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1 Introduction

In this note we present the simplest version of the dominant current view in macroeconomics, the
dynamic general equilibrium framework.

We can distinguish between two views on macroeconomics, assuming that its birth, as a separate
field in economics, started after the great depression of the late 1920’s.

There is a dilemma in macroeconomic modelling between the consistency, at the micro level,
of the actions of agents in all the markets they participate, and the aggregation and coordination
of agents, at the macro level. This dilemma has been addressed in two different ways along the
history of macroeconomic modelling 1

The IS-LM model, first presented by John Hicks in the 1950’s, stressed the aggregative aspect by
sacrificing micro consistency. The model central core is based on market equilibrium relationships
between the main macroeconomic aggregates, in which the behavioral functions are introduced
separately. For instance, the consumption function is dependent on income, the investment function
is dependent on the interest rate and the demand for money is dependent on income and the interest
rate, but it does not consider that all those decisions are taken simultaneously and are tied down
by financial constraints at the household level.

A different approach, which we now call the dynamic general equilibrium (DGE) approach, that
emerged in the late 1960’s and became dominant in the 1990’s, is built around the idea of getting
the micro consistency right, at the cost of modelling the behavior of an aggregate economy as
analogous to the behavior of a single agent. The actions of agents in different markets are modelled
by specific (dynamic) microeconomic models, which are made consistent at the aggregate level by
market equilibrium conditions. That consistency was achieved at the cost of some unrealism by
casting away complexities generated by aggregating heterogenous agents.

However, in the last decade, this approach is evolving by considering heterogeneities (in behav-
ior, information and resources) among agents, and dealing with aggregation problems, at the cost
of a huge increase in the mathematical complexity of the models.

In this note we provide a simple introduction to the simplest DGE modelsin section 2.
Section 3 presents the centralized version of the model. The decentralized version is presented

in section 4. In both of the previous section the labor supply is exogenous. Section 6  presents a
endogenous labor version of the model.

2 The basic DGE model and the stylised facts

A specialization has emerged between macroeconomics and growth economics, which is not clear
in some macroeconomic textbooks (as Romer, 2019 or Alogoskoufis, 2019), but it is clear in growth
textbooks (see Acemoglu, 2009).

For the purpose of this course, we want to make this distinction explicit. While growth eco-
nomics deals with trends of the activity in the economy, in particular with average rates of growth
for long periods of time, macroeconomics deals with the deviations from that trend, the cycle not
necessarily regular. This means that while a growth model has to generate a theory on the rate

1This dilemma is not unique to economics.
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of growth  of the economy, a macromodel has to generate a theory on the deviations of the
economy relative to a stationary state, i.e., the business cycle.

This implies that growth economics and macroeconomics look at different aspects of the econ-
omy. While growth economics addresses the effects of technological change, the dynamics of human
capital, natural capital, and innovations, for instance, macroeconomics deals with the short run
adjustments in consumption, in investment (particularly at its expenditure, financial and capacity
building aspects), in the labor market, in prices, and stabilization policy issues.

A useful macroeconomic model should be consistent with (and provide one explanation of) the
relevant stylized macroeconomic facts. In order to understand which they are, let us remember the
basic instantaneous product market equilibrium equation

y(t) = c(t) + i(t) + g(t) + x(t)−m(t)

  where y is income (or output), and c, i, x and m represent consumption, investment, exports,
and import expemditures (or demand), which must be satisfied at every point in time t. The trade
balance is tb(t) = x(t)−m(t)

Uribe and Schmitt-Grohé, 2017, ch 1 present several business cycle stylized facts  regarding
those quantities. In this note we are interested in the following 2:

1. all the expenditure components are pro-cyclical (i.e., positively correlated with output) , with
the exception of the trade balance which is counter-cyclical;

2. consumption and government expenditures are less volatile than output, while investment
and trade balance are more volatile;

3. consumption is less volatile in developed than in less developed countries;

4. consumption is more persistent and investment less persistent than output.

 
All those variables have roughly a mean-reverting behavior, i.e, they fluctuate around their

particular trends.
There are several issues a model has to explain, to allow for an understanding of those facts.

In particular, we might want to understand what explains:

1. the stability mechanism that forces variables to adjust to their stationary value, or trend;

2. the shifters that generate deviations from their trend;

3. the persistent behavior of consumption;

4. the volatile behavior of investment;

5. the higher persistency of consumption as regards output.

The simplest DGE model  provides some explanations for those questions (that we might
check quantitatively):

2Cyclicality is measured by the correlation between every expenditure component and output, volatility is measured
by the standard deviation of a variable, and persistency is measured by the autocorrelation of the variable time series.



Paulo Brito Advanced Macroeconomics 2022/2023 5

1. the stability mechanism is provided by the decreasing marginal return of capital;

2. deviations from a stationary state are brought about by supply (increases in productivity) or
demand shocks (preference to anticipate consumption);

3. the persistency in consumption is produced by intertemporal consumption substitution, that
is, by a preference for smooth consumption trajectories, and by the possibility of using asset
markets for intertemporal transfers of resources;

4. the volatility of investment is generated by the volatility of supply shocks (TFP) and of
savings through its effect on asset prices;

5. the higher persistency of consumption dynamics, in comparison with output, is again ex-
plained by the existence of a mechanism for intertemporal allocation of goods together with
a high elasticity of intertemporal substitution in consumption.

Other models provide other explanations for the different persistencies of consumption and
output: life-cycle behavior in consumption, habit persistence, precautionary motives, just to name
a few.

Next we address a model in which the dominant features are the existence of intertemporal
substitution in consumption and the existence of decreasing marginal returns in production.

3 The Ramsey model

The Ramsey, 1928 model (in the version established by Cass, 1965 and Koopmans, 1965) has become
the founding stone of the current dominant model in macroeconomics, that has been designated
the DGE (dynamic general equilibrium) approach to macroeconomics.3

One of the main strong points, and also one of the main weaknesses, of this model relates to
its nature: we can view it as providing a normative theory (how should the economy work ?) or a
positive positive theory of an economy (how the economy actually works ?). Although the initial
view of Ramsey was normative, some researchers use it as an acceptable positive description of the
economy.4

Consider an economy populated by a constant number, N , of homogeneous households or agents.
The economy has an initial endowment, denoted by k0, of a durable good.

The stock of the durable good can be increased by production, which depends on the existing
stock of the durable good, and can be consumed immediately or stored for future consumption.
Then a natural question arises: how should consumption, and therefore the stock of the resource,
evolve across time ? In order to answer that question we should find a way to value the state of
the economy.

Therefore, the three basic elements of the model are the existence of:
3For a recent history of DSGE models see Gulan, 2018.
4Not wanting to delve into the philosophy of economics, maybe several economists (aware or unaware) follow

Friedman, 1953’s view that if a model, even if it looks very abstract, generates relationships between variables
statistically similar to actual time series, is a good representation of the economy. For a recent debate on models
and the macro-economy see Sargent, 2008 Nobel lecture, and for background in the philosophy of economics see
https://plato.stanford.edu/archives/win2013/entries/economics/

https://plato.stanford.edu/archives/win2013/entries/economics/
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1. the possibility of shifting the use of the resource over time;

2. constraints that condition those intertemporal transfers;

3. a technology allowing for the transformation of the existing stock of the resource into a
different stock in the future;

4. a preference ordering over different future paths of consumption.

3.1 Environment and notation

In this economy there is one durable good, or a resource, that can be used in consumption or can
be stored and used as an input in production. This allows us to distinguish between its stock and
the flows of consumption, investment and production.

In the case of the Ramsey model the resource is considered to be physical capital, whose stock
is denoted by K. The flow of output is denoted by Y and the flow of aggregate consumption is
denoted by C. All those quantities are functions of time, t, which is assumed to be a non-negative
real variable belonging to set T = R+ (or T = R+ ∪∞). We take the present time as t = 0.

In this lecture it is important to distinguish: mappings, values and paths. Taking the example
of consumption, we can have consumption as a mapping  (a function in this case) C(·) : T → R+,
the level  of consumption at a particular point in time t ∈ T is denoted by C(t), and the path 
of consumption is the flow of the consumption level over time, C =

(
C(t)

)
t∈T. Off course, a path

C can be traced out if we know function C(·) and evaluate it at every point in time t ∈ T, that is,
C(t).

Aggregate variables are denoted by uppercase symbols and per capita variables are denoted by
lowercase symbols. Therefore k ≡ K/N , y ≡ Y/N and c ≡ C/N are, respectively, capital intensity,
per-capita output and per-capita consumption. We assume all those variables take non-negative
real values. We can denote accordingly per-capita consumption as a function, c(·), as a value at
time t, c(t), and as a path c =

(
c(t)
)
t∈T and analogously for the other variables.

3.2 Constraints

There are three constraints on the allocation of the good in the economy: first, the initial capital
stock is given, it is known, and is positive, k(0) = k0 > 0; second, the present-value of the terminal
capital stock is non-negative limt→∞ k(t)e−R(t) ≥ 0, where R(t)/t is the average rate of return on
capital; and third, there is an instantaneous budget constraint k̇(t) = y(t)− c(t).

Let us assume we can write

k̇ = r(t)k(t) + z(t), t ∈ [0,∞) (1a)
k(0) = k0, t = 0 (1b)
lim
t→∞

k(t)e−R(t) ≥ 0 (1c)

    where r(t) is the instantaneous rate of return on capital, e−R(t) = e−
∫ t
0 r(s)ds is the discount

factor with a time-varying interest rate, and z(t) = w(t) − c(t) is the savings out of non-financial
income.
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From those three constraints, we can derive an equivalent intertemporal budget constraint. The
solution of the instantaneous budget constraint  (1a) is

k(t) = eR(t)
(
k(0) +

∫ t

0
e−R(s)z(s)ds

)
.

  If we substitute (1b), and multiply by e−R(t), we obtain 5 

e−R(t)k(t) = k0 +

∫ t

0
e−R(s)z(s)ds.

  Taking the limit t → ∞, and introducing the terminal constraint (1c) we have intertemporal
budget constraint

k0 ≥ −
∫ ∞

0
e−R(s)(w(s)− c(s))ds

  which means that the three conditions (1a)-(1c) together are equivalent to requiring that the
initial capital stock is bigger (or equal) to the present value of the net uses in consumption of the
good in the future. The human capital at time t = 0 is the present value of future wages, using the
market interest rate as the deflator, is

h∞(0) ≡
∫ ∞

0
e−R(s)w(s)ds.

