.

Keeping the previous relevant assumptions, we have the problem

  max
𝑐(⋅),ℓ(⋅)

  ∫
∞

0
 𝑢(𝑐(𝑡), ℓ(𝑡)) 𝑒−𝜌 𝑡  𝑑𝑡

subject to 
̇𝑎  = 𝑟 𝑎 + 𝑤 ℓ − 𝑐

𝑎(0) = 𝑎0 given 
lim

𝑡→∞
 𝑒−𝑟 𝑡 𝑎(𝑡) ≥ 0,

(P10)

where 𝑤 is the wage rate per unit of labour effort. We use labour effort instead of hours worked in
order to simplify the problem.22 

The MHDS

̇𝑎 = 𝜌 𝑎 + 𝑤 ℓ − 𝑐, (14a)

̇𝑐 = 𝑢″(𝑐)
𝑢′(𝑐)   (𝜌 − 𝑟), (14b)

0 = 𝑢ℓ(𝑐, ℓ) + 𝑤 𝑢𝑐(𝑐, ℓ), (14c)

includes the budget constraint, equation (14a), the Ramsey-Keyne rule, equation (14b), the arbi-
trage condition between consumption and leisure, equation (14c), and the initial and transversality
condition.

Equation (14c), allows us to find, explicitly or implicitly, the labor supply as a function of
consumption and the wage rate ℓ = 𝐿(𝑐, 𝑤). If we accept the common assumption that the utility
function is additively separable: 𝑢(𝑐, ℓ) = 𝑢(𝑐) − 𝑣(ℓ) where 𝑢″(𝑐) < 0 < 𝑢′(𝑐) and 𝑣′(ℓ) > 0 and

22An alternative modelling considers time allocation instead of work effort. Time allocation, of hours to working
and leisure, introduces a mathematical complexity in the model, in a form of a static constraint.
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𝑣″(ℓ) > 0, then the labor supply is negatively related to changes in consumption and positively
related to changes in the wage rate

𝐿𝑐 = 𝑑ℓ
𝑑𝑐 = 𝑢″(𝑐) 𝑤

𝑣″(ℓ) < 0, 𝐿𝑤 =   𝑑ℓ
𝑑𝑤 = 𝑢′(𝑐)

𝑣″(ℓ) > 0.

  In particular if

𝑢(𝑐) = 𝑐1−𝜃 − 1
1 − 𝜃 , 𝑣(ℓ) = ℓ1+𝜉

1 + 𝜉
then the optimal labor supply function is

ℓ = 𝐿(𝑐, 𝑤) = (𝑤 𝑐−𝜃 )
1
𝜉

(15)

where 1/𝜉 is called Frisch elasticity, which represent the elasticity of labour supply to changes in
the wage rate. We can see that because of both the decreasing marginal utility of consumption and
of the increasing marginal utility of leisure (or decreasing marginal return of labor) an increase in
consumption leads to a reduction in labor effort, because for high levels of consumption a further
increase in labor effort, which would increase non-financial income, becomes less valuable and
because leisure also becomes relatively more valued.

With this specification of the utility function, the optimality conditions become

̇𝑎 = 𝑟 𝑎 + 𝑤 1+𝜉
𝜉 𝑐− 𝜃

𝜉 − 𝑐, (16a)

̇𝑐 = 𝑐
𝜃   (𝑟 − 𝜌), (16b)

𝑎(0) = 𝑎0, (16c)
0 = lim

𝑡→∞
𝑐(𝑡)−𝜃  𝑎(𝑡) 𝑒−𝜌 𝑡. (16d)

Assuming that 𝜌 = 𝑟, and using the same approach as before, we find that the optimal solution
for financial wealth, consumption and labor supply is constant over time

𝑎∗(𝑡)  = 𝑎0, for all  𝑡 ∈ [0, ∞)
𝑐∗(𝑡)  = 𝑐∗(0), for all  𝑡 ∈ [0, ∞)

ℓ∗(𝑡) = (𝑤 𝑐∗(0)−𝜃 )
1
𝜉

where the initial level of consumption is

𝑐∗(0) = {𝑐 ∶ 𝑐 = 𝑟 𝑎0 + 𝑤 1+𝜉
𝜉 𝑐− 𝜃

𝜉  } 

cannot be determined in explicit form. Figure 8 illustrates the phase diagram, which can be
compared to Figure 4 panel (b). As the labor effort increases with the reduction in consumption
the isocline ̇𝑎 = 0 becomes flat for small positive (or negative) values of 𝑎.
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Figure 8: Phase diagram for the endogenous labor supply model for 𝑟 = 𝜌

6.2 Human capital accumulation

 
In this subsection we consider another extension of the previous problems in two dimensions:

first, we explicitly consider household’s human wealth in addition to financial wealth; second, we
consider the time use between working and learning (education or training), which implies that
labor supply is endogenous.23.

We introduce two new elements. First, the non-financial income is 𝑤 ℓ, where ℓ is the working
effort, and the wage rate is an increasing function of human capital 𝑤 = 𝑊(ℎ), with 𝑊 ′(ℎ) > 0;
second, human capital production depends on the time allocated to learning and on the level of
the previous human capital level, and as there is natural depreciation, the accumulation of human
capital is modelled by equation

ℎ̇ = 𝐹(ℓ, ℎ) − 𝛿 ℎ,

where 𝐹ℓ (⋅) < 0 and 𝐹ℎ (⋅) > 0 and 𝛿 > 0. Then, more time to work means less time to training
and a reduction in human capital, and increasing in human capital is incremental in the already
attained level of human capital. We additionally assume that 𝐹ℓℓ (ℓ, ℎ) < 0 and 𝐹ℓℎ (ℓ, ℎ) > 0.

This adds a new state variable to the household’s problem, where for simplicity, we do not
23For initial contributions to this literature see Ben-Porath, 1967 and Heckman, 1976. See Mincer, 1997 for a

survey and Cahuc and Zylberberg, 2004 is a textbook on labor economics.
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consider leisure time

  max
𝑐(⋅),ℓ(⋅)

  ∫
∞

0
 𝑢(𝑐(𝑡)) 𝑒−𝜌 𝑡  𝑑𝑡

subject to 
̇𝑎  = 𝑟 𝑎 + 𝑊(ℎ) ℓ − 𝑐

ℎ̇  = 𝐹(ℓ, ℎ) − 𝛿ℎ
𝑎(0) = 𝑎0 given 
ℎ(0) = ℎ0 given 
lim

𝑡→∞
 𝑒−𝑟 𝑡 𝑎(𝑡) ≥ 0,

lim
𝑡→∞

 𝑒−𝑟 𝑡 ℎ(𝑡) ≥ 0,

(P11)

This is an optimal control problem with two state variables, 𝑎 and ℎ, and two control variables,
𝑐 and ℓ. There is clearly a trade-off in time use: if time dedicated to learning increases, there is
a reduction in the immediate labor income, which can be compensated by an increase in human
capital, and, therefore, in the future wage rate. For simplicity, it is assumed that the only cost of
training is the reduction of working time, and therefore wage income. In any case, some training
is necessary because we assume that human capital depreciates (because of physical or knowledge
depreciation a a result of technical progress).

As there are two state variables, we have to introduce two co-state variables, 𝑞𝑎 and 𝑞ℎ, valuing
𝑎 and ℎ respectively, yielding the Hamiltonian

𝐻(𝑐, ℓ, 𝑎, ℎ, 𝑞𝑎, 𝑞ℎ) = 𝑢(𝑐) + 𝑞𝑎 (𝑟 𝑎 + 𝑊(ℎ) ℓ − 𝑐) + 𝑞ℎ (𝐹(1 − ℓ, ℎ) − 𝛿 ℎ),

and the first-order condition for optimality

𝑢′(𝑐) = 𝑞𝑎

𝑞𝑎 𝑊(ℎ) + 𝑞ℎ 𝐹ℓ (ℓ, ℎ) = 0
̇𝑞𝑎  = (𝜌 − 𝑟) 𝑞𝑎

̇𝑞ℎ  = (𝜌 + 𝛿 − 𝐹ℎ (ℓ, ℎ)) 𝑞ℎ − 𝑊 ′(ℎ) ℓ 𝑞𝑎

lim
𝑡→∞

 𝑒−𝜌 𝑡  𝑞𝑎(𝑡) 𝑎(𝑡) = 0,

lim
𝑡→∞

 𝑒−𝜌 𝑡  𝑞ℎ(𝑡) ℎ(𝑡) = 0,

  plus the feasibility conditions. If we define the relative value of human capital relative to financial
capital by 𝑣 ≡ 𝑞ℎ

𝑞𝑎
, obtain, from the first two optimality conditions, an arbitrage condition between



Paulo Brito Advanced Macroeconomics 2022/2023 46

working and training
𝑣 𝐹ℓ (ℓ, ℎ) + 𝑊(ℎ) = 0.

From this equation we obtain, explicitly or implicitly, the work effort supply ℓ = 𝐿(𝑣, ℎ) where

𝐿𝑣 = − 𝐹ℓ (ℓ, ℎ)
𝑣 𝐹ℓℓ (ℓ, ℎ) < 0, and  𝐿ℎ = −𝑣 𝐹ℓℎ (ℓ, ℎ) + 𝑊 ′(ℎ)

𝑣 𝐹ℓℓ (ℓ, ℎ) > 0

with the previous assumptions on the training function 𝐹(⋅). With the previous assumptions, the
work effort decreases with the relative value of human capital, and increases with the human capital
level. The first effect is related to an incentive effect to dedicate more effort to learning, i.e., future
increases in human capital, and the second effect is related to the increase in the wage rate resulting
from the present level of human capital. There is thus a trade-off between present and future human
capital.

Then the MHDS becomes

̇𝑎 = 𝑟 𝑎 + 𝑊(ℎ) 𝐿(𝑣, ℎ) − 𝑐, (17a)
ℎ̇ = 𝐹(𝐿(𝑣, ℎ), ℎ) − 𝛿 ℎ, (17b)

̇𝑣 = 𝑣 (𝑟 + 𝛿 − 𝐹ℎ(𝐿(𝑣, ℎ), ℎ)) − 𝑊 ′(ℎ) 𝐿(𝑣, ℎ), (17c)

̇𝑐 = 𝑢″(𝑐)
𝑢′(𝑐)   (𝜌 − 𝑟), (17d)

lim
𝑡→∞

 𝑒−𝜌 𝑡  𝑢′(𝑐(𝑡)) 𝑎(𝑡) = 0, (17e)

lim
𝑡→∞

 𝑒−𝜌 𝑡  𝑢′(𝑐(𝑡)) 𝑣(𝑡) ℎ(𝑡) = 0. (17f)

In order to obtain solutions to a version of this problem, we assume the following wage and
training equations

𝑊(ℎ) = 𝑤0 ℎ, and  𝐹 (ℓ, ℎ) = 𝐵 ((1 − ℓ) ℎ)
𝜂
 

where 𝑤0 > 0 is a base wage rate,  𝐵 is the productivity for training activities, and 0 < 𝜂 < 1. We

also assume a isoelastic utility function 𝑢(𝑐) = 𝑐1−𝜃 − 1
1 − 𝜃 .
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Assuming those specific functional forms, and 𝜌 = 𝑟, equations (17a)-(17f) simplify to

̇𝑎 = 𝑟 𝑎 + 𝑤0 (ℎ − (𝜂 𝐵 𝑣
𝑤0

 )
1

1−𝜂 ) − 𝑐, (18a)

ℎ̇ = 𝐵(𝜂 𝐵 𝑣
𝑤0

 )
𝜂

1−𝜂 − 𝛿 ℎ, (18b)

̇𝑣 = (𝑟 + 𝛿) 𝑣 − 𝑤0, (18c)
̇𝑐 = 0, (18d)
lim

𝑡→∞
 𝑒−𝜌 𝑡  𝑐(𝑡)−𝜃  𝑎(𝑡) = 0, (18e)

lim
𝑡→∞

 𝑒−𝜌 𝑡  𝑐(𝑡)−𝜃 𝑣(𝑡) ℎ(𝑡) = 0. (18f)

We can show that the solution to the household’s problem is

𝑎∗(𝑡) = 𝑎0 + ̄𝑣  (ℎ0 − ℎ̄) (1 − 𝑒−𝛿 𝑡 )

ℎ∗(𝑡) = ℎ̄  + (ℎ0 − ℎ̄) 𝑒−𝛿 𝑡 
 𝑣∗(𝑡) = ̄𝑣 
𝑐∗(𝑡) = 𝑟 (𝑎0 + ̄𝑣  ℎ0) + 𝛿 ̄𝑣  ℎ̄  (1 − 𝜂 𝐵)

ℓ∗(𝑡) =  1 − 𝛿 ℎ̄
ℎ∗(𝑡) ,

where the long run levels for 𝑣 and ℎ are

̄𝑣  = 𝑤0
𝑟 + 𝛿 , and  ℎ̄ = 1

𝛿  ( 𝜂 𝐵
𝑟 + 𝛿  )

𝜂
1−𝜂 .

   Exercise Prove this.
The steady state relative value of human capital is the present value of the base wage, 𝑤0,

discounted by the sum of the rate of return to capital and the depreciation rate of human capital
(𝑟 + 𝛿). The steady state of human capital is a positive function of the productivity of the training
system, 𝐵, and is lower the higher depreciation rate of human capital 𝛿.

With perfect capital market and 𝑟 = 𝜌, we have again the result that the optimal consumption
is constant. However, in this case, consumption is a function of total, financial and human, wealth
, 𝑎0 + ̄𝑣 ℎ0, and of the efficiency of the training system, measured by the term 1 − 𝜂 𝐵. However,
defining the optimal initial human capital as the given initial human capital plus the present value
of the future net increases in human capital through training,

ℎ∗
0  = ℎ0 + 𝛿 (1 − 𝜂 𝐵) ℎ̄

𝑟 ,
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then we still have consumption as a function of total wealth

𝑐∗(𝑡) = 𝑟 (𝑎0 + ̄𝑣  ℎ∗
0), for  𝑡 ∈ [0, ∞).

With the exception of the adjustment in the human capital stock, if the initial level is not
optimal, i.e., if ℎ0 ≠ ℎ̄, we see that the optimal policy is to adjust training, and therefore, the
human capital stock over time. For instance if ℎ0 < ℎ̄ then ℎ∗(0) = ℎ0 < ℎ̄, the effort dedicated to
training is higher than in the steady state, because 1 − ℓ(0) = 𝛿 ℎ̄

ℎ0
. Over time there is an increase

in human capital and in total wealth 𝑎∗(𝑡)  + ̄𝑣 ℎ∗.
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A functional derivatives

There are several different ways to present the idea of the derivative of a functional, some more
mathematically correct and some more informal, as is the case in physics or mechanics. We follow
Gel’fand and Fomin, 1963 which presents a good compromise between those two approaches.

Assume we have the space of functions ℱ, i.e., a collection of functions sharing some common
property, for instance, continuity, differentiability, boundedness, etc. Every element of ℱ, for
instance 𝑓 , is a mapping between a space X and a subset of the space of real numbers, that is
𝑓 ∶ X ⊆ ℝ → ℝ. A functional is a mapping between the space of functions and the set of real
numbers F ∶ ℱ → ℝ.

Examples The following functionals are common examples in economics:

F1[𝑓]  = ∫
X

𝑓(𝑥) 𝑑𝑥,

 
F2[𝑓]  = ∫

X
𝑢(𝑓(𝑥), 𝑥) 𝑑𝑥

  where 𝑢(⋅) is a function, or
F3[𝑓]  = ∫

X
𝑢(𝑓 ′(𝑥), 𝑓(𝑥), 𝑥) 𝑑𝑥

  where 𝑓 ′(⋅) is the derivative of function 𝑓(⋅).
There are two concepts of derivatives related to functionals.
Consider a perturbation in function 𝑓 from 𝑓 ↦ 𝑓 + 𝛿𝑓 . A Frechet derivative of functions F[𝑓],

denoted by 𝛿F[𝑓] is defined from

lim
𝛿𝑓→0

||F[𝑓 + 𝛿𝑓]  − F[𝑓]  − 𝛿F[𝑓]||
𝛿𝑓 = 0

  where || ⋅ || is the norm of space ℱ.
A more useful concept is the concept is the Gâteaux derivative. It is an extension of the

directional derivative for functions. Assume that we introduce a perturbation on function 𝑓 ↦ 𝑓+𝜀𝜑
in which 𝜑 is a function, 𝜑 ∶ 𝑋 → ℝ and 𝜀 > 0 is a number.

The first variation of a functional is

𝑑F[𝑓; 𝜑]  = F[𝑓 + 𝜀 𝜑]  − F[𝑓] 

and the functional derivative (in the GâteUx sense) is analogous to the concept of derivative for
functions:

𝛿F[𝑓; 𝜑] = lim
𝜀→0

𝑑F[𝑓; 𝜑]
𝜖 .
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  If the functional involves more than one function we may write 𝛿𝑓1
F[𝑓1, 𝑓2; 𝜑1, 𝜑2].

In regular cases, in order apply this concept, we perform a first order Taylor approximation

F [𝑓 + 𝜖𝜑]  = F[𝑓]  + 𝛿F[𝑓; 𝜑]  𝜀 + 𝑜(𝜀2)

  where lim𝜀→∞
||𝑜(𝜀2)||

𝜀2 = 0.
Performing a second order Taylor approximation we find

F [𝑓 + 𝜖 𝜑]  = F[𝑓]  + 𝛿F[𝑓; 𝜑]  𝜀 + 𝛿2F[𝑓; 𝜑2]  𝜀2 + 𝑜(𝜀3).

  However, we can distinguish between the ”own” second order functional derivative

𝛿F[𝑓 + 𝜀 𝜑; 𝜑] = 𝛿F[𝑓; 𝜑] + 𝛿2F[𝑓; 𝜑2]  𝜀2 + 𝑜(𝜀3)

  where lim𝜀→∞
||𝑜(𝜀3)||

𝜀3 = 0, and ”crossed” second order derivative

𝛿F[𝑓 + 𝜀 𝜑′; 𝜑] = 𝛿F[𝑓; 𝜑] + 𝛿2F[𝑓; 𝜑, 𝜑′]  𝜀2 + 𝑜(𝜀3).

 
Examples For the previous examples, and assuming that 𝜑(𝑥) = 0 for 𝑥 ∈ 𝜕X, where 𝜕X is

the boundary of X, we have
𝛿F1[𝑓; 𝜑]  = ∫

𝑋
𝑓(𝑥) 𝜑(𝑥)  𝑑𝑥,

 
𝛿F2[𝑓; 𝜑]  = ∫

𝑋

𝜕𝑈(𝑓(𝑥), 𝑥)
𝜕𝑓   𝜑(𝑥)  𝑑𝑥

  and, if 𝑓 belongs to a space of differentiable functions, which means that so 𝜑 does,

𝛿F3[𝑓; 𝜑]  = ∫
𝑋

(𝜕𝑈(𝑓 ′(𝑥), 𝑓(𝑥), 𝑥)
𝜕𝑓 ′   𝜑(𝑥)  + 𝜕𝑈(𝑓 ′(𝑥), 𝑓(𝑥), 𝑥)

𝜕𝑓 𝜑′(𝑥)) 𝑑𝑥.

  For the last case we have the second order functional derivative

𝛿2F3 [𝑓; 𝜑]  = ∫
𝑋

𝜕2𝑈(𝑓(𝑥), 𝑥)
𝜕𝑓2   𝜑2(𝑥)  𝑑𝑥.

 
A particular case of perturbation is the ”spike” variation. In this case the functional derivative

is sometimes called the Volterra derivative.
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Consider an element of the domain of function 𝑓 , say 𝑥′ and introduce the variation 𝑑𝑓(𝑥) = 0
if 𝑥 ≠ 𝑥′ and 𝑑𝑓(𝑥) = 𝜀 if 𝑥 = 𝑥′. We can write this as a perturbation 𝑓 ↦ 𝑓 + 𝜀 𝛿(𝑥 − 𝑥′) where 𝛿
is Dirac’s delta generalized function. It has the property ∫x 𝛿(𝑥 − 𝑥′) 𝑓(𝑥) 𝑑𝑥 = 𝑓(𝑥′).

Applying to the previous examples, we find

𝛿F1[𝑓; 𝑥′] = ∫
𝑋

𝑓(𝑥) 𝛿(𝑥 − 𝑥′)  𝑑𝑥 = 𝑓(𝑥′) (19)

 
𝛿F2[𝑓; 𝑥′]  = ∫

𝑋

𝜕𝑈(𝑓(𝑥), 𝑥)
𝜕𝑓   𝛿(𝑥 − 𝑥′)  𝑑𝑥 = 𝜕𝑈(𝑓(𝑥), 𝑥)

𝜕𝑓  ∣
𝑥=𝑥′

. (20)

B Necessary conditions for problem (P2)

We introduce the functional, noting that ̇𝑎(𝑡) + 𝑐(𝑡) = 0,

U([𝑐], 𝑎0) = ∫
𝑇

0
𝑢(𝑐(𝑡)) 𝑒−𝜌𝑡 − 𝜆(𝑡)( ̇𝑎(𝑡) + 𝑐(𝑡)) 𝑑𝑡

  where we introduce an adjoint multiplier 𝜆 ∶ T → ℝ+. Its introduction involves a penalty
associated to the reduction in value brought about by the budget constraint. Because there is now
a constraint introduced by the initial value of the stock, we call value function to

𝑉 (𝑎0) = max
𝑐(⋅)

U([𝑐], 𝑎0) = U([𝑐∗], 𝑎0) = ∫
𝑇

0
𝑢(𝑐∗(𝑡)) 𝑒−𝜌𝑡 − 𝜆(𝑡)( ̇𝑎∗(𝑡) + 𝑐∗(𝑡)) 𝑑𝑡.

  Assume we know the optimal path (𝑐∗(𝑡), 𝑎∗(𝑡))𝑡∈T. We introduce perturbations in both functions
𝑐∗(𝑡) → 𝑐∗(𝑡) + 𝜑𝑐(𝑡) and 𝑎∗(𝑡) → 𝑎∗(𝑡) + 𝜑𝑎(𝑡), such that 𝜑𝑎(0) = 0, because 𝑎∗(0) = 𝑎0 is not free.
The value functional, for the perturbed paths, is now

U([𝑐∗ + 𝜑𝑐], 𝑎0) = ∫
𝑇

0
𝑢(𝑐∗(𝑡) + 𝜑𝑐(𝑡)) 𝑒−𝜌𝑡 − 𝜆(𝑡)(𝑐∗(𝑡) + 𝜑𝑐(𝑡) + ̇𝑎∗(𝑡) + 𝜑̇𝑎(𝑡)) 𝑑𝑡.
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  The first variation becomes,

𝑑U([𝑐∗]) = ∫
𝑇

0
((𝑢′(𝑐∗(𝑡)) 𝑒−𝜌𝑡 − 𝜆(𝑡)) 𝜑𝑐(𝑡) − 𝜆(𝑡) 𝜑̇𝑎(𝑡)) 𝑑𝑡

= ∫
𝑇

0
(𝑢′(𝑐∗(𝑡) 𝑒−𝜌𝑡 − 𝜆(𝑡)) 𝜑𝑐(𝑡) 𝑑𝑡 − ∫

𝑇

0
𝜆(𝑡) 𝜑̇𝑎(𝑡)𝑑𝑡

= (using integration by parts)

= ∫
𝑇

0
(𝑢′(𝑐∗(𝑡)) 𝑒−𝜌𝑡 − 𝜆(𝑡)) 𝜑𝑐(𝑡) 𝑑𝑡 − 𝜆(𝑡)𝜑𝑎(𝑡)∣

𝑇

𝑡=0
+ ∫

𝑇

0
𝜆̇ (𝑡)𝜑𝑎(𝑡)𝑑𝑡

= (noting that 𝜑𝑎(0) = 0 for an admissible perturbation)

= ∫
𝑇

0
(𝑢′(𝑐∗(𝑡)) 𝑒−𝜌𝑡 − 𝜆(𝑡)) 𝜑𝑐(𝑡) 𝑑𝑡 − 𝜆(𝑇 )𝜑𝑎(𝑇 ) + ∫

𝑇

0
𝜆̇ (𝑡)𝜑𝑎(𝑡)𝑑𝑡

  Using integration by parts and the fact that 𝜑𝑎(0) = 0. At the optimum (𝑐∗(𝑡), 𝑎∗(𝑡))𝑡∈T is such
that 𝛿U([𝑐∗]) = 0. The first-order conditions are thus: 𝑢′(𝑐∗)(𝑡) 𝑒−𝜌𝑡 − 𝜆(𝑡) = 𝜆̇(𝑡) = 0, for 𝑡 ∈ [0, 𝑇 ]
and 𝜆(𝑇 ) = 0. Integrating 𝜆̇(𝑡) = 0 we find 𝜆(𝑡) = constant for every 𝑡 ∈ [0, 𝑇 ], but as 𝜆(𝑇 ) = 0
then 𝜆(𝑡) = 0 for every 𝑡 ∈ [0, 𝑇 ]. Therefore 𝑢′(𝑐∗)(𝑡) 𝑒−𝜌𝑡 = 0 for every 𝑡 ∈ [0, 𝑇 ] as in (P1:foc).

C Necessary conditions for problem (P3)

The (penalized) utility functional is

U([𝑐], 𝑎0) = ∫
𝑇

0
(𝑢(𝑐(𝑡)) 𝑒−𝜌𝑡 − 𝜆(𝑡)( ̇𝑎(𝑡) + 𝑐(𝑡)) + 𝜂(𝑡)(𝑎(𝑡) − 𝑎)) 𝑑𝑡

where we introduce a multiplier 𝜂 ∶ T → ℝ+ associated to the instantaneous constraint on 𝑎. The
complementary slackness conditions should also hold

𝜂(𝑡) ≥ 0, 𝜂(𝑡)(𝑎(𝑡) − 𝑎) = 0, for every 𝑡 ∈ T.