  Because it is exogenous to the household we write h∞(0) = h0, the intertemporal budget constraint
is equivalent to

k0 + h0 ≥
∫ ∞

0
e−R(s)c(s)ds,

  which means that the present value of future consumption at time t = 0 should not be higher
than the total capital (non-human and human).

As k0 is bounded then the path of consumption c =
(
c(t)
)∞
t=0

should also be bounded in present
value terms.

There are two alternative equivalent ways of seeing the instantaneous budget constraint. First,
defining savings at time t as non-consumed output, s(t) = y(t) − c(t), the instantaneous budget
constraint is equivalent to investment equal savings: k̇ = s(t). Second, as we assume that there
is no capital depreciation, gross investment is equal to investment expenditures and is equal to
net investment (or capital formation), i(t) = k̇. Therefore, the budget constraint can be seen as a
balance between the origin of output and its uses y(t) = c(t) + i(t).

3.3 Assumptions

3.3.1 Technology

  The technology of this economy is described by the production function,

Y = F (K,L)

5It is important to notice the conceptual difference between k(0) and k0. While the first is the level of a function
of time evaluated at time t = 0, k(0) = k(t)

∣∣
t=0

, k0 is a known real number.
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  where aggregate output, Y , is produced by two inputs the stocks of physical capital, K and labor
L. We assume there is no unemployment, then L = N . The production function is assumed to
have three properties that allow to label it as neo-classical. 6 

First, there are positive marginal returns to both inputs, FK(·) > 0, FL(·) > 0. This means
that increases in the quantity of any input increases production

Second, it is concave, i.e., FKK(·) < 0, FLL(·) < 0 and FKK(·)FLL(·) − FKL(·)2 > 0, and
usually the inputs are Edgeworth complementary FKL(·) ≥ 0. This means that any input use
is characterized by the existence of decreasing marginal returns for increases in its own use but
increasing returns from the use of any other input, meaning that they are complements in the
Edgeworth sense. 7

Third, it is usually assumed that there are constant returns to scale. Mathematically the last
property is translated by the requirement the F (K,L) is a homogeneous of degree one (HDO)
function. Thus if we increase every input by a scale factor λ the output also increases by the same
factor F (λK, λN) = λF (K,L) = λY . Linear homogenous functions have a nice property: Euler’s
lemma says that Y = FK(K,L)K + FL(K,L)L.

The three properties, display different roles in the model. Positive returns allows for a positive
effect of the increase in resources on the possibility of having consumption in the future, without
completely depleting the stock of capital. Concavity provides a stable dynamic mechanism, as we
will see next. Constant returns to scale (CRS), allows to work with scale-free per capita variables:
setting λ = 1/N yields

y ≡ Y

N
=
F (K,N)

N

(HDO)
= F

(K
N
, 1
)
= F (k, 1) ≡ f(k).

  where f ′′(k) < 0 < f ′(k), from the properties of F (·). Then Y = f(k)N

3.3.2 Consumption preferences

Preferences over aggregate consumption, C, are ranked according to a (cardinal) social welfare
functional 

U[C] = NU[c]

  where U[c] is the intertemporal utility functional  for a single agent (or household) whose
consumption is denoted by c.

We assume an additive, discounted intertemporal utility functional

U[c] ≡
∫ ∞

0
u(c(t)) e−ρtdt, ρ > 0

  There are three main features of the utility functional U[c] I would like to emphasise: first, it
displays impatience (because we are discounting future consumption by a time decreasing discount
factor e−ρt); second, it displays additive separability because the value of consumption at each point

6In the sense that a common conception of the classical economists (Quesnay, Smith, Ricardo, and even Marx) is
that marginal returns are decreasing.

7The recent approach to microeconomics consider the property of supermodularity. Function F (K,L) is super-
modular if F (max{K,L}) + F (min{K,L}) ≥ F (K,K) + F (L,L). If we assume that F (·) is differentiable, then
function F is supermodular if and only if FKL(·) > 0. In this case we say that K and L are (strategic) complements.
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in time is not affected by the past consumption (u(c(t)) only depends on the level of consumption
and not on the path of consumption); and third, there is intertemporal substitution in consump-
tion, which can be measured by the relative concavity of u(·), or the inverse of the elasticity of
intertemporal substitution

σ(c) ≡ −u
′′(c) c

u′(c)
.

 
We assume implicitly that there is an institutional mechanism, represented by a social welfare

functional, which measure the value of consumption allocations by summing up utility of every
household (or dynasty), which is assumed to be infinitely living.

3.4 Optimal allocation

Gathering all the previous elements we can model the aggregate behavior of an homogeneous agent
economy endowed with an efficient social allocation mechanism.

Definition 1 (Optimal allocation). An optimal allocation (c∗,k∗) =
(
c∗(t), k∗(t)

)
t∈T is an alloca-

tion that solves the problem

max
c(·)

∫ ∞

0
u(c(t)) e−ρtdt (2a)

subject to
k̇ = f(k)− c, for each t ∈ [0,∞) (2b)
k(0) = k0, for t = 0 (2c)
lim
t→∞

k(t)e−R(t) ≥ 0 (2d)

c(·) ∈ R++ (2e)

   

There are two approaches to solve this problem, based on two different (but equivalent) princi-
ples: the Pontryiagin’s maximum principle (PMP) and the dynamic programming principle (DPP).
8

Observe that the problem consists, in essence, to find the best way to use an initial resource,
k0, from now to the infinite future, knowing that if we don’t consume it all at every point in time
(that is, if c(t) ≤ f(k(t))) there is a technology that allows for an increase in consumption in the
future. The existence of a positive resource and the technology of production allows for several

8There is also the calculus of variations approach, which transforms the problem into  

max
k(·)

∫ ∞

0

u
(
f(k(t))− k̇(t)

)
e−ρtdt

subject to

k(0) = k0, t = 0

lim
t→∞

k(t)e−R(t) ≥ 0
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possible paths of consumption in the future, and generates trade-offs between present and future
consumption. Intertemporal preferences provide a criterium for choosing an optimum trade-off.

Therefore, the value of the initial endowment of the resource, k0, can be measured by the
optimal path of consumption it makes possible, which can be measured by the value function 9 for
the initial resource

v(k0) = U[c∗] =

∫ ∞

0
u(c∗(t)) e−ρtdt.

  This idea is used by the DPP, by implicitly obtaining and intertemporal valuation criterium.
Instead, the PMP provides an optimality criterium together with that trade-off, for every point in
time.

3.5 The solution according to the PMP

The Pontryiagin’s maximum principle (PMP) is reminiscent from the Lagrangean approach to
static optimization.

We introduce the (current-value) Hamiltonian function

H(k, q, c) = u(c) + q (f(k)− c)

which penalizes the utility of consumption, at every point in time, by the value of the foregone
stock of capital, where q is a dynamic shadow value (which is called co-state variable or adjoint
variable).

An optimal allocation (c∗,k∗) satisfies the following optimality, adjoint and transversality con-
ditions

u
′
(c∗(t)) = q(t) (4a)

q̇ = q
(
ρ− f ′(k∗)

)
(4b)

lim
t→∞

q(t) k∗(t) e−ρt = 0 (4c)

    together with the admissibility constraints (2b)-(2c), evaluated at
(
k∗(t)

)∞
t=0

. Off course k∗(0) =
k0 should hold. If the utility function is strictly concave, with u′′(c) < 0 on all its domain, we can
apply the implicit function theorem to obtain the adjoint variable as a decreasing function of
consumption, q = Q(c), with Q′(c) < 0. Taking time-derivatives,

d
(
u′(c(t))

)
dt

= u′′
(
c(t)
) dc(t)

dt
=
dq

dt

  and substituting q̇ = q (ρ− f ′(k)), yields the so-called Keynes-Ramsey rule (or Euler equation)

u′′(c) ċ = u′(c)
(
ρ− f ′(k)

)
.

  Using the previously defined elasticity of the utility function, σ(c) = −u
′′(c)c

u′(c)
, the modified

Hamiltonian dynamic system (MHDS), together with the initial and the transversality condition,
9Mathematically it is a function, not a functional, because if we were able to find the optimal solution for con-

sumption it would be of type c∗ = C(t, k0). If we plugged it into the functional U[c], and integrate over time, we
would obtain a function of k0. As we will see next, only in very special cases we can obtain explicitly function C(t, k0).
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is

k̇∗ = f(k∗)− c∗ (5a)

ċ∗ =
c∗

σ(c∗)

(
f ′(k∗)− ρ) (5b)

k∗(0) = k0 (5c)
lim
t→∞

u′(c∗(t)) k∗(t) e−ρt = 0. (5d)

   
The last condition forces the solution to converge asymptotically (i.e., when T → ∞) to a

constant or to a function of time that should grow at a non-positive rate.10

The PMP operates in the following way.
Let us assume that there is one unique solution to the problem. If this is the case, given an

initial value for (k(0), c(0)) the system (5a)-(5b) traces out one single path
(
c(t), k(t)

)∞
t=0

. However,
we only know k(0) = k0 and for most values of c(0) the solution will not satisfy the transversality
condition (5d). On the other hand, uniqueness of solutions to the problem is equivalent to requiring
that there will be only one value for c(0) such that the solution satisfies (5d). If this condition only
holds for constant values of k and c, this means that the unique solution converges to a steady state
is of the saddle-point type.

From all this we learn two things: first, the crucial step in obtaining the solution to the problem is
to find the initial value for consumption c∗(0), and, second, this value will be determined backwards
from the terminal conditions, which is usually a steady state of saddle-point type. This is only
possible if there is some type of foresight, as is clear from the fact that the consumer values the
present value of all the consumption path (c(t))t∈[0,∞).

Therefore, an optimal solution will contain both forward and backward mechanisms.
The first, represented by the instantaneous budget constraint, propagates the capital stock into the
future through savings. The second, backward (anticipating) mechanism is related to the incentives
for consumption, guided by both the return on production relative to impatience and the attitude
of the consumer as regards intertemporal consumption substitution, which determines savings at
every point in time.

Next we will show how to find the solution for a particular case.

3.6 The solution from the DPP approach

The DPP approach operates in a different way. It tries to find a rule that, given the observed
capital stock at every point in time, would enable to find a time-independent optimal rule (i.e., a
recursive mechanism) for consumption.