  Using the same method as in section B, the perturbed value functional is

U([𝑐∗+𝜑𝑐], 𝑎0) = ∫
𝑇

0
(𝑢(𝑐∗(𝑡)+𝜑𝑐(𝑡)) 𝑒−𝜌𝑡−𝜆(𝑡)(𝑐∗(𝑡)+𝜑𝑐(𝑡)+ ̇𝑎∗(𝑡)+𝜑̇𝑎(𝑡)) +𝜂(𝑡)(𝑎∗(𝑡)+𝜑𝑎(𝑡)−𝑎)) 𝑑𝑡.

  Then, using the same procedure as before, the variation if the functional is

𝑑U([𝑐∗]) = ∫
𝑇

0
(𝑢′(𝑐∗(𝑡)) 𝑒−𝜌𝑡 − 𝜆(𝑡)) 𝜑𝑐(𝑡) 𝑑𝑡 − 𝜆(𝑇 )𝜑𝑎(𝑇 ) + ∫

𝑇

0
(𝜆̇ (𝑡) + 𝜂(𝑡))𝜑𝑎(𝑡)𝑑𝑡.
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  Therefore the f.o.c are 𝑢′(𝑐∗(𝑡)) 𝑒−𝜌𝑡 = 𝜆(𝑡), 𝜆̇(𝑡) = −𝜂(𝑡), for 𝑡 ∈ [0, 𝑇 ], and 𝜆(𝑇 ) = 0, together
with the complementary slackness conditions. Observe that 𝜆(𝑡) = 𝜆(0) − ∫𝑡

0 𝜂(𝑠)𝑑𝑠. As 𝜂(0) = 0
because 𝑎0 > 𝑎, and, as we discuss in the main text 𝜂(𝑡) = 0 for 𝑡 ∈ [0, 𝑇 ), and 𝜂(𝑇 ) > 0 because
𝑎(𝑇 ) = 𝑎, then 𝜆(𝑡) = 𝜂(𝑇 ) for 𝑡 ∈ [0, 𝑇 ), which means there is a discontinuity for 𝜆 at 𝑡 = 𝑇 .

D Necessary conditions for problem (P4)

We can find the necessary (in this case also sufficient) optimality conditions for problem (P4) by
using the Pontriyagin maximum Principle. As the Hamiltonian function is

𝐻 = 𝑐1−𝜃 − 1
1 − 𝜃 + 𝑞 (𝑟 𝑎 − 𝑐)

  we have
⎧{{{
⎨{{{⎩

̇𝑎 = 𝑟 𝑎 − 𝑐 for 𝑡 ∈ [0, 𝑇 ]
̇𝑐 = 𝛾𝑐 𝑐 for 𝑡 ∈ [0, 𝑇 ]

𝑎(0) = 𝑎0 given for 𝑡 = 0
𝑐(𝑇 )−𝜃(𝑎(𝑇 ) − 𝑎) = 0 for 𝑡 = 𝑇

  where the rate of growth of consumption is 𝛾𝑐 ≡ 𝑟 − 𝜌
𝜃 . Solving the Euler equation we have

𝑐(𝑡) = 𝑐(0) 𝑒𝛾𝑐𝑡. Substituting in the budget constraint, together with the initial condition yields

𝑎(𝑡) = 𝑒𝑟𝑡(𝑎0 + 𝑐(0)
𝛾𝑐 − 𝑟(1 − 𝑒𝛾𝑐−𝑟) 𝑡)), for 𝑡 ∈ [0, 𝑇 ]

  If 𝑐(0) > 0 and finite, then 𝑐(𝑇 ) > 0 and finite, which implies that the transversality constraint
only holds if 𝑎(𝑇 ) = 𝑎. Therefore, we can find 𝑐(0) by solving the equation

𝑎  𝑒𝑟𝑇 = 𝑎0 + 𝑐(0)
𝛾𝑐 − 𝑟(1 − 𝑒𝛾𝑐−𝑟) 𝑇 )

  Then we obtain equations (4) and (5).

E Obtaining the optimal policy function

Using the principle of dynamic programming, the necessary (and in this case also sufficient) condi-
tions for an optimum are represented by the HJB (from Hamilton-Jacobi-Bellman) equation for a
deterministic discounted infinite-horizon optimal control problem

𝜌 𝑣(𝑎) = max
𝑐

{ 𝑢(𝑐) + 𝑣′(𝑎) (𝑟 𝑎 + 𝑤 − 𝑐)} 
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where 𝑢(𝑐) = 𝑐1−𝜃 −1
1−𝜃 . The optimum condition is

𝑢′(𝑐) = 𝑣′(𝑎) ⟺ 𝑐−𝜃  = 𝑣′(𝑎),

where the policy function is
𝑐 = 𝐶(𝑎) = 𝑣′(𝑎)− 1

𝜃

  Then the HJB  equation becomes a implicit ODE

𝜌 𝑣(𝑎) = 𝑣′(𝑎) 𝜃−1
𝜃 − 1

1 − 𝜃 + 𝑣′(𝑎) (𝑟 𝑎 + 𝑤 − 𝑣′(𝑎)− 1
𝜃 ),

  that can be written equivalently as

 𝜌 (1 − 𝜃) 𝑣(𝑎) + 1 = 𝑣′(𝑎) (𝜃 𝑣′(𝑎)− 1
𝜃 + (1 − 𝜃) 𝑟 (𝑎 + 𝑤

𝑟 )). (21)

To solve this equation we use a conjecture on the shape of the solution (and apply the method of
undetermined coefficients).

We assume that trial function

𝑣(𝑎)  = 1
1 − 𝜃 (𝐵 (𝑎 + 𝑤

𝑟 )
1−𝜃

− 1
𝜌)

where 𝐵 is an undetermined coefficient. It our conjecture is right we should be able to determine
it as a function of parameters by substitution this conjecture function in equation (21).

Upon substitution yields the equation

𝜌 = 𝜃 𝐵− 1
𝜃 + (1 − 𝜃) 𝑟

that we solve for 𝐵 to obtain
𝐵 = (𝑟 − 𝛾)−𝜃  for  𝛾 = 𝑟 − 𝜌

𝜃 .
Therefore, our conjecture was right and the value function is

𝑣(𝑎)  = 1
1 − 𝜃 ((𝑟 − 𝛾)−𝜃 (𝑎 + 𝑤

𝑟 )
1−𝜃

− 1
𝜌).

As
𝑣′(𝑎) = (𝑟 − 𝛾)−𝜃 (𝑎 + 𝑤

𝑟 )
−𝜃

,
substituting in the policy function, yelds

𝑐∗  = 𝐶(𝑎) = (𝑟 − 𝛾) (𝑎 + 𝑤
𝑟 ).

 



Paulo Brito Advanced Macroeconomics 2022/2023 58

F Two-stage problem

Consider a dynastic household problem in which the non-financial income has a switch at a known
time 𝜏 ∈ (0, ∞) such that

𝑦(𝑡) =
⎧{
⎨{⎩

𝑦1, for  0 ≤ 𝑡 < 𝜏
𝑦2, for  𝜏 ≤ 𝑡 < ∞,

where 𝑦1 ≠ 𝑦2. This can translate income associated to employed/unemployed or work/retirement.
The household problem is

max
𝑐(⋅)

  ∫
∞

0
 𝑢(𝑐(𝑡)) 𝑒−𝜌 𝑡  𝑑𝑡

subject to
̇𝑎  = 𝑟 𝑎 + 𝑦(𝑡) − 𝑐, 𝑡 ∈ [0, ∞)

𝑎(0) = 𝑎0 given
lim

𝑡→∞
 𝑒−𝑟 𝑡  𝑎(𝑡) ≥ 0

(22)

where 𝑟 > 0 is the interest rate, 𝜌 > 0 is the rate of time preference. We assume that the utility
function is iso-elastic 𝑢(𝑐) = (1−𝜃)−1 (𝑐1−𝜃 −1), for 𝜃 > 0 and also assume that (𝜃 −1) 𝑟 +𝜃 𝜌 > 0.

As referred, we solve the problem backward the problem in two steps and obtain the final
solution by using the using the matching condition

First step: terminal stage We solve the problem for the interval 𝑡 ∈ [𝑡1, ∞) assuming we know
the initial value of the state variable 𝑎(𝜏) = 𝑎𝜏 . The problem is

max
𝑐(⋅)

  ∫
∞

𝜏
 𝑢(𝑐(𝑡)) 𝑒−𝜌 𝑡  𝑑𝑡

subject to 
̇𝑎  = 𝑟 𝑎 + 𝑦2 − 𝑐, 𝑡 ∈ [𝜏, ∞)

𝑎(𝜏) = 𝑎𝜏 assumed to be given 
lim

𝑡→∞
 𝑒−𝑟 𝑡  𝑎(𝑡) ≥ 0.

The Hamiltonian for this problem is

𝐻2(𝑡) = 𝐻2(𝑎(𝑡), 𝑐(𝑡), 𝜆2(𝑡)) = 𝑢(𝑐(𝑡)) 𝑒−𝜌𝑡  + 𝜆2(𝑡)(𝑟𝑎(𝑡) + 𝑦2 − 𝑐(𝑡), for  𝑡 ∈ [𝜏, ∞)
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  and the necessary (and in this case sufficient) conditions for an optimum are

𝑐(𝑡)−𝜃  𝑒−𝜌𝑡  = 𝜆2(𝑡), 𝑡 ∈ [𝜏, ∞)
𝜆̇2 = −𝑟 𝜆2, 𝑡 ∈ [𝜏, ∞)

̇𝑎  = 𝑟 𝑎 + 𝑦2 − 𝑐,
𝑎(𝜏) = 𝑎1, 𝑡 = 𝜏

lim
𝑡→∞

 𝜆2(𝑡) 𝑎(𝑡) = 0.

 

Solving the Euler equation and using the optimality condition we find

𝑐(𝑡) = 𝑐(𝜏) 𝑒𝛾(𝑡−𝜏) 
𝜆2(𝑡) =  𝑐(𝜏)−𝜃  𝑒−𝜌(𝑡−𝜏).

   The solution of the budget constraint is

𝑎(𝑡) = 𝑒𝑟(𝑡−𝜏)  [𝑎1 + 𝑒𝑟 𝜏   ( ∫
𝑡

𝜏
(𝑦2 − 𝑐(𝑠))𝑑𝑠)]

Substituting the solution for 𝑐 this is equivalent to

𝑒−𝑟(𝑡−𝜏)  𝑎(𝑡) = 𝑎1 + 𝑒𝑟 𝜏   ( ∫
𝑡

𝜏
(𝑦2 − 𝑐(𝜏) 𝑒𝛾(𝑠−𝜏))𝑑𝑠)

where 𝑐(𝜏) is unknown. Multiplying by the solution to 𝜆2(𝑡) and using the transversality condition,
and assuming that 𝑟 > 0 and 𝑟 − 𝛾 > 0, 24 we find the optimal consumption at the time of the
switch

𝑐∗(𝜏) = (𝑟 − 𝛾) (𝑎1 + 𝑦2
𝑟 ).

  Therefore, after the switch we obtain

𝑐∗(𝑡) = (𝑟 − 𝛾) (𝑎1 + 𝑦2
𝑟 ) 𝑒𝛾(𝑡−𝜏), 𝜏 ≤ 𝑡 < ∞

𝑎∗(𝑡) = −𝑦2
𝑟   + (𝑎1 + 𝑦2

𝑟 ) 𝑒𝛾(𝑡−𝜏), 𝜏 ≤ 𝑡 < ∞
 

  and the value for the co-state variable at the time of the switch is

𝜆2(𝜏) = ((𝑟 − 𝛾) (𝑎1 + 𝑦2
𝑟 ))

−𝜃
  𝑒−𝜌𝜏 .

where 𝑎∗(𝜏) = 𝑎1 is unknown at this state.
24If this condition is not satisfied, there will be no solution to the problem.
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Second step: initial stage  
The problem is

max
𝑐(⋅)

  ∫
𝜏

0
 𝑢(𝑐(𝑡)) 𝑒−𝜌 𝑡  𝑑𝑡

subject to 
̇𝑎  = 𝑟 𝑎 + 𝑦1 − 𝑐, 𝑡 ∈ [0, 𝜏)

𝑎(0) = 𝑎0 given 
𝑎(𝜏−) = 𝑎1 assumed to be given

where 𝑎(𝜏−) = lim𝑡↑𝜏  𝑎(𝑡).
The Hamiltonian for this problem is

𝐻1(𝑡) = 𝐻1(𝑎(𝑡), 𝑐(𝑡), 𝜆1(𝑡)) = 𝑢(𝑐(𝑡)) 𝑒−𝜌𝑡  + 𝜆1(𝑡)(𝑟𝑎(𝑡) + 𝑦1 − 𝑐(𝑡), for  𝑡 ∈ [0, 𝜏)

  and the necessary (and in this case sufficient) conditions for an optimum are

𝑐(𝑡)−𝜃  𝑒−𝜌𝑡  = 𝜆1(𝑡), 𝑡 ∈ [0, 𝜏)
𝜆̇1 = −𝑟 𝜆1, 𝑡 ∈ (0, 𝜏)

̇𝑎  = 𝑟 𝑎 + 𝑦1 − 𝑐,
𝑎(0) = 𝑎0, 𝑡 = 0.