We call value function to

v(k(t)) = U[c∗; t] ≡ max
c(·)

∫ ∞

t
u(c∗(s))e−ρ(s−t) ds

  which provides a valuation of the existing level of the capital stock as a resource allowing for
consumption in the future. This notation highlights the fact that the value of the stock of the

10This is the case of endogenous growth models for which f(k) is a linear function.
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durable good at time t, k(t), if used efficiently, allows us to attain the intertemporal utility level
U[c∗; t], at the optimum.

Applying the principle of dynamic programming, an optimal allocation (c∗,k∗) satisfies the
Hamilton-Jacobi-Bellman (HJB) equation

ρ v(k) = max
c

{
u(c) + v′(k)

(
f(k)− c)

}
, (6)

where the optimal consumption satisfies

u′(c∗) = v′(k). (7)

  If again the utility function has no singularities, we can find implictly the optimal policy
function

c∗ = C(k) = (u′)−1(v′(k)) (8)

  which, substituting on the HJB equation, yields

ρ v(k) = u(C(k)) + v′(k)
(
f(k)− C(k)) (9)

  which is an implicit ordinary differential equation. If we are able to find the optimal policy
function, we can determine the solution by solving

k̇ = f(k)− C(k), for t ∈ T
k(0) = k0.

(10)

3.7 Comparing the two approaches

  Comparing the optimality conditions from the PMP, equation (4a), and from the DPP, equation
(7), we observe that, in the infinite horizon case, the adjoint variable q of the first is formally equal
to the marginal value of capital, v′(k) of the second. This allows us to interpret q as a shadow-value
of capital.

Remembering that the solution for c is forward looking, when using the PMP, we can interpret
the policy function, in equation (8), as implicitly incorporating the transversality condition (5d).
That is, it translates the backward solution of the adjoint equation together with the transversality
condition, equations (5b) and (5d), into a single backward rule (8). This is why solving the problem
by the DPP is said to be applying recursive methods11

There are advantages and disadvantages in applying the PMP or the DPP to solving the
Ramsey-like types of models. The main difficulty in applying the PMP is related to finding the
initial value of consumption by transforming the MHDS into a initial-terminal value problem.
However, it allows for using the richness of results from dynamic systems theory for, at least, char-
acterizing analytically the optimal solution. The main difficulty in applying the DPP is solving the
implicit ordinary differential equation (9). However, the recursive structure of the solution provides
a simpler interpretation of the characteristics of the solution.

By using the envelop theorem  we can use the geometrical approach, analogous to the one
from the PMP, after obtaining the first-order conditions through the DPP.

11Ljungqvist and Sargent, 2018 apply systematically this approach for discrete time versions of macromodels.
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Taking derivatives as regards the state variable, k, of equation (9) we find

ρ v′(k) = u′(C(k))C ′(k) + v′′(k)
(
f(k)− C(k)) + v′(k)

(
f ′(k)− C ′(k))

because, at the optimum u′(C(k)) = v′(k) then this is equivalent to

ρ v′(k) = v′′(k)
(
f(k)− C(k)) + v′(k) f ′(k),

which is valid for any k = k(t). Setting q(t) = v′(k(t)), for every t ∈ (0,∞) we have

dq(t)

dt
= v′′(k)

dk(t)

dt
= v′′(k)

(
f(k(t))− C(k(t))) = v′(k(t))

(
ρ− f ′(k(t))

)
.

  Therefore
dq(t)

dt
= q(t)

(
ρ− f ′(k(t))

)
.

which is the multiplier or adjoint condition from the PMP (also called the Ramsey-Keynes rule).

3.8 A benchmark application: the isoelastic-Cobb-Douglas case

 
In this section we solve the Ramsey model by introducing specific utility and production func-

tions.
The Ramsey model in the general form just presented does not have an explicit solution because

we have left unspecified both the utility function, u(·), and the production function, f(·).
Whatever the method we use, in general we cannot find explicitly the optimal allocation (c∗,k∗),

even if we consider explicit utility and production functions. Even if we specified those functions,
in most cases we cannot obtain an explicit (i.e, exact) solution and we have to use approximate or
numerical methods to find it. This is unfortunate, because a complete understanding of the nature
of the solution can only be obtained by knowing the explicit solution.12

A benchmark particular case in which the utility function is a generalized logarithm13

u(c) =
c1−θ − 1

1− θ
, for θ > 0

  where σ(c) = θ, is the inverse of the elasticity of intertemporal substitution, and the production
function is Cobb-Douglas Y = AKαL1−α, yielding

y = f(k) = Akα, A > 0, 0 < α < 1,

  where A is the the total factor productivity (TFP) and α is the share of capital in national
income.

If we want to determine or characterize the optimal allocation (c∗,k∗), we have two alternative
approaches we mentioned before:

12It is not uncommon to find in the literature inaccurate presentations of the solutions to the Ramsey problem.
13We can write it as u(c) = logθ(c). A particular case, when θ = 1 is the logarithmic utility function u(c) =

log1(c) = log(c). Prove this by nothing that u(c) = log(eu(c)) and  by using the l’Hôpital rule.



Paulo Brito Advanced Macroeconomics 2022/2023 14

We can use the PMP and solve the particular version of the MHDS system together with its
initial and transversality conditions,

k̇∗ = A (k∗)α − c∗ (11a)

ċ∗ =
c∗

θ

(
αA (k∗)α−1 − ρ) (11b)

k∗(0) = k0 (11c)
lim
t→∞

(c∗(t))−θ k∗(t) e−ρt = 0 (11d)

    We denote the rate of return of capital, or interest rate by

r(k) = f ′(k) = αAkα−1.

 
Because the initial stock of capital is given, in equation (11c),   and, as we will see, consumption

at time t = 0 is implicitly determined from the transversality condition (11d), we call k a prede-
termined variable and c a non-predetermined  variable. If we are able to find c(0) uniquely,
we say that the optimal path is determined.

Alternatively, we can use the DPP, solve the particular version of the HJB equation (6)

ρ v(k) = max
c

{c1−θ − 1

1− θ
+ v′(k)

(
Akα − c

)}
(12)

  obtain optimal consumption from the optimal policy function

c∗ = C(k) =
(
v′(k)

)−θ
,

  and solve the ODE problem
k̇ = Akα − C(k)

  together with the initial condition k(0) = k0 to obtain k∗ =
(
k∗(t))t∈[0,∞), and substitute back

in the policy function C(k) to obtain c∗ =
(
c∗(t))t∈[0,∞)

Then, we can answer two fundamental macroeconomic questions: First, how does consumption
and output respond to demand and supply shocks, represented by shifts in the parameters A and
ρ ? Second, does this type of response matches the stylized facts ?

The best way to answer those questions would involve obtaining exact (also called closed form)
solutions. Even in this isoelastic-Cobb-Douglas case, for generic values of the parameters, there
is no known explicit solution, which explains why researchers resort to approximate analytical of
numerical methods to solve it.

However, only if θ = α we can obtain an explicit solution. Although this relationship is counter-
factual 14 because most empirical research, using macro and micro data, finds a realistic value for θ
to be in an interval centered at θ = 2, this case is important because it allows for an understanding
of our previous discussion.

14References benchmark parameter values: Basu and Fernald, 1997, Hall, 1988.
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3.8.1 The case θ = α

If we have any hope of finding an explicit solution, the hard problem is solving the backward looking
part, i.e., obtaining consumption as a function of the capital stock: c = C(k). We prove in the
appendix15 that both methods yield one unique solution

c = C(k) ≡ ρ

α
k.

Observe that this consumption function is different from the Keynesian consumption function. As

k =
( y
A

) 1
α we will have

c =
ρ

α

( y
A

) 1
α

which is different from a Keynesian consumption function which is linear in y, for instance c = β y

for 0 < β < 1. As α ∈ (0, 1) this means that consumption in the Ramsey model will change more
than linearly with income, because 1

α > 1. 16

The solution for capital is obtained by solving forward in time 17k̇
∗ = A (k∗)α − ρ

α
k∗ for t ∈ (0,∞)

k∗(0) = k0
(13)

  which is

k∗(t) =

[
k̄1−α +

(
k1−α
0 − k̄1−α

)
e−ρ
(

1−α
α

)
t
] 1

1−α
, for t ∈ [0,∞), (14)

  where
k̄ =

(αA
ρ

) 1
1−α (15)

  is the steady state level of the capital stock.
From this result we can get explicit solutions for consumption c∗(t) =

ρ

α
k∗(t), output y∗(t) =

A
(
k∗(t)

)α, savings s(t) = y(t)− c(t) and the interest rate r(t) = αA
(
k∗(t)

)α−1. For instance,

y∗(t) =

[
ȳ

1−α
α +

(
y

1−α
α

0 − ȳ
1−α
α

)
e−ρ
(

1−α
α

)
t

] α
1−α

, for t ∈ [0,∞) (16a)

r∗(t) =

[
1

ρ
+
( 1

r(0)
− 1

ρ

)
e−ρ
(

1−α
α

)
t
]−1

, for t ∈ [0,∞). (16b)

  where the steady state output is

y(∞) = ȳ = c̄ =

(
A
(α
ρ

)α) 1
1−α

=
ρ

α
k̄ (17)

and the steady state interest rate is equal to the rate of time preference r(∞) = r̄ = ρ.
We only have the following type of dynamic adjustments (see Figure 1):

15See appendix A.
16This flags out a potential counterfactual property of this model, in the sense that it displays a higher volatility

of consumption than income, differently from stylized facts.
17Observe, in the initial condition, that while k∗(0) refers to the optimal solution k∗(t) evaluated at t = 0, which

is not known at this point, k0 refers to an observed level of the percapita capital stock which we can obtain from
published statistics.
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k̄

ċ = 0
c = C(k)

c̄

k0

c∗(0)
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k̇ = 0
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ċ = 0
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k0
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Figure 1: Phase diagrams for the exact optimal adjustments for c and k for the θ = α case. The
adjustment depends on the relationship between the initial level of capital, k0 and the steady state
level k̄: if k0 < k̄, as in the upper panel, there will be both an increase in consumption and the
stock of capital; and if k0 > k̄, as in the lower panel, both will decrease.
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• If k0 = k̄ the solution is stationary, that is time-invariant: consumption and the capital stock,
and therefore output will not change in time, if there is no anticipated shock in any parameter.
In this case the rate of return on capital, and therefore, the real interest rate is equal to the
rate of time preference r(k̄) = ρ.

• If k0 < k̄ both consumption and the capital stock will increase in time: if the level of con-
sumption is too low given the level of production, there is positive savings, implying there
is investment and capital accumulation. This increases output and allows for an increase
in consumption in the future. There is substitution of present consumption by future con-
sumption. The incentive for increasing consumption continues as long as the interest rate is
higher than the rate of time preference r(k(t)) > ρ. Because the interest rate decreases with
the process of capital accumulation, this reduces the incentives for savings and therefore for
capital accumulation. This adjustment is slowed down by the fact that there are decreasing
marginal returns: increasing the production capacity does not increase output commensu-
rably. Stability is brought about by the fact that the rate of return of capital converges to ρ
from above (limk→k̄− r(k) = ρ).

• If k0 > k̄ both consumption and the capital stock will decrease in time: if the level of con-
sumption is higher than output, part of the durable good is de-accumulated, which decreases
the capital stock and therefore output. This forces consumption to reduce as well. In this
case, because there is too much capital the rate of return is below the rate of time preference
r(k) < ρ, i.e., the economy has too much capital from the perspective of the utility maximiz-
ing consumer. Stability is brought about by the fact that the decrease in the stock of capital
increases the rate of return until it converges to ρ from below (limk→k̄+ r(k) = ρ).

3.8.2 The general case with θ ̸= α

 
In this general, more realistic case, we cannot find an exact solution to the optimal allocation

by using any of the two previous approaches, the PMP and DPP.
The most common approach to solving the model is to resort to a linear approximation. In

this case, the PMP allows for a simpler derivation of an approximative solution18. We proceed as
follows: first, we obtain a non-zero steady state of the model (which in this case is unique); second,
we perform a first-order Taylor approximation of the MHDS (11a)-(11b) in the neighborhood of the
steady state , obtaining a variational MHDS; third, we solve the variational MHDS by requiring
that: first, it converges to the steady state, and its initial value is given by (11c). As we require
that the solution converges to a constant, then the solution satisfies the transversality condition
(11d).

This steady state is given by the positive pair (k, c) such that r(k) = ρ and c = f(k), that is

(k̄, c̄) =
{
(k, c) ∈ R2

++ : αAkα−1 = ρ, c = Akα
}
,

  that is
k̄ =

(αA
ρ

) 1
1−α

, c̄ =
(
A
(α
ρ

)α) 1
1−α

=
ρ

α
k̄.

18However, some people find the DPP to be more convenient to reach a numerical solution to the problem.
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  The steady state is the same as in the previous case (see equations (15) and (17)). Again, in
the steady state c̄ = ȳ. This means that the parameter θ does not influence the steady state, but
influences the optimal path out of the steady state.

The variational MHDS, in the neighborhood of the steady state (k̄, c̄), is represented by the
linear-ODE (

k̇

ċ

)
= J

(
k(t)− k̄

c(t)− c̄

)
,where J ≡

 ρ −1

c̄r
′
(k̄)

θ
0

 (18)

As we prove in the Appendix B the solution is

k(t) = k̄ + (k(0)− k̄)eλst (19a)
c(t) = c̄+ λu(k(0)− k̄)eλst (19b)

where λs < 0 < λu are the eigenvalues of the Jacobian matrix J, satisfying the properties λs+λu =

ρ > 0 and λsλu = det(J) < 0, where the the determinant of the Jacobian J is dependent on the
parameters of the model

det(J) = −
(1− α

α

)ρ2
θ
< 0.

  Therefore

λs =
ρ

2

(
1−

(
1 +

(1− α

α

)4
θ

) 1
2

)
, λu =

ρ

2

(
1 +

(
1 +

(1− α

α

)4
θ

) 1
2

)
both λs and λu depend upon the parameters ρ, α and θ, that is on the substitution between labor
and capital in production, on the rate of time preference (which measures impatience) and on the
intertemporal substitution in consumption. If θ → ∞, meaning that there is no intertemporal
substitution in consumption we have limθ→∞ λs = 0 and limθ→∞ λu = ρ which means that there
will be no savings and consumption will be equal to output. Therefore the smaller is θ the higher
(positive or negative) savings will be and consumption will be less instantaneously correlated with
income.

Several other observations can be made. First, if k(0) ̸= k̄ then the solution converges asymp-
totically to the steady state limt→∞ k(t) = k̄, because limt→∞ e−λs t = 0. The speed of convergence
can be measured by the half-life of the adjustment 19 which is, in this case τ = − log(1/2)

λs
> 0.

This means the higher in absolute value λs is the quicker the adjustment will be. Again, a small θ
will speed convergence to the steady state.

Second, as in the previous case the solution is unique, or determinate: given any initial
value for k, k(0), there is only one value for c, c(0), which is determined endogenously such that
limt→∞ c(t) = c̄. The exact solution for consumption throughout time is tangent to a linear
approximation

c(t)− c̄ = λu(k(t)− k̄),

this line is represented in the lower panel in Figure 2 by the label Es and defines the stable
eigenspace (i.e., the space tangent to the stable manifold which is the geometrical analog of the
exact relationship between c and k for the solution of the problem).

19The half-life is defined by τ =
{
t : k(t) − k0 =

k̄ − k0
2

}
. It is the required time to travel half of the distance

between the initial, k0, and the steady state level for the stock of capital, k̄.
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ċ = 0

Es

c̄

k0

c̃(0)

k

c

Figure 2: Phase diagrams for the exact optimal adjustments for c and k: the upper panel is the
exact solution and the lower panel is the linear approximation

3.8.3 Approximation to the optimal path: linear approximation

The difference between the exact solution and the linear approximation can be seen in Figure 2,
where the exact solution is depicted in the upper panel and the approximate solution is depicted
in the lower panel). The linear approximation captures the qualitative dynamics of the optimal
trajectory, although it can quantitatively be slightly different if the initial value of k0 is far away
from the steady state (or the economy is perturbed by an unanticipated shock in any parameter.

There are, in the literature, some misunderstandings regarding the nature of the solution.
Sometimes people use the fact that the steady state is a saddle-point, in which the stable manifold
passing through the steady state is unique, by using this fact to derive the solution. This can be
done as a device to characterize the solution, but introduces a potential misunderstanding on the
mathematical meaning of the uniqueness of the solution to an optimal control problem. If we look
at the derivation of the exact solution for the θ = α case makes this clear: the uniqueness of the
policy function is associated to the existence of a stable-manifold of dimension one, meaning that
the solution of the problem is unique (and it will never wander around the phase diagram as might
be understood if we draw the complete vector field).
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From a dynamic systems perspective, the solution traces out an heteroclinic trajectory 20 linking
(0, 0) to (k̄, c̄) and following a smooth trajectory for (k, c) higher than (k̄, c̄). That is, the policy
function is geometrically equivalent to that heteroclinic trajectory. For the case θ = α the line
c = ρ

αk corresponds to that heteroclinic trajectory (which we saw is the only locus where the
solution lies). If θ > α the policy function will be ”trapped” between the same line, c = ρ

αk, and
the isocline for k, c = f(k) = Akα. If 0 < θ < α the ”trapping” area should be different: between
c = 0, k = k̄ and c = ρ

α k.

3.8.4 Approximation to the optimal path: heteroclinic approximation

Given the fact that the stable manifold is an heteroclinic orbit joining the origin to the steady
state, a better approximation to the policy function (or to the stable manifold in the language of
the dynamic systems) would be to approximate it by an average between the two curves defining a
trapping area:

c = S(ω, k) = ω
ρ

α
k + (1− ω)Akα

  where ω is a weighting factor. We can determine ω by requiring that the slope of curve S(k) in
the neighborhood of the steady state is the same as the slope of the stable eigenvector, which we
saw was λu. We can do this by requiring that S(k) is tangent to the linear approximation in the
neighborhood of the steady state. Therefore,

ω ≡ {w : ∂kS(w, k̄) = λu}.

  As ∂kS(ω, k̄) = ω ρ
α + (1− ω) ρ then

ω =
α (λu − ρ)

ρ(1− α)
.

  Therefore a ”heteroclinic” approximation of the policy function is

c = S(k) =
λu − ρ

1− α
k +

ρ− αλu
ρ(1− α)

Akα.

This function can be seen as a weighting of the Keynesian and of the Ramsey consumption functions,
if we write it as

c = S(k) =
λu − ρ

1− α
k +

ρ− αλu
ρ(1− α)

y.

  To interpret geometrically this result, observe that the slope of the isocline k̇ = 0 in the neigh-
borhood of the steady state is equal to ρ, which means that if λu → ρ− then the optimal trajectory
would approach the curve c = f(k), which means there will be no savings and output will be
completely consumed. We will have this case if θ → ∞, meaning that the consumer elasticity of
intertemporal substitution approaches zero.

Therefore the distance between the policy function c = C(k) and the curve c = f(k) is governed
by the elasticity of substitution θ: the further apart they are the higher savings is, and the lower
the consumption correlation with output will be. This is consistent with stylized facts.

20An heteroclinic trajectory is a path linking, in a dynamic system, two steady states.
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3.8.5 Consequences of supply and demand shocks

 
Assuming we depart from a steady state Figure 3 presents the geometry of the dynamic

adjustments following a non-anticipated, permanent and constant supply shock (i.e., an increase
in productivity from A to A′ > A) and a non-anticipated, permanent and constant demand shock
(i.e., an increase in the rate of time preference from ρ to ρ′ > ρ).

In the case of a positive supply shock, starting from point A (in the upper panel of Figure
3) consumption, responding to the new anticipated path for the rate of return, increases discon-
tinuously to point B. As there is also an increase in output, which is greater than the increase
in consumption, there is positive savings which, through investment, sets in motion a process of
further capital accumulation. This process of increases in consumption, and while there is positive
savings, drives a transition dynamic process towards the new steady state, point C, in which both
consumption, output and the capital stock will be greater than before the shock.

In the case of a positive demand shock, there is also an immediate increase in consumption,
because the implicit relationship between present and future consumption becomes unbalanced
at point A (in the lower panel): consumers prefer consuming now than in the future. Because
output does not change, this generates negative savings (i.e, the durable good is used more for
consumption rather than investment) which reduces the stock of capital and output, forcing a
reduction in consumption. The process is stabilized by the fact that further reduction in the stock
of capital raises the rate of return of capital until we have r(k̄′) = ρ′. 

This type of dynamics justifies labelling capital as predetermined and consumption as non-
pretedermined: capital moves continuously when there is savings, while consumption responds to
news regarding the future evolution of the economy.