 

Solving the Euler equation, substituting for consumption, and solving the budget constraint, subject
to the initial net asset position 𝑎0 we find

𝑐(𝑡) = 𝑐(0) 𝑒𝛾𝑡, 𝑡 ∈ [0, 𝜏)

𝑎(𝑡) = 𝑒𝑟 𝑡  (𝑎0 + ∫
𝑡

0
𝑒−𝑟𝑠 (𝑦1 − 𝑐(0)𝑒𝛾 𝑠) 𝑑𝑠)

where 𝑐(0) is unknown, and
𝜆1(𝜏) = 𝑐(0)−𝜎 𝑟−𝑟 𝜏 . 

 

Final step  
Up until this phase, we have two unknowns: 𝑐(0) and 𝑎1. We can determine them by using

the matching condition for the co-state variable and by using using the solution for the net asset
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position obtained in the last step. That is, we can find them by solving jointly

⎧{
⎨{⎩

 𝜆1(𝜏−)  = 𝜆2(𝜏),
𝑎(𝜏−) = 𝑎1.

 

Solving the first equation we find

𝑐∗ (0) = (𝑟 − 𝛾) (𝑎1 + 𝑦2
𝑟 ) 𝑒−𝛾 𝜏  

which, upon substitution in the second equation yields

𝑎∗
1 = 𝑒𝛾 𝜏 (𝑎0 + 𝑦1

𝑟  (1 − 𝑒−𝑟 𝜏) + 𝑦2
𝑟   (𝑒−𝑟 𝜏   − 𝑒−𝛾 𝜏)). (23)

 

Solution   
We obtain the optimal consumption path (𝑐∗(𝑡))

𝑡∈[0,∞)
, where

𝑐∗(𝑡) = (𝑟 − 𝛾) (𝑎∗
1 + 𝑦2

𝑟 ) 𝑒𝛾 (𝑡−𝜏), for  𝑡 ∈ [0, ∞),

  and substituting 𝑎∗
1 in the solution for 𝑎(𝑡 ∈ [0, 𝜏)) we obtain the optimal net asset position path

(𝑎∗(𝑡))
𝑡∈[0,∞)

, where

𝑎∗(𝑡) =
⎧{
⎨{⎩

−𝑦1
𝑟 + (𝑎∗

1 + 𝑦2
𝑟 ) 𝑒𝛾 (𝑡−𝜏) + (𝑦1

𝑟 − 𝑦2
𝑟 ) 𝑒𝑟(𝑡−𝜏), for  𝑡 ∈ [0, 𝜏)

−𝑦2
𝑟 + (𝑎∗

1 + 𝑦2
𝑟 ) 𝑒𝛾 (𝑡−𝜏), for  𝑡 ∈ [𝜏, ∞)

 

 

G Comparative dynamics

Assume we have a non-linear dynamic system

𝑋̇ = 𝐹(𝑋, 𝜑)

  where 𝜑 is an exogenous variable and 𝑋 = (𝑥1, 𝑥2) in which 𝑥1 is pre-determined and 𝑥2 is
non-predetermined.

Let the exogenous variable takes the value 𝜑0, and let the associated steady state be 𝑋̄(𝜑0).
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Now consider a variation in the exogenous variable from 𝜑0 to 𝜑1 = 𝜑0 + 𝑑𝜑. If the syatem is
at the steady state 𝑋̄(𝜑0) it will be perturbed away from it. Let 𝑑𝑋(𝑡) = 𝑋(𝑡) − 𝑋̄(𝜑0) be the
variation of 𝑋 when away from the steady state.

The effects resulting from the perturbation 𝑑𝜑 can be studied from the solutions of the varia-
tional system. Taking a time derivative, and observing that ̇𝑑𝑋(𝑡) = 𝑋̇ (because ̇𝑋̄ = 0, yields
the linear ordinary differential equation

𝑋̇ = ̄𝐹𝑥(𝜑0) 𝑑𝑋(𝑡) + ̄𝐹𝜑(𝜑0) 𝑑𝜑.

  where the Jacobians are

̄𝐹𝑥(𝜑0) ≡ 𝐹𝑥(𝑋̄(𝜑0), 𝜑0), ̄𝐹𝜑 (𝜑0) ≡ 𝐹𝜑(𝑋̄(𝜑0), 𝜑0).

 
The comparative dynamics multipliers are the solutions, 𝑑𝑋(𝑡) to this system.
For MHDS systems with only one pre-determined variable (or state variable) the Jacobian

̄𝐹𝑥(𝜑0) has two eigenvalues, 𝜆𝑠 and 𝜆𝑢, that satisfy the relationship 𝜆𝑠 ≤ 0 < 𝜆𝑢. This means that
the steady state is a saddle point, if 𝜆𝑠 < 0 or an unstable saddle-node, if 𝜆𝑠 = 0.

Therefore, two generic cases can occur, which have consequences on the method for determining
𝑑𝑋(𝑡), depending on the Jacobian having a non-zero or a zero determinant. In the first case, we
have 𝜆𝑠 < 0 and the dynamics will not depend on 𝑥1(0), the initial value of the pre-determined
variable and in the second case 𝜆𝑠 = 0 and the dynamics will depend on 𝑥1(0).

Next we deal with the two cases separately.
Non-zero eigenvalues case
As det ( ̄𝐹𝑥(𝜑0)) < 0 then the Jacobian has a classic inverse, ̄𝐹𝑥(𝜑0)−1, which allows us to

determine the long-run multipliers as

𝑑𝑋̄ = − ̄𝐹𝑥(𝜑0)−1 ̄𝐹𝜑(𝜑0) 𝑑𝜑 = 𝑋𝜑(𝜑0) 𝑑𝜑 

  and the general solution to the variational system is

𝑑𝑋(𝑡) = 𝑑𝑋̄ + 𝑘𝑠 𝑃 𝑠 𝑒𝜆𝑠 𝑡 + 𝑘𝑢 𝑃 𝑢 𝑒𝜆𝑢 𝑡 (24)

  where 𝑃 𝑠 and 𝑃 𝑢 are the eigenvectors associated to the eigenvalues 𝜆𝑠 < 0 and 𝜆𝑢 > 0, respec-
tively, and 𝑘𝑠 and 𝑘𝑢 are two arbitrary constants.

The two arbitrary constants provide us with two degrees of freedom allowing us to introduce
two properties in the solution: first, we can force it converge to a new steady state 𝑋̄(𝜑1), and,
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second, to make the pre-determined variable 𝑥1 be continuous at the time of the shock, such that
𝑑𝑥1(0) = 𝑥1(0) − ̄𝑥1(𝜑0) = 0. The state variable, while being constant at the time of the shock,
will start to change as a consequence of the shock, thus ̇𝑑𝑥1(0) ≠ 0.

The first condition is satisfied if we set set 𝑘𝑢 = 0, which yields 𝑑𝑋(𝑡) = 𝑑𝑋̄ + 𝑘𝑠 𝑃 𝑠 𝑒𝜆𝑠 𝑡, or,
invector notation,

(𝑑𝑥1(𝑡)
𝑑𝑥2(𝑡)) = (𝑑 ̄𝑥1

𝑑 ̄𝑥2
) + 𝑘𝑠 (𝑃 𝑠

1
𝑃 𝑠

2
) 𝑒𝜆𝑠 𝑡.

  The second condition is satisfied if, at time 𝑡 = 0, we set 𝑑𝑥1(0) = 0, or equivalently, 𝑑 ̄𝑥1+𝑘𝑠 𝑃 𝑠
1 =

0. Solving for the other arbitrary constant yields 𝑘𝑠 = −𝑑 ̄𝑥1
𝑃 𝑠

1
.

Substituting both constants in equation (24) allows us to obtain the comparative dynamics
variations 

(𝑑𝑥1(𝑡)
𝑑𝑥2(𝑡)) = ⎛⎜

⎝

𝑑 ̄𝑥1(1 − 𝑒𝜆𝑠 𝑡)
𝑑 ̄𝑥2 − 𝑑 ̄𝑥1(𝑃 𝑠

2
𝑃 𝑠

1
) 𝑒𝜆𝑠 𝑡

⎞⎟
⎠

.

  Recalling that 𝑑𝑋(𝑡) = 𝑋(𝑡) − 𝑋̄(𝜑0) we have equivalently

 
𝑥1(𝑡) = ̄𝑥1(𝜑0) + 𝑑 ̄𝑥1(1 − 𝑒𝜆𝑠 𝑡)

𝑥2(𝑡) = ̄𝑥2(𝜑0) + 𝑑 ̄𝑥2 − 𝑑 ̄𝑥1(𝑃 𝑠
2

𝑃 𝑠
1

) 𝑒𝜆𝑠 𝑡.

  The meaning of this formula is the following: assuming that at time 𝑡 = 0 the economy is at a
steady state associated to the level of the exogenous variable 𝜑0, ( ̄𝑥1(𝜑0), ̄𝑥2(𝜑0)), a change in the
exogenous variable to level 𝜑1 = 𝜑0 + 𝑑𝜑 changes the steady state by (𝑑 ̄𝑥1, 𝑑 ̄𝑥2); as the variable 𝑥1
is pre-determined the adjustment is not immediate; the variables (𝑥1(𝑡), 𝑥2(𝑡)) trace out the path
of the economy following that shock.

Evaluating for 𝑡 → ∞ yields the long-run multipliers

𝑋(∞) − 𝑋̄(𝜑0)
𝑑𝜑   = 𝑑𝑋̄

𝑑𝜑 = ⎛⎜⎜⎜
⎝

𝑑 ̄𝑥1
𝑑𝜑
𝑑 ̄𝑥2
𝑑𝜑

⎞⎟⎟⎟
⎠

, (25)

and evaluating at 𝑡 = 0 we obtain the impact multiplier for the non-predetermined variable 

𝑥2(0) − ̄𝑥2(𝜑0)
𝑑𝜑   =  𝑃 𝑠

1 𝑑 ̄𝑥2 − 𝑑 ̄𝑥1 𝑃 𝑠
2

𝑃 𝑠
1 𝑑𝜑 .
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The difference between the initial and the (approximated) final steady state after the shock
in 𝜑, which we denote by 𝑑 ̄𝑥𝑖 = ̄𝑥𝑖(𝜑1) − ̄𝑥𝑖(𝜑0), for 𝑖 = 1, 2, for the two variables have a close
relationship,

𝑃 𝑠
1 (𝑥2(𝑡) − ̄𝑥2(𝜑1)) = 𝑃 𝑠

2 (𝑥1(𝑡) − ̄𝑥1(𝜑1)),

  which is given by the slope of the eigenspace associated to the negative eigenvalue (the stable
eigenspace).

In the presence of a zero eigenvalue
When det ( ̄𝐹𝑥(𝜑0)) = 0 the Jacobian has eigenvalues 𝜆𝑠 = 0 < 𝜆𝑢 and there is a not a clas-

sic inverse for the Jacobian. We can use the Moore-Penrose inverse to determine the long run
multipliers

𝑑𝑋̄ = − ̄𝐹𝑥(𝜑0)+  ̄𝐹𝜑(𝜑0) 𝑑𝜑 + (𝐼 − ̄𝐹𝑥(𝜑0)+  ̄𝐹𝑥(𝜑0)) 𝑍

  where 𝐼 is the identity matrix, 𝑍 = (𝑧1, 𝑧2)⊤ is a vector of constants and we use

̄𝐹𝑥(𝜑0) = 𝑃 Λ 𝑃 −1 ̄𝐹𝑥(𝜑0)+ = 𝑃 Λ+ 𝑃 −1

  where the Jordan form, the Moore-Penrose inverse and the eigenvector matrices are

Λ = (0 0
0 𝜆𝑢

) , Λ+ = ⎛⎜
⎝

0 0
0 1

𝜆𝑢
 
⎞⎟
⎠

, 𝑃 = (𝑃 𝑠
1 𝑃 𝑢

1
𝑃 𝑠

2 𝑃 𝑢
2

) .

  Because, differently from the classic inverse ̄𝐹𝑥(𝜑0)+  ̄𝐹𝑥(𝜑0) ≠ 𝐼 then the expression for the
multipliers would allows us to obtain a linear equation in one of the elements of vector 𝑍, say 𝑧2.
We can determine it by using the predetermine nature of 𝑥1 by setting 𝑑 ̄𝑥1 = 0.

The solution to the variational system is now

𝑑𝑋(𝑡) = 𝑑𝑋̄ + 𝑘𝑠 𝑃 𝑠 + 𝑘𝑢 𝑃 𝑢 𝑒𝜆𝑢𝑡

  where

𝑑𝑋̄ = (  0
𝑑 ̄𝑥2

)

  which again contains two arbitrary constants, 𝑘𝑠 and 𝑘𝑢. To eliminate unbounded trajectories,
we set again 𝑘𝑢 = 0 and determine 𝑘𝑠 such that 𝑑𝑥1(0) = 0. This yields the variations

𝑑𝑥1(𝑡) = 0, for all  𝑡 ∈ [0, ∞)
𝑑𝑥2(𝑡) = 𝑑 ̄𝑥2, for all  𝑡 ∈ [0, ∞)
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  where the shock in 𝜑 is completely absorbed by 𝑥2. This means that the values of the perturbed
variables are

𝑥1(𝑡) = 𝑥1,0, for all  𝑡 ∈ [0, ∞)
𝑥2(𝑡) = ̄𝑥2(𝜑1), for all  𝑡 ∈ (0, ∞)

  where we set 𝑑 ̄𝑥2 = ̄𝑥2(𝜑1, 𝑥1,0) − ̄𝑥2(𝜑0, 𝑥1,0) because, as we saw in the main text that the
value of the steady state for the non-predetermined variable depends on the initial value of the
predetermined variable. This means that the non-predetermined immediately ”jumps” to the new
steady state.