The most common approach to obtain an analytical derivation of the whole process is through
a comparative dynamics exercise. As detJ ̸= 0 we could approximate the response function
for the model for a change in parameter φ by taking derivatives to equation (19a) yielding 21

∂φk(t, φ) = ∂φk̄(φ) (1− eλs t) t ∈ [0,∞)

where ∂φk̄(φ) is the long run multiplier and ∂φk(t, φ) is the short run multiplier for the stock of
capital for a permanent, non-anticipated shock in the parameter φ. For consumption, from equation
(19b), one would get

∂φc(t, φ) = ∂φc̄(φ) − λu ∂φk̄(φ) e
λs t t ∈ [0,∞).

We call impact multiplier to the short run multiplier evaluated at time t = 0. Performing the
calculation we have

∂φk(0, φ) = 0, ∂φc(0, φ) = ∂φc̄(φ) − λu ∂φk̄(φ)

  where we have an analytical confirmation to the fact that k only changes continuously and that
the initial change in c responds to the long-run anticipated behavior of the economy.

In order to calculate the long-run multipliers we use the implicit function theorem. Looking to
the MHDS system, in particular to the dynamic equations (11a)-(11b) we see that at the steady

21We use the following notation. Let a function be y = f(x, φ) we write ∂xy =
∂f(x, φ)

∂x
.
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Figure 3: Dynamic adjustments for non-anticipated, permanent and constant supply (upper panel)
and a demand (lower panel) shocks. In both cases I assume that the economy is in the steady state
(point A). Immediately after the shock, becomes off-balance and there is an immediate jump in
consumption (point B) to the new curve C(k) (or the stable eigenspace in the linearized version).
Across time it converges asymptotically to the new steady state (point C). We see that while a
supply shock generates a pro-cyclical adjustment, the demand shock has a transient countercyclical
adjustment.
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state y(A, k)− c = 0
c

θ

(
r(A, k)− ρ

)
= 0

  Computing differentials for both the endogenous variables and the parameters, evaluating the
derivatives at the steady state, we have, for a change in A ∂ky(k̄) −1

c̄ ∂kr(k̄)

θ

r(k̄)− ρ

θ

 (
dk

dc

)
+

 ∂A y(k̄)

c̄∂A r(k̄)

θ

 dA

  where, at the steady state r(k̄)−ρ. As the first Jacobian matrix is matrix J and we already found
that it has a non-zero determinant, then we can invert it to get the expressions for the long-run
multipliers (

∂Ak̄

∂Ac̄

)
=

 dk

dA

∣∣
k=k̄

dc

dA

∣∣
c=c̄

 = −

 ∂k y(k̄) −1

c̄∂k r(k̄)

θ
0

−1  ∂A y(k̄)

c̄ ∂A r(k̄)

θ

 .

  For the case of a shock in A we find comparative dynamics exercise for the cases depicted in
Figure 3, performing simplifications and evaluating the derivatives at the steady state,  we find
the long run multipliers (

∂Ak̄

∂Ac̄

)
= −

 c̄

A
ρ c̄

θ A

 =

 k̄

(1− α)A
c̄

(1− α)A

 ,

  which are both positive. Therefore, the impact multipliers for consumption is

∂Ac(0) =
(ρ− αλu

α

) k̄

(1− α)A

  which is positive if and only if ρ− αλu = λs + (1− α)λu > 0.

3.9 Empirical implementation

If we would like to take this model to data we can fix parameters α = 0.3, θ = 2 and ρ = 0.02 but
the parameter A can only be obtained by calibration.

To calibrate A, assume that an economy is at a steady state and obtain relevant statistics. For
example, from22 we observe that the GDP per capita in Portugal in 2019 is y = 23.7 and the capital
output ratio is around k/y = 3.43. Then we could calibrate A = 6.33484. However, this produces
a high rate of return: r ≈ 8.7%.

4 The simplest dynamic general equilibrium ( DGE ) model

4.1 The model

Instead of the existence of a central planner as a coordinating device, in a market economy the
coordination is make through market transactions. We assume production is done by firms which

22See https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_destaques&DESTAQUESdest_boui=
306571350&DESTAQUESmodo=2.

https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_destaques&DESTAQUESdest_boui=306571350&DESTAQUESmodo=2
https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_destaques&DESTAQUESdest_boui=306571350&DESTAQUESmodo=2
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are owned by households. This allows us to distinguish between financial capital, a and physical
capital k. Firms are a device to transform financial capital into physical capital. They distribute
not only capital income but also wage income to households as a result of the production process.
Firms are also on the supply side of the output market where demand comes from consumption
and investment expenditures.

Furthermore, we assume:

1. preferences: households behave like in the dynastic model and have an intertemporally addi-
tive utility functional, and supply one unit of labor inelastically;

2. technology: firms use a neoclassical production function and adjust instantaneously both
factor inputs, labor and physical capital and there are no financial frictions.

Households  As owners of firms, household also have to finance investment expenditures through
savings. We assume that the utility functional is time additive

U[c] =

∫ ∞

0
u(c(t)) e−ρ t dt

 
The household problem is

v(a0) = max
c

U[c] (20a)

subject to
ȧ = r(t) a+ w(t)ℓ(t)− c(t), for t ∈ (0,∞) (20b)
a(0) = a0 (20c)

lim
t→∞

a(t)e−
∫ t
0 r(s)ds ≥ 0 (20d)

The budget constraint (20b) has the following meaning: consumers’ income comprise capital income
r a and labor income w, where it is assumed that consumers supply inelastically one unit of labor
ℓ(t) = 1; the difference between total income and consumption are equal to savings s(t) = r(t) a+

w(t)ℓ(t)− c(t) which, if positive, it represents an increase in the ownership financial assets, which
in this economy we assume it is deterministic. Differently from k in the Ramsey model a(t), at time
t, can be positive, if the household is a net creditor, or negative, if the household is a net debtor.

The last condition is called in the literature the non-Ponzi game condition  (NPG). It
essentially means that households can not expect to be a net debtor asymptotically. This can only
be a net debtor in the short run. 23  Taken together, the constraints to the household mean that
it cannot expect to use more than its initial asset position a0, if it is a net creditor (i.e., if a0 > 0)
or has to repay its initial level of indebtedness, if it is an initial net debtor (i.e, if a0 < 0).

In order to see this, integrate equation (20b) together with the initial condition (20c) to get

a(t) = e
∫ t
0 r(s)ds

(
a0 +

∫ t

0
e−

∫ s
0 r(z)dz

(
w(s)− c(s)

)
ds
)

23Sometimes people call this condition the transversality condition, which is a misnomer.
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  multiply both terms by the discount factor e−
∫ t
0 r(s)ds

e−
∫ t
0 r(s)ds a(t) = a0 +

∫ t

0
e−

∫ s
0 r(z)dz w(s)− c(s) ds

  pass to the limit as t→ ∞

lim
t→∞

e−
∫ t
0 r(s)ds a(t) = a0 +

∫ ∞

0
e−

∫ s
0 r(z)dz w(s)− c(s) ds.

  Introduce the NPG condition,∫ ∞

0
e−

∫ t
0 r(s)ds c(t) dt ≤ a0 + h∞(0)

where
h∞(0) ≡

∫ ∞

0
e−

∫ t
0 r(s)dsw(t) dt

  is the lifetime human capital, i.e, the present value (at the time of planning) of the future wages
discounted by the market interest rate.

Therefore the three constraints are equivalent to requiring that the present value of consumption
does not exceed the initial financial and human capital, measured by the present value of future
wage earnings.

Firms  This capital represents participation in firms. Therefore, the firms balance sheet takes
the form of K(t) = N a(t), where we assume K(t) to be aggregate capital and N population (or
the number of households) assumed to be homogeneous and constant.

The firms’ problem is static: at every moment in time,

max
K(t),L(t)

Π(K(t), L(t)) = F (K(t), L(t))− r(t)K(t)− w(t)L(t)

  where we assume that F (·) is homogeneous of degree one. We assume firms are price takers in
all the markets and that there is no unemployment, that is L(t) = N .

Because of linear homogeneity, the firms problem may be simplified to

max
k(t)

π(k(t)) = f(k(t))− r(t)k(t)− w(t). (21)

 

Definition 2 (DGE). A dynamic general equilibrium is an allocation
(
ceq(t), keq(t), yeq(t), weq(t), req(t)

)
t∈T

such that

1. every household solves problem (20a)-(20d) taking the interest rate, r, and the wage rate, w,
as given but having perfect foresight on their determination;

2. firms solve problem (21);

3. The compatibility condition, which takes the form of a balance sheet, holds: a(t) = k(t).

4. Labor, capital and goods markets clear. In particular, the product market equilibrium condition
holds:

y(t) = c(t) + k̇(t), for every t ∈ T.
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Using the PMP yield the first order optimality conditions for the household

ċ =
c

σ(c)

(
r(t)− ρ) (22a)

lim
t→∞

u′(c(t)) a(t)e−ρt = 0 (22b)

together with the constraints (20a)-(20c). Equation (22a) provides an arbitrage condition between
consumption and increasing the investment in financial assets. Equation (22b) is the transversality
condition, which is a dual condition associated to the NPG condition (20d) by requiring that the
asset position has no value in present-value terms.

The solution to the firm’s problem together with the zero profit condition (because markets are
competitive) yield the equations

f ′(k(t)) = r(t) (23a)
f
(
k(t)

)
− k(t) f ′

(
k(t)

)
= w(t). (23b)

The first equation means that the optimal the return on capital (obtained from production) is
equal, at the optimum, to the interest rate, and the second means that the marginal return from
employing labor is equal to the wage rate.

Because labor is supplied inelastically to firms and households supply capital to firms, equa-
tions (23a) and (23b) are identically market clearing conditions for capital and labor market. As
y(t) = f(k(t)) = f ′(k(t))k(t) + w(t) = r(t)k(t) + w(t) then we get the equilibrium total income to
households.

From the compatibility condition we have a(t) = k(t). Then, household’s budget constraint is
formally identical to the market equilibrium condition k̇ = y(t)− c(t).

Therefore, we can find the DGE
(
ceq(t), keq(t), yeq(t), weq(t), req(t)

)
t∈T by solving a dynamic sys-

tem which is formally identical to the first optimum conditions for an optimal allocation
(
c∗(t), k∗(t)

)
t∈T

of the Ramsey model (5a)-(5d).
In the case of the isoelastic-Cobb-Douglas case the DGE satisfies the following dynamic system

k̇eq = A (keq)α − ceq (24a)

ċeq =
ceq

θ

(
αA (keq)α−1 − ρ) (24b)

keq(0) = k0 (24c)
lim
t→∞

(ceq(t))−θ keq(t) e−ρt = 0 (24d)

   
This means that the DGE is Pareto optimal, and all our previous analysis can be reinter-

preted as a result of a decentralized market allocation.