Application to problem P6
For the problem having first-order conditions in equations (9a)-(9d) we have the initial steady

state

𝑋̄(𝑤0) = ( ̄𝑎0
̄𝑞0
)   = ( 𝑎0

(𝜌𝑎0 + 𝑤0)−𝜃)

  and the Jacobian for an increase in the wage rate 𝑑𝑤 = 𝑤1 − 𝑤0 is

( ̇𝑎
̇𝑞) = (𝜌 −𝐶′( ̄𝑞)

0 0 ) (𝑑𝑎(𝑡)
𝑞(𝑡) ) + (𝑑𝑤

0 ) .

The first Jacobian has eigenvalues 𝜆𝑠 = 0 and 𝜆𝑢 = 𝜌, which means that we have to use the formulas
derived for the case in which there is one zero eigenvalue.

In order to find the long run variation introduced by the shock in 𝑤, from equation (25), we
have to do some preliminary work: we find the

𝑃 = (𝐶′( ̄𝑞0) 1
𝜌 0)

   the Moore-Penrose inverse of the Jacobian

̄𝐹𝑥(𝑤0)+ = 𝑃 Λ+ 𝑃 −1 = (𝐶′( ̄𝑞0) 1
𝜌 0) (0 0

0 1
𝜆𝑢

) 1
𝜌 (0 1

𝜌 −𝐶′( ̄𝑞0)) = 1
𝜌 (1 −𝐶′( ̄𝑞0)

𝜌  
0 0

)

  and

𝐼 − ̄𝐹𝑥(𝑤0)+ ̄𝐹𝑥(𝑤0) = (0 −𝐶′( ̄𝑞0)
𝜌  

0 0
)

  Therefore, the general expression for the long run multipliers is

(𝑑 ̄𝑎
𝑑 ̄𝑞) = ⎛⎜

⎝

−𝑑𝑤
𝜌 + 𝐶′( ̄𝑞0)

𝜌   𝑧2

𝑧2

⎞⎟
⎠
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  where 𝑧2 is an arbitrary constant.
As we require 𝑑 ̄𝑎 = 0 then 𝑧2 = 𝑑𝑤

𝐶′( ̄𝑞0) then

(𝑑 ̄𝑎
𝑑 ̄𝑞) = ⎛⎜

⎝

0
𝑑𝑤

𝐶′( ̄𝑞0)
⎞⎟
⎠

.

  We obtain the short run variations from

(𝑑𝑎(𝑡)
𝑑𝑞(𝑡)) = ⎛⎜

⎝

0
𝑑𝑤

𝐶′( ̄𝑞0)
⎞⎟
⎠

+ 𝑘𝑠 (𝐶′( ̄𝑞0)
𝜌 )

  Setting again 𝑑𝑎(𝑡) = 0 yields 𝑘𝑠 = 0, and, therefore, the short-run variations are

(𝑑𝑎(𝑡)
𝑑𝑞(𝑡)) = ⎛⎜

⎝

0
𝑑𝑤

𝐶′( ̄𝑞0)
⎞⎟
⎠

.

  As
𝑑𝑐(𝑡) = 𝑑 ̄𝑐 = 𝐶′( ̄𝑞0) 𝑑𝑞(𝑡) = 𝐶′( ̄𝑞0)

𝐶′( ̄𝑞0) 𝑑𝑤  = 𝑑𝑤

where 𝑑𝑤 = 𝑤1 − 𝑤0.
Writing ̄𝑐(𝑤1) = 𝑑 ̄𝑐 + ̄𝑐(𝑤0) yields the linear approximation for the behavior of consumption

after the shock 𝑐(𝑡) = ̄𝑐(𝑤0) + 𝑑 ̄𝑐 = ̄𝑐(𝑤1) = 𝜌 𝑎0 + 𝑤1. We conclude that consumption changes
discontinuously from ̄𝑐(𝑤0) = 𝜌 𝑎0 + 𝑤0 to ̄𝑐(𝑤1) = 𝜌 𝑎0 + 𝑤1, as shown in Figure 6.

H Comparative dynamics for the habit formation model

We start from the steady state in equations (13a)-(13e), for the initial level of the exogenous variable
𝑤 = 𝑤0 and consider a positive change to 𝑤1 = 𝑤0 + 𝑑𝑤.

Next we introduce the notation for the partial derivatives 𝑢̄𝑖 = 𝑢𝑖( ̄𝑐(𝑤0), ℎ̄(𝑤0)) for 𝑖 = 𝑐, ℎ and
𝑢̄𝑖𝑗 = 𝑢𝑖𝑗( ̄𝑐(𝑤0), ℎ̄(𝑤0)) for 𝑖, 𝑗 = 𝑐, ℎ. We define accordingly ̄𝐶ℎ, ̄𝐶𝑞𝑎

and ̄𝐶𝑞ℎ
.

Using this notation for the partial derivatives, evaluated at the initial steady state, and the
notation in section D we obtain the Jacobian, for system (12a)-(12d),

̄𝐹𝑥(𝑤0) =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝜌 − ̄𝐶ℎ − ̄𝐶𝑞𝑎
− ̄𝐶𝑞ℎ

0 𝜂( ̄𝐶ℎ − 1) 𝜂 ̄𝐶𝑞𝑎
𝜂 ̄𝐶𝑞ℎ

0 0 0 0
0 −(𝑢̄ℎ𝑐 ̄𝐶ℎ + 𝑢̄ℎℎ) −𝑢̄ℎ𝑐 ̄𝐶𝑞𝑎

  𝜌 + 𝜂 − 𝑢̄ℎ𝑐 ̄𝐶𝑞ℎ

⎞⎟⎟⎟⎟⎟⎟
⎠
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  This Jacobian has the characteristic equationdet  ( ̄𝐹𝑥(𝑤0) − 𝜆 𝐼) = 0. Expanding, yields the
polynomial equation

𝜆 (𝜆 − 𝜌)(𝜆2 − 𝜌 𝜆 + 𝑆) = 0.
  This is because 𝜇 ̄𝐶ℎ = 𝑢̄ℎ𝑐 ̄𝐶𝑞ℎ

and we have

𝑆 = 𝜂 (( ̄𝐶ℎ − 1) (𝜌 + 𝜂 − 𝑢̄ℎ𝑐 ̄𝐶𝑞ℎ
) + ̄𝐶𝑞ℎ

(𝑢̄ℎ𝑐 ̄𝐶ℎ + 𝑢̄ℎℎ)

= 𝜂 (𝜌 + 𝜂) ( ̄𝐶ℎ − 1 +
̄𝐶𝑞ℎ

𝜌 + 𝜂(𝑢̄ℎ𝑐 + 𝑢̄ℎℎ))

= −𝜂((𝜌 + 𝜂)𝑢̄𝑐𝑐 + (2𝜂 + 𝜌)(𝑢̄ℎ𝑐 + 𝜂𝑢̄ℎℎ)
𝑢̄𝑐𝑐

)

  There are four real eigenvalues {𝜆𝑠, 0, 𝜌, 𝜆𝑢} where

𝜆𝑠 = 𝜌
2 − √(𝜌

2)
2

− 𝑆

𝜆𝑢 = 𝜌
2 + √(𝜌

2)
2

− 𝑆

  If 𝑆 < 0 then 𝜆𝑠 < 0 < 𝜌 < 𝜆𝑢 and the steady state is a degenerate saddle-point. Additionally
we have 𝜆𝑠 + 𝜆𝑢 = 𝜌 and 𝜆𝑠 𝜆𝑢 = 𝑆.

Looking at the expression for 𝑆, we can write it as

𝑆 = −𝜂𝜋(𝑢)
𝑢̄𝑐𝑐

  where 𝜋(𝑢) ≡ (𝜌 + 𝜂)𝑢̄𝑐𝑐 + (2𝜂 + 𝜌)(𝑢̄ℎ𝑐 + 𝜂𝑢̄ℎℎ) = (𝜌 + 𝜂)𝑢̄𝑐𝑐 + (2𝜂 + 𝜌)Ū″. Then, 𝑆 < 0
if and only if 𝜋(𝑢) < 0 which requires ̄U″ < − 𝜌 + 𝜂

2𝜂 + 𝜌  𝑢̄𝑐𝑐 which only holds if consumption is
intertemporally substitutable or independent and, if there is intertemporal complementarity, it is
not to large compared with the concavity as regards consumption 𝑐.

From now on we assume this condition holds.
As we have a zero eigenvalue we can adapt the method explained in the last section. The

generalized long-run multipliers are

𝑑𝑋̄ = − ̄𝐹𝑥(𝑤0)+  ̄𝐹𝑤(𝑤0) 𝑑𝑤 + (𝐼 − ̄𝐹𝑥(𝑤0)+  ̄𝐹𝑥(𝑤0)) 𝑍

  where the Jacobian for the exogenous variable is

̄𝐹𝑤(𝑤0) =
⎛⎜⎜⎜⎜⎜⎜
⎝

1
0
0
0

⎞⎟⎟⎟⎟⎟⎟
⎠

.
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  and the Moore-Penrose inverse is ̄𝐹𝑥(𝑤0)+ = 𝑃 Λ+ 𝑃 −1 where

Λ+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
𝜆𝑠

0 0 0
0 0 0 0
0 0 1

𝜌 0

0 0 0 1
𝜆𝑢

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

  and the eigenvector matrix concatenating the eigenvectors in the same order as in the Jordan
matrix Λ, i,e, 𝑃 = [𝑃 𝑠𝑃 0𝑃 𝜌𝑃 𝑢] is

𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−𝜂𝑢̄ℎℎ + (𝜂 + 𝜆𝑢)𝑢̄ℎ𝑐
𝜆𝑢𝐻(𝑢̄) 1 1 𝑢̄ℎ𝑐 (𝜂𝑢̄ℎ𝑐 + (𝜆𝑢 + 𝜂)𝑏𝑎𝑟𝑢𝑐𝑐) − 𝜂𝐻(𝑢̄)

𝑢̄𝑐𝑐 𝐻(𝑢̄)𝜆𝑠

−𝜂𝑢̄ℎ𝑐 + (𝜂 + 𝜆𝑢)𝑢̄ℎ𝑐
𝜆𝑢𝐻(𝑢̄) 𝜌 0 𝜂𝑢̄ℎ𝑐 + (𝜆𝑢 + 𝜂)𝑏𝑎𝑟𝑢𝑐𝑐

𝐻(𝑢̄)
0 𝜌 𝜒(𝑢̄)

𝜌 + 𝜂 0 0

1 𝜌 (𝑢̄ℎ𝑐 + 𝑢̄ℎℎ)
𝜌 + 𝜂 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

  where 𝐻(𝑢̄) = 𝑢̄𝑐𝑐 𝑢̄ℎℎ − 𝑢̄2
ℎ𝑐 and 𝜒(𝑢) ≡ (𝜌 + 𝜂)𝑢̄𝑐𝑐 + 𝑢̄ℎ𝑐(2𝜂 + 𝜌) + 𝜂𝑢̄ℎℎ

Performing the calculations yields the generalized variation

𝑑𝑋̄ =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑑 ̄𝑎
𝑑ℎ̄
𝑑 ̄𝑞𝑎
𝑑 ̄𝑞ℎ

⎞⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−𝑑𝑤
𝜌 + (𝜌 + 𝜂)

𝜌 𝜒(𝑢̄)   𝑧3

+(𝜌 + 𝜂)
𝜒(𝑢̄)   𝑧3

𝑧3
𝑢̄ℎ𝑐 + 𝑢̄ℎℎ

𝜒(𝑢̄)   𝑧3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

  We set 𝑑 ̄𝑎 = 0 to find the value for 𝑧3 and substituting back we obtain the particular long-run
variation

𝑑𝑋̄ =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑑 ̄𝑎
𝑑ℎ̄
𝑑 ̄𝑞𝑎
𝑑 ̄𝑞ℎ

⎞⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
1

𝜒(𝑢̄)
𝜌 + 𝜂

𝑢̄ℎ𝑐 + 𝑢̄ℎℎ
𝜌 + 𝜂

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

𝑑𝑤

  The short run variation 𝑑𝑋(𝑡) = 𝑋(𝑡) − 𝑋̄(𝑤0), introduced by the perturbation in 𝑤 can be
obtained from the general solution of the variational system,