4.2 Interpreting the DGE: over-saving and perfect foresight

We have used the PMP to obtain the first order conditions for an optimum. There is a potential
pitfall in following a recursive approach, by using the DPP, which allows for a discussion of one
important feature of the information agents are ascribed in a DGE model.
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Assume that the utility function is u(c) = c1−θ − 1

1− θ
and consider the consumer problem (20a)-

(20d) taking the rate of return and the wage rate as constants  r(t) = r and w(t) = w.
The HJB equation is

ρ v(a) = max
c

{c1−θ − 1

1− θ
+ v′(a)

(
r a+ w − c

)}
. (25)

The policy function is c = C(a) = (v′(a))−
1
θ . Substituting in the HJB equation yields the implicit

ODE
ρ v(a) =

1

1− θ

(
θ (v′(a))−

θ−1
θ − 1

)
+ v′(a)

(
r a+ w

)
  Using a similar method as the one used in Appendix B we explicitly find the value function

v(a) =
1

1− θ

[(ρ+ r (θ − 1)

θ

)−θ (r a+ w

r

)1−θ
− 1

ρ

]
  which implies that the optimal consumption is given by the policy function

c = C(a) = γ̄
(r a+ w

r

)
, where γ̄ ≡ ρ+ r (θ − 1)

θ
. (26)

  If we consider the optimality conditions for the firm, the consistency condition a = k and the
market equilibrium condition we see that the DGE becomes a recursive system, where

k̇ = Akα − C(k)

  and
C(k) =

ρ

α θ
k +

θ − 1

θ
Akα, (27)

  is consumer’s policy function. If we solve the differential equation we obtain

k(t) =
(
k̄1−α +

(
k1−α
0 − k̄1−α

)
e−λ̃ t

) 1
1−α

  where k̄ is the same as in equation (15) with

λ̃ =
ρ

θ

(1− α

α

)
.

  If we compare this solution to the Ramsey case dealt in section 3.8.2, we observe: first, now
we obtain a closed form solution while for the Ramsey model we could not obtain a closed form
solution; second, we obtain an explicit solution to solution path (27) while this was not possible for
the centralized model; third, both consumption and the capital stock converge to the same steady
state; and fourth, the main difference is related to the speed of adjustment, which is now exactly
λ̃ and it was approximated by λs in the Ramsey case.

Looking to equation (27) we observe that, as in our discussion to the ”heteroclinic” approach
to approximating the optimal path for the centralized problem, it is an average of the same two
schedules c = ρ

α
k and c = Akα, but now we are able to find the explicit weight ω = 1

θ . This means

that a linear solution along curve c =
ρ

α
k will occur for θ = 1 and not θ = α as in the Ramsey

model.
This means that compared to the model in subsection 3.8.2 the equilibrium trajectory deter-

mined in this way is shifted down, which means that now there is over-saving. We show next the
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reason for over-saving: solving the model this way implicitly assumes that the consumer is myopic,
and takes the factor prices as constants, and does not take into consideration that by saving now
it depresses the future interest rate because of the existence of decreasing marginal returns.

It can be proved (see the proof in Appendix C) that the optimal consumption satisfies

ceq(t) =
a(t) + h∞(t)∫∞

t e−
∫ s
t γ(z)dzds

, for t ∈ (0,∞) (28)

  where
γ(t) ≡ (θ − 1) r(t) + ρ

θ

  and
h∞(t) ≡

∫ ∞

t
e−

∫ s
t r(s)dsw(t) dt

  is the human capital at time t. In this case the rate of consumption growth is endogenous and
time varying, because the interest rate is a function of the capital stock r(t) = αAk(t)1−α which
depends on consumption. If the interest rate were constant, i.e, r(t) = r for time t onward, we
would obtain the policy function in equation (26).

This clarifies why the equilibrium in this case is different from the one derived from using the
PMP together with the market equilibrium condition for the rate of return as in the previous
subsection: if the consumer takes both the interest rate and the wage rates as constants it does not
incorporate the effect of the increase in savings on capital accumulation which will increase wages
and decrease the rate of return on capital. It is as an externality which is not internalized.

4.3 DGE and the HJB equation

We can obtain a dynamic representation of the DGE dynamics while using the DPP for solving the
household problem and using the envelop theorem as we see next.

First, after finding the HJB equation (25) we can take derivatives as regards the state variable
a, evaluated at the optimum. by taking into account that fact that the policy function is a function
of the state variable c = C(a),

ρ v′(a) = u′(c)C ′(a) + v′′(a)
(
r a+ w − c) + v′(a)

(
r − C ′(a)

)
.

  As the optimality condition u′(c) = v′(a) should hold then(
ρ− r

)
v′(a) = v′′(a)

(
r a+ w − c

)
= v′′(a) ȧ = u′′(c) ċ

because both c and a are function of time, which implies u′′(c) ċ = v′′(a) ȧ.
Second, using the balance sheet condition for firms, k(t) = a(t), for every t ∈ R+ and the first

order condition (23a) for firms , we have the equilibrium condition (24b).
Third, the balance sheet condition for firms together with the returns for capital and labor from

firms, that are distributed to households as returns of capital and labor yield ra + w = f ′(k) k +

(f(k) − f ′(k) k) = f(k), which is total income of households at the equilibrium. This together
with the fact that savings take the form of change in equity that finances capital accumulation,
f(k)− c = ȧ = k̇, yields the equilibrium condition (24a).
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Summing up, through this approach we recover all the dynamic system which represents both
the Ramsey model, and the simple DGE model given in equations (24a)-(24d), with the exception
of the transversality condition.

This means that this approach does not provide a terminal condition for the DGE dynamics, as
the one in which the optimality for the household are derived by using the PMP approach. However
the two approached lead to the same equilibrium solution if the equilibrium path is unique, that
is, if it is a saddle path. 24 

4.4 Final remarks

 
If we assume perfect foresight, the PMP approach allows for the right determination of the

DGE path. The DPP approach seems simpler to use if the technology of production is linear (as
in endogenous growth models) or in models in which there is not perfect foresight. Using the DPP
approach to solve the household problem can lead to the same dynamic representation of the GDE
as the one which uses the PMP if the equilibrium conditions are obtained by using the envelope
theorem

5 Fiscal policy in the DGE model

 
One of the most debate policy issues is the cyclical properties of fiscal policy, and the size of

the fiscal multiplier.25 A policy is said to be pro-cyclical (counter-cyclical) if an increase in net
expenditure increases (decreases) GDP. However, the effect may be immediate or protracted and
can be quantitatively big, small or statistically insignificant.

In the rest of this section it is shown how, in a simple DGE model, we can study the effect of
an increase in public expenditure, keeping the budget balanced.

The first observation is that we are not dealing with optimal fiscal policy but with the introduc-
tion of a distortion in a DGE model. Therefore, as will be apparent, the equilibrium is not Pareto
optimal, that is, the DGE does not have the properties of an optimal control problem.

To simplify the presentation we consider two agents: a representative household problem, and
the government. As households own firms, differently but equivalently to the previous section, we
solve jointly the problems of the household and firms. The government is assumed to have two
instruments, a distortionary taxation and a non-distortionary givernment expenditure and has a
budget balance policy.

We assume that agents are homogenous.

5.1 The household’s problem

 
24Ekeland, 2010 discusses the the terminal conditions for this case.
25For a survey, see, v.g. Ilzetzki et al., 2013 or https://www.imf.org/external/pubs/ft/tnm/2014/tnm1404.pdf.

https://www.imf.org/external/pubs/ft/tnm/2014/tnm1404.pdf
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Let household income be denoted by y. There is a distortionary income tax, τ , which implies
that the after tax income is (1 − τ(t)) y(t). The household takes the tax rate as exogenous. Fur-
thermore, as we consider an average household, we assume that the government expenditure take
the form of a non-distortionary transfer to households. This implies that the budget constraint for
the representative household is

k̇ = (1− τ(t)) y(t)− c(t) + g(t). (29)

Household income, both labor income and capital income, is generated from production. If we as-
sume that the technology displays constant returns to scale, it is Cobb-Douglas, and that households
supply inelastically one unit of labor input to production, then

y = Akα, 0 < α < 1

where A is the TFP.
As households own all capital, the representative households’ problem is

max
c·

∫ ∞

0

c(t)1−θ − 1

1− θ
e−ρ t dt

s. t.
k̇ = (1− τ(t)) y(k(t))− c(t) + g(t)

k(0) = k0 given

(30)

and k asymptotically bounded.
The first order conditions for optimality yield the Keynes-Ramsey rule

ċ =
c

θ

(
(1− τ(t)) r(t)− ρ

)
, (31)

where the pre-tax rate of return of capital is

r(k) = αAkα−1,

  and the transversality condition is

lim
t→∞

k(t)

c(t)θ
e−ρ t = 0.

We can observe in equation (31) that it is the after-tax rate of return of capital that commands
the behavior of consumption, and, therefore, of savings.

5.2 The government

 
Assuming that the government follows a policy of budget balance, we have the government

constraint
τ(t) y(t) = g(t). (32)

This implies that, although the government has two instruments, τ and g, only one is independent.
Next, we assume that g is the policy instrument, which implies that τ is adjusted endogenously
such that equation (32) is satisfied. From now on, we assume that it is constant, but can have
unanticipated changes.
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5.3 General equilibrium

 
The dynamic general equilibrium (DGE) for this economy, is defined by the paths (k(t), c(t), r(t), τ(t), g(t))t∈[0,∞)

such that: (1) the household solves its problem; (2) markets clear; and (3) the government budget
constraint is satisfied.

In this definition, the market clearing condition is equivalent to the household budget constraint
(29). Therefore, the equilibrium conditions are

k̇ = (1− τ(t))Ak(t)α − c(t) + g,

ċ =
c

θ

(
(1− τ(t))αAk(t)α−1 − ρ

)
,

g = τ(t) y(t),

(33)

plus the initial and the transversality condition.
Solving the government budget constraint for τ and substituting in the system (33) yields a

representation of the DGE

k̇ = Ak(t)α − c(t),

ċ =
c

θ

(
α

g

k(t)
− ρ
)
,

(34)

and all the other variables are functions of c and k: in particular income is y(t) = Ak(t)α, and the
capital rate of return is r = αAk(t)α−1.