𝑑𝑋(𝑡) = 𝑑𝑋̄ + 𝑘𝑠 𝑃 𝑠 𝑒𝜆𝑠𝑡 + ℎ0𝑃 0 + 𝑘𝜌𝑃 𝜌𝑒𝜌𝑡 + 𝑘𝑢𝑃 𝑢𝑒𝜆𝑢𝑡
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  where 𝑘𝑠, ℎ0, 𝑘𝜌 and 𝑘𝑢 are arbitrary constants.
Eliminating the explosive components by setting 𝑘𝜌 = 𝑘𝑢 = 0 and solving for 𝑘𝑠 and ℎ0 such

that 𝑑𝑎(0) = 0 and 𝑑ℎ(0) = 0, yields

𝑘̄𝑠 = − (𝜂 + 𝜆𝑢) 𝑢̄ℎ𝑐 + 𝜂𝑢̄ℎℎ
(𝜂 + 𝜆𝑢)(𝜆𝑢𝑢̄𝑐𝑐 + 𝜌𝑢̄ℎ𝑐) + 𝜂𝜌𝑢̄ℎℎ

𝑑𝑤

𝑘̄0 = − 𝜆𝑢𝐻(𝑢̄)
(𝜂 + 𝜆𝑢)(𝜆𝑢𝑢̄𝑐𝑐 + 𝜌𝑢̄ℎ𝑐) + 𝜂𝜌𝑢̄ℎℎ

𝑑𝑤

  Therefore the short run variation is

𝑑𝑎(𝑡) = − 𝜂𝑢̄ℎℎ + (𝜂 + 𝜆𝑢)𝑢̄ℎ𝑐
𝜆𝑢((𝜂 + 𝜆𝑢)𝑢̄𝑐𝑐 + (𝜌 + 𝜂)𝑢̄ℎ𝑐) + 𝜌 + 𝜂(𝑢̄ℎ𝑐 + 𝑢̄ℎℎ)(1 − 𝑒𝜆𝑠𝑡) 𝑑𝑤, for 𝑡 ∈ [0, ∞) 

𝑑ℎ(𝑡) = 𝜆𝑢(𝜂𝑢̄ℎ𝑐 + (𝜂 + 𝜆𝑢)𝑢̄𝑐𝑐)
𝜆𝑢((𝜂 + 𝜆𝑢)𝑢̄𝑐𝑐 + (𝜌 + 𝜂)𝑢̄ℎ𝑐) + 𝜌 + 𝜂(𝑢̄ℎ𝑐 + 𝑢̄ℎℎ)(1 − 𝑒𝜆𝑠𝑡) 𝑑𝑤, for 𝑡 ∈ [0, ∞)

𝑑𝑞𝑎(𝑡) = 𝜆𝑢(𝜂𝑢̄ℎ𝑐 + (𝜂 + 𝜆𝑢)𝑢̄𝑐𝑐)𝜋(𝑢̄)
(𝜌 + 𝜂) (𝜆𝑢((𝜂 + 𝜆𝑢)𝑢̄𝑐𝑐 + (𝜌 + 𝜂)𝑢̄ℎ𝑐) + 𝜌 + 𝜂(𝑢̄ℎ𝑐 + 𝑢̄ℎℎ))

𝑑𝑤, for 𝑡 ∈ [0, ∞)

𝑑𝑞ℎ(𝑡) = 𝜆𝑢 𝑢̄ℎ𝑐((𝜂 + 𝜆𝑢)𝑢̄ℎ𝑐 + 𝜂𝑢̄ℎℎ)
(𝜌 + 𝜂) (𝜆𝑢((𝜂 + 𝜆𝑢)𝑢̄𝑐𝑐 + (𝜌 + 𝜂)𝑢̄ℎ𝑐) + 𝜌 + 𝜂(𝑢̄ℎ𝑐 + 𝑢̄ℎℎ))

 ×

× ((𝑢̄𝑐𝑐𝑢̄ℎℎ(𝜂 + 𝜆𝑢) + 𝜂𝑢̄2
ℎ𝑐 − (𝜌 + 𝜂)𝐻(𝑢̄)𝑒𝜆𝑠𝑡) 𝑑𝑤, for 𝑡 ∈ [0, ∞).

  The variation in consumption can be obtained as

𝑑𝑐(𝑡) = ̄𝐶ℎ 𝑑ℎ(𝑡) + ̄𝐶𝑞𝑎
𝑑𝑞𝑎(𝑡) + ̄𝐶𝑞ℎ

𝑑𝑞ℎ(𝑡).

  In the expressions for the variations of the state variables, we see the effect of the existence of a
zero eigenvalue: we find that

(𝜂𝑢̄ℎℎ + (𝜂 + 𝜆𝑢)𝑢̄ℎ𝑐) 𝑑ℎ(𝑡) + 𝜆𝑢(𝜂𝑢̄ℎ𝑐 + (𝜂 + 𝜆𝑢)𝑢̄𝑐𝑐) 𝑑𝑎(𝑡) = 0.

  We also find that

𝑑𝑎(0) = 0 
𝑑ℎ(0) = 0

𝑑𝑞𝑎(0) = 𝑑𝑞𝑎(𝑡) = 𝜆𝑢(𝜂𝑢̄ℎ𝑐 + (𝜂 + 𝜆𝑢)𝑢̄𝑐𝑐)𝜋(𝑢̄)
(𝜌 + 𝜂) (𝜆𝑢((𝜂 + 𝜆𝑢)𝑢̄𝑐𝑐 + (𝜌 + 𝜂)𝑢̄ℎ𝑐) + 𝜌 + 𝜂(𝑢̄ℎ𝑐 + 𝑢̄ℎℎ))

𝑑𝑤

𝑑𝑞ℎ(0) =
𝜆𝑢 𝑢̄ℎ𝑐((𝜂 + 𝜆𝑢)𝑢̄ℎ𝑐 + 𝜂𝑢̄ℎℎ)((𝑢̄𝑐𝑐𝑢̄ℎℎ(𝜂 + 𝜆𝑢) + 𝜂𝑢̄2

ℎ𝑐 − (𝜌 + 𝜂)𝐻(𝑢̄))

(𝜌 + 𝜂) (𝜆𝑢((𝜂 + 𝜆𝑢)𝑢̄𝑐𝑐 + (𝜌 + 𝜂)𝑢̄ℎ𝑐) + 𝜌 + 𝜂(𝑢̄ℎ𝑐 + 𝑢̄ℎℎ))
  𝑑𝑤.
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   and

𝑑𝑎(∞) = − 𝜂𝑢̄ℎℎ + (𝜂 + 𝜆𝑢)𝑢̄ℎ𝑐
𝜆𝑢((𝜂 + 𝜆𝑢)𝑢̄𝑐𝑐 + (𝜌 + 𝜂)𝑢̄ℎ𝑐) + 𝜌 + 𝜂(𝑢̄ℎ𝑐 + 𝑢̄ℎℎ) 𝑑𝑤, for 𝑡 ∈ [0, ∞) 

𝑑ℎ(∞) = 𝜆𝑢(𝜂𝑢̄ℎ𝑐 + (𝜂 + 𝜆𝑢)𝑢̄𝑐𝑐)
𝜆𝑢((𝜂 + 𝜆𝑢)𝑢̄𝑐𝑐 + (𝜌 + 𝜂)𝑢̄ℎ𝑐) + 𝜌 + 𝜂(𝑢̄ℎ𝑐 + 𝑢̄ℎℎ)(1 − 𝑒𝜆𝑠𝑡) 𝑑𝑤, for 𝑡 ∈ [0, ∞)

𝑑𝑞𝑎(∞) = 𝜆𝑢(𝜂𝑢̄ℎ𝑐 + (𝜂 + 𝜆𝑢)𝑢̄𝑐𝑐)𝜋(𝑢̄)
(𝜌 + 𝜂) (𝜆𝑢((𝜂 + 𝜆𝑢)𝑢̄𝑐𝑐 + (𝜌 + 𝜂)𝑢̄ℎ𝑐) + 𝜌 + 𝜂(𝑢̄ℎ𝑐 + 𝑢̄ℎℎ))

𝑑𝑤, for 𝑡 ∈ [0, ∞)

𝑑𝑞ℎ(∞) =
𝜆𝑢 𝑢̄ℎ𝑐((𝜂 + 𝜆𝑢)𝑢̄ℎ𝑐 + 𝜂𝑢̄ℎℎ)((𝑢̄𝑐𝑐𝑢̄ℎℎ(𝜂 + 𝜆𝑢) + 𝜂𝑢̄2

ℎ𝑐)

(𝜌 + 𝜂) (𝜆𝑢((𝜂 + 𝜆𝑢)𝑢̄𝑐𝑐 + (𝜌 + 𝜂)𝑢̄ℎ𝑐) + 𝜌 + 𝜂(𝑢̄ℎ𝑐 + 𝑢̄ℎℎ))
  𝑑𝑤.

  which are the long run multipliers. To determine the levels of the new steady state after the
shock we can write 𝑋̄(𝑤1) = 𝑑𝑋(∞) + 𝑋̄(𝑤0). This is point 𝐶 shown in figure 7.

Mathematica notebook  



���������� (* Habit formation model

See https://pmbbrito.github.iocursosphdamam2021_consumption.pdf

*)

���������� ClearAll[a, a0, h, hx, t, tx]
(* derivatives of the consumption function *)

Chs := -Uhc  Ucc

Cqas := 1  Ucc

Cqhs := -η  Ucc

(* elements of the Jacobian *)

J11 := ρ

J12 := -Ch
J13 := -Cqa
J14 := -Cqh

J22 := η Ch - 1

J23 := η Cqa
J24 := η Cqh

J42 := -Uhc Ch + Uhh

J43 := -Uhc Cqa
J44 := ρ + η - Uhc Cqh

���������� (* Jacobians *)

J = {{J11, J12, J13, J14}, {0, J22, J23, J24}, {0, 0, 0, 0}, {0, J42, J43, J44}} 
Dimensions[J]
Jw = {{dw}, {0}, {0}, {0}}

���������� {ρ, -Ch, -Cqa, -Cqh}, 0, -1 + Ch η, Cqa η, Cqh η,

{0, 0, 0, 0}, {0, -Ch Uhc - Uhh, -Cqa Uhc, -Cqh Uhc + η + ρ}

���������� {4, 4}

���������� {{dw}, {0}, {0}, {0}}

���������� {ρ, -Ch, -Cqa, -Cqh}, 0, -1 + Ch η, Cqa η, Cqh η,

{0, 0, 0, 0}, {0, -Ch Uhc - Uhh, -Cqa Uhc, -Cqh Uhc + η + ρ}

���������� {ρ, -Ch, -Cqa, -Cqh}, 0, -1 + Ch η, Cqa η, Cqh η,

{0, 0, 0, 0}, {0, -Ch Uhc - Uhh, -Cqa Uhc, -Cqh Uhc + η + ρ}

���������� (* * * * * * * Derivation "by hand" * * * * * *)

TrJ = Simplify[J22 + J44 /. {Ch → Chs, Cqa → Cqas, Cqh → Cqhs}]
DetJ = Simplify[J22 J44 - J24 J42 /. {Ch → Chs, Cqa → Cqas, Cqh → Cqhs}]

���������� ρ

���������� -
η Uhh η + Ucc (η + ρ) + Uhc 2 η + ρ

Ucc



���������� (* JOrdan form of the Jacobian *)

Λ = {{λs, 0, 0 , 0} , {0, 0, 0, 0}, {0, 0, ρ, 0}, {0, 0, 0, λu}}
Dimensions[Λ]

���������� {{λs, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, ρ, 0}, {0, 0, 0, λu}}

���������� {4, 4}

���������� (* Eigenvector matrix: transposed *)

detP0 := J12  J23 J44 - J24 J43 - J13 J22 J44 - J24 J42 + J14 J22 J43 - J23 J42

PT := -J14 J42 - J12 J44 - λs  λu J42, λs - J44  J42, 0, 1,

1, -ρ J23 J44 - J24 J43  detP0,

ρ J22 J44 - J24 J42  detP0, -ρ J22 J43 - J23 J42  detP0,

{1, 0, 0, 0},

-J14 J42 - J12 J44 - λu  λs J42, λu - J44  J42, 0, 1

���������� 1, ρ,
ρ Uhh η + Ucc (η + ρ) + Uhc 2 η + ρ

η + ρ
,

Uhc + Uhh ρ

η + ρ


���������� 1, ρ,
ρ Uhh η + Ucc (η + ρ) + Uhc 2 η + ρ

η + ρ
,

Uhc + Uhh ρ

η + ρ


���������� P = Simplify[Transpose[PT] /. {Ch → Chs, Cqa → Cqas, Cqh → Cqhs}]
Ps1 := P[[All, 1]]
P0 = Simplify[P[[All, 2]] /. {Ch → Chs, Cqa → Cqas, Cqh → Cqhs}]
Pρ = Simplify[P[[All, 3]] /. {Ch → Chs, Cqa → Cqas, Cqh → Cqhs}]
Pu1 := P[[All, 4]]
Ps = Simplify[Ps1 /. {Ch → Chs, Cqa → Cqas, Cqh → Cqhs}, λs + λu ⩵ ρ]

Pu = Simplify[Pu1 /. {Ch → Chs, Cqa → Cqas, Cqh → Cqhs}, λu + λs ⩵ ρ]

���������� 
Uhh η + Uhc (η - λs + ρ)

Uhc2 - Ucc Uhh λu
, 1, 1,

2 Uhc2 η - Ucc Uhh η + Ucc Uhc (η - λu + ρ)

Ucc -Uhc2 + Ucc Uhh λs
,


Uhc η + Ucc (η - λs + ρ)