The steady state DGE, from equation (34), is a function of the level of government expenditures

kss =
α

ρ
g

css = yss = A(kss)α = A
(α
ρ
g
)α
.

(35)

5.4 Effect of a fiscal policy shock

From this we can easily calculate the long-run multipliers for a fiscal policy unanticipated shock

d log (kss)

d log (g)
= α ≈ 0.3

However, this change is asymptotic. In order to determine the policy adjustment we need to
study the multipliers from an expenditure shock, assuming that the economy starts from a steady
state (35). The variational system, of equation (34), for a shock in g, is the linear ODE

(
k̇

ċ

)
=

 α
css

kss
−1

−ρ
θ

css

kss
0

 (
dk(t)

dc(t)

)
+

 0
α

θ

css

kss

 dg,

  where dk(t) = k(t) − kss and dc(t) = c(t) − css The solution yields the short run multipliers for
the capital stock

dk(t)

dg
=
dk̄

dg

(
1− eλ− t

)
, for t ∈ [0,∞) (36)
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  and for consumption
dc(t)

dg
=
dc̄

dg
− λ+

dk̄

dg
eλ− t for t ∈ [0,∞), (37)

  where
λ± =

α

2

css

kss
±
√(α

2

css

kss

)2
+
ρ

θ

css

kss

where λ− < 0 < λ+, and the long-run multipliers are

dk̄

dg
=
α

ρ
> 0

dc̄

dg
=
α2

ρ

css

kss
> 0.

 
Exercise: prove this.
However, we want to calculate effect of an increase in 1% of the rate of growth of output over

time. Therefore, assuming we start from steady state level of the stock of capital kss we make

d log (y(t)

d log (g)
= α

d log (k(t)

d log (g)
= α

dk(t)

kss

dg

g

= α
dk(t)

dg

g

kss
.

  Using equations (36)  and (35) we find

d log (y(t)

d log (g)
= α

(
1− eλ− t

)
, for t ∈ [0,∞) (38)

 
Most of the dynamics is conducted by the behavior of savings driven by the after-tax interest

rate. In order to keep the balance budget there should exist an immediate reduction in private
consumption which is generated by an increase in the after tax interest rate (see Figure 4 for a
particular set of values which are close to the benchmark cases in the literature). Over time, this
induces an increase in capital stock and consumption, towards a positive long run effect for both.
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Figure 4: Fiscal multiplier and evolution of the after-tax interest rate for: α = 0.3, ρ = 0.02, θ = 2,
g = 0.28 and A = 0.806

 
Figure 5 displays equation (38). We see that a non-anticipated and permanent increase in g,

within a fiscal rule keeping government debt unchanged, is pro-cyclical but the effect on output is
relatively slow (after three years output only increases by around 5%.
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Figure 5: Fiscal multiplier and evolution of the after-tax interest rate for: α = 0.3, ρ = 0.02, θ = 2,
g = 0.28 and A = 0.806

 
In the steady state, there is a change in the composition of the aggregate expenditure, with

a reduction in the weight of private consumption over national income, that is, there is a partial
crowding out effect.

It should be noted that we are grossly simplifying both the structure of the economy and the
effect of fiscal policy. In any case, this example calls attention to the fact that there is an effect of
fiscal policy over time operating through the financing government expenditures.

6 Endogenous labor supply

 
In the previous model the labor input is constant along the adjustment to the steady state,

meaning that we should expect the labor input (number of hours of works per worker times the
number of workers) would stay constant along the business cycle. In this case the wage rate is
determined by labor demand (I.e, by firms) and the labor input by supply (i.e, by households).

However, there is a stylized fact that although hours worked is less volatile than the GDP the
total employment is almost as volatile as the GDP. This means that total labor effort should be
treated as endogenous.

A benchmark way to introduce the endogeneity of employment is to consider the supply of labor
as endogenous. Next we follow the neoclassical theory of labor supply by considering labor as a
substitute to consumption. 26

In this competitive equilibrium DGE framework this can be done by assuming that workers
face a trade-off between work and leisure: while labor has a disutility because it reduces leisure,
therefore reducing utility, if generates wage earnings which allow for increases in consumption,
which increases utility.

6.1 A generic DGE model with endogenous labor supply

In the previous simple benchmark version of the model, we assumed that every household supplied
elastically one unit of labor supply, i.e. ℓ = 1, where ℓ represents work effort (hours worked plus

26See Cahuc and Zylberberg, 2004, ch. 1.



Paulo Brito Advanced Macroeconomics 2022/2023 34

effort per hour). Now we assume that labor effort, 27 ℓ, is a new variable which can take any
positive number.

Household’s problem: The utility functional of households depends now on the paths of both
consumption and work effort

(
c(t), ℓ(t)

)
t∈R+

,

U[c, ℓ] =

∫ ∞

0
u(c(t), ℓ(t)) e−ρ t dt

  The household’s problem now is

v(a0) = max
c,ℓ

U[c, ℓ] (39a)

subject to
ȧ = r(t) a+ w(t)ℓ− c(t), for t ∈ (0,∞) (39b)
a(0) = a0 (39c)
lim
t→∞

a(t)e−
∫∞
t r(s)ds ≥ 0 (39d)

(39e)

Firms’ problem The firms’ problem is the same as in the previous DGE model.
DGE In a homogeneous agent perfect foresight environment with competitive product and

factor markets, the DGE is Pareto optimal and is equivalent to the following centralized problem.

6.2 A centralized version with endogenous labor supply

A central planner chooses optimally consumption and the labor effort in order to maximize an
utilitarian social welfare functional subject to the budget constraint of the economy, given the
initial capital stock, such that an intertemporal budget (or a sustainability) constraint is satisfied:

v(k0) = max
c,ℓ

∫ ∞

0
u(c(t), ℓ(t)) e−ρ t dt (40a)

subject to
k̇ = f

(
k(t), ℓ(t)

)
− c(t), for t ∈ (0,∞) (40b)

k(0) = k0 (40c)
lim
t→∞

k(t)e−
∫∞
t r(s)ds ≥ 0 (40d)

The model is said to be neo-classical if the utility function, u(c, ℓ) is increasing and concave in c
and decreasing and convex in ℓ, and the production function is increasing in both inputs, displays
decreasing marginal returns and is concave, and both functions are sufficiently smooth such that
singularities are ruled out. The last property allows us to invoke the implicit function theorem to
determine uniquely the marginal utilities and marginal productivities.

Defining the current-value Hamiltonian function by

H(k, q, c, ℓ) = u(c, ℓ) + q
(
f(k, ℓ)− c

)
27We consider labor effort and not the number of hours worked to avoid the discontinuities which are introduced

by the fact that there is a maximum number of hours that can be worked, differently from the case of work effort.



Paulo Brito Advanced Macroeconomics 2022/2023 35

  the necessary conditions for an optimum
(
c∗(t), ℓ∗(t), k∗(t)

)
t∈R+

are 28

uc(c, ℓ) = q (41a)
uℓ(c, ℓ) = q fℓ(k, ℓ) (41b)
q̇ = q

(
ρ− fk(k, ℓ)

)
(41c)

lim
t→∞

q(t) k(t) e−ρt = 0 (41d)

together with the admissibility conditions (40b) and (40c),   where the partial derivatives of the
utility function are denoted by uj(c, ℓ) ≡ ∂u(c,ℓ)

∂j , for j = c, ℓ and the marginal productivities are
denoted by fj(k, ℓ) ≡ ∂f(k,ℓ)

∂j , for j = k, ℓ.
There are two main versions of the model, depending on the separability of the utility function:

1. the additive utility case, in which the utility function is

u(c, ℓ) = u(c)− v(ℓ)

  satisfying u′′(c) < 0 < u′(c) and v′(ℓ) > 0 and v′′(ℓ) > 0, and consumption and labor are
Edgeworth independent ucℓ(c, ℓ) = 0;

2. non-additively separable cases comprise several possibilities:

(a) the Cobb-Douglas case

u(c, ℓ) = u(v(c, ℓ)) =

(
cγ(1− ℓ)1−γ

)1−θ − 1

1− θ

 

(b) the Greenwood et al., 1988, or GHH case

u(c, ℓ) = u(c− v(ℓ))

 

(c) the King et al., 1988 or KPR case

u(c, ℓ) = u(c− v(c, ℓ))

 

 
The strategy to solving the model is different depending on the assumption regarding the

separability of the utility function.
28From now, although we are refering to optimal allocations, we do not introduce the notation ∗ in cases in which

there is no ambiguity.
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6.3 Additively separable utility

If the utility function is additively separable, then uc(c, ℓ) = u′(c) and uℓ(c, ℓ) = −v′(ℓ). Then we
can use equation (41a) to eliminate q, yielding the arbitrage equation for labor, equation (41b),

v′(ℓ) = u′(c)w(k, ℓ). (42)

This arbitrage equation is for a centralized economy. But we can interpret it as an equilibrium
condition in the labor market for a decentraized economy, in which the supply for labor is implicitly
determined from v′(ℓ) = u′(c)w, and the demand for labor is determined from the firms’ optimality
condition w = fℓ(k, ℓ). The equilibrium in the labor market is depicted in Figure 6

S

D

`

w

Figure 6: Equilibrium in labor supply. Perturbations: increase in the demand for labor k (red);
increase in c (blue) - reduction in the supply of labor.

If there is an increase in the stock of capital the demand curve, w = fℓ(k, ℓ), moves up which
causes an increase in both the equilibrium level for ℓ and the wage rate, w. If there is an increase
in consumption the supply curve, w = u′(c)/v′(ℓ), moves up causing an increase in wages but a
decrease in the equilibrium effort level.

In centralized setting both supply and demand are jointly determined by the aggregate optimal
allocation of consumption and labor effort. The condition is the same as in a market economy in
there are no externalities.

If the utility and the production functions are sufficiently smooth, we can apply the implicit
function theorem to equation (42)  to obtain the optimal work effort as a function of consumption
and the stock of capital

ℓ = L(c, k),

which corresponds to the equilibrium point in Figure 6. Taking the differential to equation (42) we
find dℓ = Lc dc+ Lk dk, where the partial derivatives are

Lc(c, k) =
u′′(c) fℓ(ℓ, k)

v′′(ℓ)− u′(c) fℓℓ(k, ℓ)
< 0

Lk(c, k) =
u′(c) fℓk(ℓ, k)

v′′(ℓ)− u′(c) fℓℓ(k, ℓ)
> 0,
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which correspond to the change ℓ in Figure 6.
This means that the optimal work effort unambiguously decreases with consumption, meaning

that consumption and labor effort are Hicksian substitutable, and increases with expansion of the
stock of capital, because it increases the wage rate wk(k, ℓ) = fℓk(ℓ, k) > 0.