-Uhc2 + Ucc Uhh
, ρ, 0,

Uhc η + Ucc (η - λu + ρ)

-Uhc2 + Ucc Uhh
,

0,
ρ Uhh η + Ucc (η + ρ) + Uhc 2 η + ρ

η + ρ
, 0, 0, 1,

Uhc + Uhh ρ

η + ρ
, 0, 1

���������� 1, ρ,
ρ Uhh η + Ucc (η + ρ) + Uhc 2 η + ρ

η + ρ
,

Uhc + Uhh ρ

η + ρ


���������� {1, 0, 0, 0}

���������� 
Uhc η + Uhh η + Uhc λu

Uhc2 λu - Ucc Uhh λu
, -

Uhc η + Ucc (η + λu)

Uhc2 - Ucc Uhh
, 0, 1

���������� 
2 Uhc2 η - Ucc Uhh η + Ucc Uhc (η - λu + ρ)

Ucc -Uhc2 + Ucc Uhh λs
,
Uhc η + Ucc (η - λu + ρ)

-Uhc2 + Ucc Uhh
, 0, 1
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���������� (* Confirmation of the last derivation by using Mathematica functions *)

Simplify[Tr[J]]
Simplify[Det[J]]
EJ = Simplify[Eigenvalues[J] /. {Ch → Chs, Cqa → Cqas, Cqh → Cqhs}]
EP = Simplify[Eigenvectors[J] /. {Ch → Chs, Cqa → Cqas, Cqh → Cqhs}]

���������� -Cqh Uhc + Ch η + 2 ρ

���������� 0

���������� 0, ρ,
1

2
ρ - 2 η + ρ2 +

4 η Uhh η + Uhc 2 η + ρ

Ucc
,

1

2
ρ + 2 η + ρ2 +

4 η Uhh η + Uhc 2 η + ρ

Ucc


���������� 
η + ρ

Uhc ρ + Uhh ρ
,

η + ρ

Uhc + Uhh
,
Uhh η + Ucc (η + ρ) + Uhc 2 η + ρ

Uhc + Uhh
, 1,

{1, 0, 0, 0}, 
2 Uhh η + Uhc 2 η + ρ + 2 η + ρ2 + 4 η (Uhh η+Uhc (2 η+ρ))

Ucc


Uhc2 - Ucc Uhh ρ + 2 η + ρ2 + 4 η (Uhh η+Uhc (2 η+ρ))

Ucc


,

-
2 Uhc η + Ucc 2 η + ρ + 2 η + ρ2 + 4 η (Uhh η+Uhc (2 η+ρ))

Ucc


2 Uhc2 - Ucc Uhh
, 0, 1,


-2 Uhh η + Uhc -2 η - ρ + 2 η + ρ2 + 4 η (Uhh η+Uhc (2 η+ρ))

Ucc


Uhc2 - Ucc Uhh -ρ + 2 η + ρ2 + 4 η (Uhh η+Uhc (2 η+ρ))

Ucc


,

-2 Uhc η + Ucc -2 η - ρ + 2 η + ρ2 + 4 η (Uhh η+Uhc (2 η+ρ))

Ucc


2 Uhc2 - Ucc Uhh
, 0, 1

���������� -Cqh Uhc + Ch η + 2 ρ

���������� -Cqh Uhc + Ch η + 2 ρ

���������� 0, ρ,
1

2
ρ - 2 η + ρ2 +

4 η Uhh η + Uhc 2 η + ρ

Ucc
,

1

2
ρ + 2 η + ρ2 +

4 η Uhh η + Uhc 2 η + ρ

Ucc


���������� 0, ρ,
1

2
ρ - 2 η + ρ2 +

4 η Uhh η + Uhc 2 η + ρ

Ucc
,

1

2
ρ + 2 η + ρ2 +

4 η Uhh η + Uhc 2 η + ρ

Ucc

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���������� (* Generalized inverse Jplus *)

PI := Inverse[P]
ΛI = {{1 / λs, 0, 0 , 0} , {0, 0, 0, 0}, {0, 0, 1 / ρ, 0}, {0, 0, 0, 1 / λu}}
Jplus := Simplify[P.ΛI .Inverse[P] /. {Ch → Chs, Cqa → Cqas, Cqh → Cqhs}]
Dimensions[Jplus]

���������� 
1

λs
, 0, 0, 0, {0, 0, 0, 0}, 0, 0,

1

ρ
, 0, 0, 0, 0,

1

λu


���������� {4, 4}

���������� (* Linear approximation of the solution after a shock in w
starting from SS0, for a 10% increase in w

X(t) = X0 + FXss,t where Xss is the new steady state *)

(* Long run multipliers *)

���������� (* dXLPg:=

Simplify-Jplus.Jw +IdentityMatrix[4]-Jplus.J.{{k1},{k2},{k3},{k4}}/.

{Ch→Chs,Cqa→Cqas,Cqh→Cqhs},{λs + λu⩵ρ,λs λu⩵DetJ}*)

dXLPg := Simplify-Jplus.Jw  +

IdentityMatrix[4] - P.ΛI.Λ.PI.{{k1}, {k2}, {k3}, {k4}} /.

{Ch → Chs, Cqa → Cqas, Cqh → Cqhs}, {λs + λu ⩵ ρ, λs λu ⩵ DetJ}

Dimensions[
dXLPg]

���������� {4, 1}

����������

dXLP1 = Simplify[Factor[dXLPg[[1, 1]]]]
dXLP2 = dXLPg[[2, 1]]
dXLP3 = dXLPg[[3, 1]]
dXLP4 = dXLPg[[4, 1]]

����������

k3 (η + ρ) - dw 2 Uhc η + Uhh η + Uhc ρ + Ucc (η + ρ)

ρ Uhh η + Ucc (η + ρ) + Uhc 2 η + ρ

����������
k3 (η + ρ)

Uhh η + Ucc (η + ρ) + Uhc 2 η + ρ

���������� k3

����������

k3 Uhc + Uhh

Uhh η + Ucc (η + ρ) + Uhc 2 η + ρ
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���������� (* auxiliar *)

dXLPaux1[k3_] = dXLP1
Auxeq1 := Simplify[Solve[{dXLPaux1[x] ⩵ 0}, {x}]]
k3ep = x /. Auxeq1[[1, 1]]

����������

k3 (η + ρ) - dw 2 Uhc η + Uhh η + Uhc ρ + Ucc (η + ρ)

ρ Uhh η + Ucc (η + ρ) + Uhc 2 η + ρ

����������

dw Uhh η + Ucc (η + ρ) + Uhc 2 η + ρ

η + ρ

���������� (* Long-run multipliers *)

dXLP = Simplify[dXLPg /. {k3 → k3ep}]

���������� {0}, {dw}, 
dw Uhh η + Ucc (η + ρ) + Uhc 2 η + ρ

η + ρ
, 

dw Uhc + Uhh

η + ρ


���������� (* Short run multipliers *)

dXtg = Simplify[dXLP + kk1 P0 + kk2 Ps Exp[λs t]]

���������� kk1 +
ⅇt λs kk2 Uhh η + Uhc (η + λu)

Uhc2 - Ucc Uhh λu
, dw -

ⅇt λs kk2 Uhc η + Ucc (η + λu)

Uhc2 - Ucc Uhh
+ kk1 ρ,


dw + kk1 ρ Uhh η + Ucc (η + ρ) + Uhc 2 η + ρ

η + ρ
,


dw Uhc + Uhh + kk1 Uhc + Uhh ρ + ⅇt λs kk2 (η + ρ)

η + ρ


���������� dX1tg[kk1_, kk2_] = Simplify[dXtg [[1, 1]] /. t → 0]
dX2tg[kk1_, kk2_] = Simplify[dXtg [[2, 1]] /. t → 0]
Auxeq2 := Solve[{dX1tg[x, y] ⩵ 0, dX2tg[x, y] ⩵ 0}, {x, y}]
kk1ep = x /. Auxeq2[[1, 1]]
kk2ep = y /. Auxeq2[[1, 2]]

���������� kk1 +
kk2 Uhh η + Uhc (η + λu)

Uhc2 - Ucc Uhh λu

���������� dw +
kk2 Uhc η + Ucc (η + λu)

-Uhc2 + Ucc Uhh
+ kk1 ρ

���������� -
dw Uhc η + Uhh η + Uhc λu

Ucc η λu + Uhc η λu + Ucc λu2 + Uhc η ρ + Uhh η ρ + Uhc λu ρ

����������

dw Uhc2 - Ucc Uhh λu

Ucc η λu + Uhc η λu + Ucc λu2 + Uhc η ρ + Uhh η ρ + Uhc λu ρ
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����������

(*

Solution of the linearized model
First: short run multipliers

Second: level values
ac, hc, qac, qhc initial steady state

*)

dXt := Simplify[dXtg /. {kk1 → kk1ep, kk2 → kk2ep}]
Xt = Simplify[{{ac}, {hc}, {qac}, {qhc}} + dXt]

���������� ac +
dw -1 + ⅇt λs Uhh η + Uhc (η + λu)

Ucc λu (η + λu) + Uhh η ρ + Uhc λu ρ + Uhc η (λu + ρ)
,

hc -
dw -1 + ⅇt λs λu Uhc η + Ucc (η + λu)

Ucc λu (η + λu) + Uhh η ρ + Uhc λu ρ + Uhc η (λu + ρ)
,

qac +
dw λu Uhc η + Ucc (η + λu) Uhh η + Ucc (η + ρ) + Uhc 2 η + ρ

(η + ρ) Ucc λu (η + λu) + Uhh η ρ + Uhc λu ρ + Uhc η (λu + ρ)
,

qhc + dw λu Uhc Uhh η + Ucc Uhc (η + λu) +

Ucc Uhh η - ⅇt λs η + λu - ⅇt λs ρ + Uhc2 η + ⅇt λs η + ⅇt λs ρ 

(η + ρ) Ucc λu (η + λu) + Uhh η ρ + Uhc λu ρ + Uhc η (λu + ρ)

(* * * * * * * * * * * MULTIPLICATIVE HABITS * * * * * * * * * * *)

Um[c_, h_] = c  h^ζ^(1 - θ) - 1  (1 - θ)

���������� (* derivatives *)

Umc = D[Um[c, h], c]
Umh = D[Um[c, h], h]
Umcc = D[D[Um[c, h], c], c]
Umhc = Simplify[D[Um[c, h], h, c]]
Umhh = Simplify[D[Um[c, h], h, h]]

���������� h-ζ c h-ζ
-θ

���������� -c h-1-ζ c h-ζ
-θ

ζ

���������� -h-2 ζ c h-ζ
-1-θ

θ

���������� h-1-ζ c h-ζ
-θ

ζ (-1 + θ)

���������� -
c h-ζ1-θ ζ (-1 + ζ (-1 + θ))

h2
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���������� (* consumption function: partial derivatives *)

Cmh = Simplify[Chs /. {Ucc → Umcc, Uhc → Umhc}]
Cmqa = Simplify[Cqas /. {Ucc → Umcc}]
Cmqh = Simplify[Cqhs /. {Ucc → Umcc}]

����������
c ζ (-1 + θ)

h θ

���������� -
c hζ c h-ζθ

θ

����������

c hζ c h-ζθ η

θ

(* Determination of the steady state:

initial: Xbar0

the final SS is determined by the multipliers: Xbar(1) = Xbar0 + dbarX

*)

���������� (* eq1:=h-ζ c h-ζ-θ-qh+η qa

eq2:=qh (ρ+η)-c h-1-ζ c h-ζ-θ ζ

*)

eq1 := Umc - qa + η qh
eq2 := qh (ρ + η) - Umh
eq3 := c - h
eq4 := ρ a + w - c
SSaux = Solve[{eq1 ⩵ 0, eq2 ⩵ 0, eq3 ⩵ 0, eq4 ⩵ 0}, {qa, qh, c, h}]

���������� qa → (w + a ρ)-γ (w + a ρ)1-γ
-θ

-
γ η (w + a ρ)-γ (w + a ρ)1-γ-θ

η + ρ
,

qh → -
γ (w + a ρ)-γ (w + a ρ)1-γ-θ

η + ρ
, c → w + a ρ, h → w + a ρ

(* simplification of qa and qh *)

Simplify[SSaux[[1, 1]][[2]]]
Simplify[SSaux[[1, 2]][[2]]]

����������

(η - γ η + ρ) (w + a ρ)-γ (w + a ρ)1-γ-θ

η + ρ

���������� -
γ (w + a ρ)-γ (w + a ρ)1-γ-θ

η + ρ
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(* this is needed to control a0 *)

qassx[ax_, w_, ρ_, θ_, ζ_, η_] = SSaux[[1, 1]][[2]] /. a → ax
qhssx[ax_, w_, ρ_, θ_, ζ_, η_] = SSaux[[1, 2]][[2]] /. a → ax
cssx[ax_, w_, ρ_, θ_, ζ_, η_] = SSaux[[1, 3]][[2]] /. a → ax
hssx[ax_, w_, ρ_, θ_, ζ_, η_] = SSaux[[1, 4]][[2]] /. a → ax
assx[ax_] = ax

���������� (w + ax ρ)-γ (w + ax ρ)1-γ
-θ

-
γ η (w + ax ρ)-γ (w + ax ρ)1-γ-θ

η + ρ

���������� -
γ (w + ax ρ)-γ (w + ax ρ)1-γ-θ

η + ρ

���������� w + ax ρ

���������� w + ax ρ

���������� ax

���������� (* Stability condition with multiplicative habits *)

Factor[Simplify[Simplify[DetJ /. {Uhh → Umhh, Ucc → Umcc, Uhc → Umhc}] /.
{c → w + ax ρ, h -> w + ax ρ}]]

���������� -
η (-γ - θ + γ θ) (-η + γ η - ρ)

θ

���������� -
(-ζ - θ + ζ θ) η (-η + ζ η - ρ)

θ

���������� -
η (-ζ - θ + ζ θ) (-η + ζ η - ρ)

θ

���������� (* Short run levels X(t) for the multiplicative habits model *)

Xtm = Simplify[
Simplify[Xt /. {Uhh → Umhh, Ucc → Umcc, Uhc → Umhc}] /. {c → w + ax ρ, h -> w + ax ρ}]

���������� ac +
dw -1 + ⅇt λs ζ (ζ η (-1 + θ) - η θ + λu - θ λu)

θ λu (η + λu) + ζ2 η (-1 + θ) ρ - ζ (η (-1 + θ) λu + η θ ρ + (-1 + θ) λu ρ)
,

hc -
dw -1 + ⅇt λs λu (ζ (η - η θ) + θ (η + λu))

θ λu (η + λu) + ζ2 η (-1 + θ) ρ - ζ (η (-1 + θ) λu + η θ ρ + (-1 + θ) λu ρ)
,

qac + dw (ζ (-1 + θ) - θ) λu (ζ η (-1 + θ) - θ (η + λu))

((-1 + ζ) η - ρ) (w + ax ρ)-1-ζ (w + ax ρ)1-ζ
-θ
 

(η + ρ) θ λu (η + λu) + ζ2 η (-1 + θ) ρ - ζ (η (-1 + θ) λu + η θ ρ + (-1 + θ) λu ρ),

qhc + dw ζ (ζ (-1 + θ) - θ) λu (w + ax ρ)-1-ζ (w + ax ρ)1-ζ
-θ

ζ η (-1 + θ) - θ (η + λu) + ⅇt λs (η + ρ) 

(η + ρ) θ λu (η + λu) + ζ2 η (-1 + θ) ρ - ζ (η (-1 + θ) λu + η θ ρ + (-1 + θ) λu ρ)
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���������� (* impact levels X0 = ac, hc, qac, qah *)

Simplify[Xtm /. t → 0]

���������� {ac}, {hc},

qac + dw (ζ (-1 + θ) - θ) λu (ζ η (-1 + θ) - θ (η + λu)) ((-1 + ζ) η - ρ) (w + ax ρ)-1-ζ

(w + ax ρ)1-ζ
-θ
  (η + ρ)

θ λu (η + λu) + ζ2 η (-1 + θ) ρ - ζ (η (-1 + θ) λu + η θ ρ + (-1 + θ) λu ρ), qhc +

dw ζ (ζ (-1 + θ) - θ) λu ((-1 + ζ) η (-1 + θ) - θ λu + ρ) (w + ax ρ)-1-ζ (w + ax ρ)1-ζ-θ

(η + ρ) θ λu (η + λu) + ζ2 η (-1 + θ) ρ - ζ (η (-1 + θ) λu + η θ ρ + (-1 + θ) λu ρ)


���������� (* long run multipliers *)

SimplifyEvaluateXtm /. ⅇt λs -> 0

���������� ac -
dw ζ (ζ η (-1 + θ) - η θ + λu - θ λu)

θ λu (η + λu) + ζ2 η (-1 + θ) ρ - ζ (η (-1 + θ) λu + η θ ρ + (-1 + θ) λu ρ)
,

hc +
dw λu (ζ (η - η θ) + θ (η + λu))

θ λu (η + λu) + ζ2 η (-1 + θ) ρ - ζ (η (-1 + θ) λu + η θ ρ + (-1 + θ) λu ρ)
,

qac + dw (ζ (-1 + θ) - θ) λu (ζ η (-1 + θ) - θ (η + λu))

((-1 + ζ) η - ρ) (w + ax ρ)-1-ζ (w + ax ρ)1-ζ
-θ
 

(η + ρ) θ λu (η + λu) + ζ2 η (-1 + θ) ρ - ζ (η (-1 + θ) λu + η θ ρ + (-1 + θ) λu ρ),

qhc +
dw ζ (ζ (-1 + θ) - θ) λu (ζ η (-1 + θ) - θ (η + λu)) (w + ax ρ)-1-ζ (w + ax ρ)1-ζ-θ

(η + ρ) θ λu (η + λu) + ζ2 η (-1 + θ) ρ - ζ (η (-1 + θ) λu + η θ ρ + (-1 + θ) λu ρ)


���������� (* Calibration *)

w0 = 0.7
w1 = 0.7 * 1.2
ρ0 = 0.02
η0 = 0.1
ζ0 = 0.5
θ0 = 2

a0 = 0.3  0.02

���������� 0.7

���������� 0.84

���������� 0.02

���������� 0.1

���������� 0.5

���������� 2

���������� 15.
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���������� (* Initial SS *)

qass0 = qassx[a0, w0, ρ0, θ0, ζ0, η0]
qhss0 = qhssx[a0, w0, ρ0, θ0, ζ0, η0]
css0 = cssx[a0, w0, ρ0, θ0, ζ0, η0]
hss0 = hssx[a0, w0, ρ0, θ0, ζ0, η0]
ass0 = a0

���������� 1.-1+2 γ - 0.833333 × 1.-2+2 γ γ

���������� -8.33333 × 1.-2+2 γ γ

���������� 1.

���������� 1.

���������� 15.

���������� (* Auxiliary results *)

Ucc0 = -h-2 ζ c h-ζ
-1-θ

θ /. {ζ → ζ0, θ → θ0, h → hss0, c → css0}

Uhc0 = h-1-ζ c h-ζ
-θ

ζ (-1 + θ) /. {ζ → ζ0, θ → θ0, h → hss0, c → css0}

Uhh0 = -
c h-ζ1-θ ζ (-1 + ζ (-1 + θ))

h2
/. {ζ → ζ0, θ → θ0, h → hss0, c → css0}

���������� -2.

���������� 0.5

���������� 0.25

���������� λs0 = Simplify
1

2
ρ - 2 η + ρ2 +

4 η Uhh η + Uhc 2 η + ρ

Ucc
/.

{η → η0, ρ → ρ0, Ucc -> Ucc0, Uhc -> Uhc0, Uhh -> Uhh0}

λu0 = Simplify
1

2
ρ + 2 η + ρ2 +

4 η Uhh η + Uhc 2 η + ρ

Ucc
/.

{η → η0, ρ → ρ0, Ucc -> Ucc0, Uhc -> Uhc0, Uhh -> Uhh0}

���������� -0.0631437

���������� 0.0831437

���������� (* multiplicadores LP *)

Simplify[dXLPg + kx0 P0 + kx1 Ps /.
{ac -> ass0, hc → hss0, qac → qass0, qhc → qhss0, dw -> w1 - w0, η → η0,
ρ → ρ0, Ucc -> Ucc0, Uhc -> Uhc0, Uhh -> Uhh0, λs -> λs0, λu -> λu0}]

���������� {{-7. - 57.1429 k3 + kx0 + 1.8694 kx1}, {-1.14286 k3 + 0.02 kx0 + 0.421717 kx1},
{k3 - 0.0175 kx0}, {-7.14286 k3 + 0.125 kx0 + kx1}}

���������� (* new approximate solution *)
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���������� Xtsol =

Simplify[Xt /. {ac -> ass0, hc → hss0, qac → qass0, qhc → qhss0, dw -> w1 - w0, η → η0,
ρ → ρ0, Ucc -> Ucc0, Uhc -> Uhc0, Uhh -> Uhh0, λs -> λs0, λu -> λu0}]

���������� 15.681 - 0.680971 ⅇ-0.0631437 t, 1.15362 - 0.153619 ⅇ-0.0631437 t,

{0.865583 - 0.833333 γ}, 0.960121 - 0.364272 ⅇ-0.0631437 t - 8.33333 γ

���������� (*atsolt[t_]=15.680970982036422-0.68097098203642 Exp[ λs0 t]*)
atsolt[t_] = Xtsol[[1, 1]]
htsolt[t_] = Xtsol[[2, 1]]
qatsolt[t_] = Xtsol[[3, 1]]
qhtsolt[t_] = Xtsol[[4, 1]]

���������� 15.681 - 0.680971 ⅇ-0.0631437 t

���������� 1.15362 - 0.153619 ⅇ-0.0631437 t

���������� 0.865583 - 0.833333 γ

���������� 0.960121 - 0.364272 ⅇ-0.0631437 t - 8.33333 γ

����������

���������� (* Solution for consumption *)

Cmhss = Cmh /. {c → css0, h → hss0, θ → θ0, ζ → ζ0}
Cmqass = Cmqa /. {c → css0, h → hss0, θ → θ0, ζ → ζ0}
Cmqhss = Cmqh /. {c → css0, h → hss0, θ → θ0, ζ → ζ0, η → η0}

ctsol = Simplifycss0 + Cmhss Xtsol[[2, 1]] - hss0 +

Cmqass Xtsol[[3, 1]] - qass0 + Cmqhss Xtsol[[4, 1]] - qhss0

���������� 0.5 γ

���������� -0.5

���������� 0.05

���������� 1.11521 + ⅇ-0.0631437 t -0.0182136 - 0.0768097 γ + 0.0768097 γ

���������� ctsolt[t_] = 1.15362 - 0.056618 Exp[ λs0 t]

���������� 1.15362 - 0.056618 ⅇ-0.0631437 t

���������� (* New steady state *)

css1 = ctsolt[Infinity]
ass1 = atsolt[Infinity]

���������� 1.15362

���������� 15.681
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���������� (* Trajectories *)

Plot[atsolt[t], {t, 0, 100}]
Plot[htsolt[t], {t, 0, 100}]
Plot[ctsolt[t], {t, 0, 100}]
Plot[qhtsolt[t], {t, 0, 100}]

����������
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����������
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����������

ParametricPlot[{atsolt[t], ctsolt[t]}, {t, 0, 200}, AspectRatio → 1]

����������

15.50 15.55 15.60 15.65

1.140

1.142

1.144

1.146

1.148

1.150

1.152

1.154

habit2.nb  ���13



����������

(* Linearized phase diagram *)

iso1[a_, ρ_, w_] := ρ a + w
Fiso0 := Plot[iso1[a, ρ0, w0], {a, 0, 20},

PlotRange → {{10, 20}, {0.5, 1.5}}, PlotStyle → Dashed, AxesLabel → {"a", "c"}]
Fiso1 := Plot[iso1[a, ρ0, w1], {a, 0, 20}, PlotRange → {{0, 20}, {0.5, 1.5}}]
(* ic:=Graphics[InfiniteLine[{ass0,0},{ass0,1.4}]]*)
ic = Graphics[{Black, Dotted, Line[{{ass0, 0}, {ass0, 1.4}}]}]
Lss0 := Graphics[{PointSize[Large], Black, Point[{ass0, css0}]}]
Lss1 := Graphics[{PointSize[Large], Black, Point[{ass1, css1}]}]
Lin0 := Graphics[{PointSize[Large], Black, Point[{ass0, ctsolt[0]}]}]
Leg0 := Graphics[Text[Style["A", FontSize → 14, Black], {ass0 + 0.2, css0 - 0.02}]]
Leg1 := Graphics[Text[Style["C", FontSize → 14, Black], {ass1 + 0.1, css1 + 0.02}]]
Leg2 := Graphics[Text[Style["B", FontSize → 14, Black], {ass0 - 0.4, ctsolt[0]}]]
Traj := ParametricPlot[{atsolt[t], ctsolt[t]}, {t, 0, 200},

PlotRange → {{10, 22}, {0.8, 1.4}}, AspectRatio → 1, PlotStyle → Black]
Show[Traj, Fiso0, Fiso1, Lss0, Lss1, Lin0, ic, Leg0, Leg1, Leg2, AspectRatio → 1]

����������

����������
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���������� (* Trajecgtories of income and consumption *)

TC := Plot[Piecewise[{{ctsolt[t], t > 0}, {1, t < 0}}],
{t, -10, 100}, PlotStyle → Black, PlotRange → Full]

jumpc := Graphics[{Black, Dashed, Line[{{0, 1}, {0, ctsolt[0]}}]}]
TY := Plot[Piecewise[{{ρ0 atsolt[t] + w1, t > 0}, {1, t < 0}}],

{t, -10, 100}, PlotStyle → Blue, PlotRange → Full]
jumpy := Graphics[{Blue, Dashed, Line[{{0, 1}, {0, ρ0 atsolt[0] + w1}}]}]
T0 := Plot[1, {t, -1, 0}, PlotRange → Full]
Show[TC, TY, jumpc, jumpy,
PlotRange → {{-5, 100}, {0.99, 1.2}}, AxesLabel → {"t", "c,y"}]

����������
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