As we are able to isolate q, and we are able to obtain the optimal labor effort uniquely (if there
are no singularities) then the MHDS becomes

k̇ = F (k, c)− c (43a)

ċ =
c

σ(c)

(
R(k, c)− ρ

)
(43b)

k(0) = k0 (43c)
lim
t→∞

u′(c(t)) k(t) e−ρt = 0 (43d)

where the rate of return of capital is

R(k, c) = r
(
k, L(c, k)

)
= fk

(
k, L(c, k)

)
and output is

Y (k, c) = y
(
k, L(c, k)

)
= f

(
k, L(c, k)

)
.

These two functions now depend not only on the stock of capital (as in the inelastic labor supply
model) but also on consumption. This is because the work effort is now endogenous and depends
on the leisure-consumption arbitrage at the level of the household.

Clearly, the reduced form rate of return

Rc(c, k) = fkℓ(k, ℓ)Lc(c, k) < 0

Rk(k, c) = fkk(k, ℓ) + fkℓ(k, ℓ)Lk(c, k)

  is a decreasing function of consumption and an ambiguously signed function of the capital stock.
In the last case, there is a negative direct effect (as in the exogenous labor version of the Ramsey
model), and a positive indirect effect of the increase in the equilibrium labor effort, working through
the positive income effect of labor at the level of the consumer. However, as a consequence of the
concavity of the production function f(·) and of the convexity of v(·) the direct effect dominates
and the rate of return reduces with an increase in the capital stock

Rk(k, c) =
v′′(ℓ)fkk(k, ℓ)− u′(c)

(
fkk(ℓ, k)fℓℓ(ℓ, k)− (fkℓ(ℓ, k)

2)

v′′(ℓ)− u′(c) fℓℓ(k, ℓ)
< 0.

  In any case, the marginal reduction of the rate of return for an increase in one unit in the stock
of capital is smaller than in the exogenous labor case.

Furthermore, we find that output decreases with consumption

Yc(c, k) = fℓ(k, ℓ)Lc(c, k) < 0,

  because of the Hicksian substitutability between consumption and labor effort, and it is a positive
function of the stock of capital

Yk(c, k) = fk(k, ℓ) + fℓ(k, ℓ)Lk(c, k) > 0.

In the last equation an increase in the capital stock has both a direct effect (as in the exogenous
labor version of the model) and an indirect effect through an increase in the equilibrium labor input
working through an income effect at the level of the consumer.
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6.3.1 Particular case

Assume the following utility and production functions:

u(c, ℓ) =
c1−θ − 1

1− θ
− ψ

ℓ1+ξ

1 + ξ
, where θ > 0, ψ > 0, ξ > 0

f(k, ℓ) = Akα ℓ1−α, where 0 < α < 1, A > 0

The parameter ξ is called Frisch elasticity and ψ controls the relative utility from consumption and
leisure.

The optimal labor effort is

ℓ∗ = L(k, c) ≡
(A (1− α)

ψ
c−θ kα

) 1
α+ξ

.

  This implies that output is

y∗ = Y (k, c) =
(
A1+ξ

(1− α

ψ

)1−α
c−θ (1−α) kα (1+ξ)

) 1
α+ξ

,

and the marginal productivity of capital (which is equal to the real rate of return)

r∗ = R(k, c) = α
(
A1+ξ

(1− α

ψ

)1−α
c−θ (1−α) k−ξ (1−α)

) 1
α+ξ

,

and they satisfy the same relationship as in the exogenous labor model αY (k, c) = R(k, c) k.
If we constrain the solution to positive values for (k, c), the steady state is the unique point

(k̄, c̄) satisfying jointly R(k, c) = ρ and Y (k, c) = c. From the previous relationship between output
and the rate of return, we find that α c̄ = ρ k̄. Therefore

k̄ =
(
A1+ξ

(1− α

ψ

)1−α (α
ρ

)α+ξ+θ (1−α)) 1
(1−α)(θ+ξ) (44a)

c̄ =
(
A1+ξ

(1− α

ψ

)1−α (α
ρ

)α (1+ξ)) 1
(1−α)(θ+ξ)

. (44b)

   Substituting in function L(k, c) we obtain the steady state labor effort

ℓ̄ =
(
A1−θ

(1− α

ψ

)1−α (α
ρ

)α (1−θ)) 1
(1−α)(θ+ξ)

.

  Looking at equations (44a) and (44b) we readily see that: first, an increase in A (TFP) increases
the steady state levels for the capital stock, consumption and the labor effort, and, consequently, of
output; second, a demand shock in which agents decrease their relative preference for leisure (i.e,
if ψ increases) has the opposite effect; and, an increase in the rate of time preference (an increase
in ρ) reduces capital and consumption but increases the labor effort in the steady state. The last
result is natural because an increase in ρ reduces savings which forces a substitution of capital to
labor in production.

In order to study the transition dynamics, we linearize the MHDS (24b) -(24a) in the neigh-
borhood of the steady state (k̄, c̄). The Jacobian evaluated at the steady state is

J =


ρ (1 + ξ)

α+ ξ
−1− θ (1− α)

α+ ξ

−ρ
2 ξ (1− α)

α θ (α+ ξ)
−ρ (1− α)

α+ ξ
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We readily observe that the steady state is a saddle point because

trace(J) = ρ > 0 and det (J) = −ρ
2 (1− α) (θ + ξ)

α θ (α+ ξ)
< 0

and the eigenvalues are

λs =
ρ

2
−

√(ρ
2

)2
+
ρ2 (1− α) (θ + ξ)

α θ (α+ ξ)
< 0 < ρ < λu =

ρ

2
−

√(ρ
2

)2
+
ρ2 (1− α) (θ + ξ)

α θ (α+ ξ)
.

  This means that the solution to the centralized problem is unique, and that the associated DGE
is determinate: there is a unique trajectory starting from k(0) = k0 and converging to the steady
state.

The representations of the eigenvector associated to the negative eigenvalue, λs, we adopt is

Ps =

(
1

P s
2

)
=

 1
ξ (α+ ξ)λs λu

(θ + ξ) (λs (α+ ξ) + ρ (1− α)


  if we use the generic relationships trace(J) = λs + λu = ρ and det (J) = λs λu. Because the
denominator of second element of the eigenvector has an ambiguous sign, this implies that the
slope of the eigenspace is ambiguous as well.

In order to see this closely, we study the short run mutipliers for a permanent and unanticipated
TFP shock. In order to obtain them, we first take the Jacobian for the MHDS (24b) -(24a),
evaluated at the steady state

JA =

(
1
ρ

θ

)
ρ (1 + ξ) k̄

α θ (α+ ξ)A
.

Solving −J−1 JA we obtain the long-run multipliers for a shock in A

∂k̄

∂A
=

(1 + ξ) k̄

(1− α) (θ + ξ)A
> 0 (45a)

∂c̄

∂A
=
ρ

α

∂k̄

∂A
> 0 (45b)

(45c)

The short run multipliers are

∂k(t)

∂A
=
∂k̄

∂A

(
1− eλs t

)
, for t ∈ [0,∞)

∂c(t)

∂A
=

∂c̄

∂A
− P s

2

∂k̄

∂A
eλs t, for t ∈ [0,∞).

  Therefore along the linear approximation to the stable manifold we have

∂c(t)

∂A
=

∂c̄

∂A
+ P s

2

(∂k(t)
∂A

− ∂k̄

∂A

)
  where the slope has an ambiguous sign

P s
2 =

ξ (α+ ξ)λs λu

(θ + ξ)
(
λs (α+ ξ) + ρ (1− α)

)
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Figure 7: Phase diagram for the endogenous labor model with an additive separable utility function:

u(c, ℓ) =
c1−θ − 1

1− θ
− ψ

ℓ1+ξ

1 + ξ
.

because the numerator is negative and the denominator can have any sign. However, P s
2 > 0 if and

only if 0 > λs (α+ ξ) > −ρ (1− α).
Figure 7 shows the phase diagram for a particular choice of parameters yielding a positive P s

2 .
We see that, when comparing with the exogenous labor case, the isocline ċ = 0 is negatively sloped
in the diagram (k, c) (and not vertical sloped) and the isocline k̇ = 0 is positively sloped (as in the
previous case).  

We also observe in the phase diagram (see Figure 7) that the stable manifold is positively
sloped, which means that along the optimal paths consumption and the capital stock are positively
related. Given the properties of function L(c, k) this implies that the adjustment of the labor effort
is ambiguous, because it responds positively to the increase in wages but negatively to the increase
in consumption.

Figure 8 represents the multipliers for an increase in TFP: the impact multipliers for con-
sumption is positive, ∂c(0)

∂A > 0, there is a transition increase both in consumption and the capital
stock, ∂c(t)

∂A > 0 and ∂k(t)
∂A > 0, towards reaching the steady state multipliers, ∂c(∞)

∂A = ∂c̄
∂A > 0 and

∂k(∞)
∂A = ∂k̄

∂A > 0.
What are the effects on labor effort and output ?
The short-run multipliers for labor effort are determined from

∂ℓ(t)

∂A
=

∂ℓ

∂A
+
∂ℓ

∂k

∂k(t)

∂A
+
∂ℓ

∂c

∂c(t)

∂A

where
∂ℓ

∂A
=

ℓ

(α+ ξ)A
,
∂ℓ

∂k
=

α ℓ

(α+ ξ) k
,
∂ℓ

∂c
= − θ ℓ

(α+ ξ) c
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Figure 8: Phase diagram a positive TFP shock.

  Therefore the impact multiplier for labor effort,

∂ℓ(0)

∂A
=

ℓ

(α+ ξ)A
− θ ℓ

(α+ ξ) c

∂c(0)

∂A
,

is ambiguous, because the first term is positive and the second is negative. The long-run multiplier
is negative

∂ℓ(∞)

∂A
=

∂ℓ

∂A
+
∂ℓ

∂k

∂k

∂A
+
∂ℓ

∂c

∂c

∂A

=
(α− θ) ℓ

(1− α)(θ + ξ)A
< 0

meaning that an increase in TFP induces a long-run substitution of labor with capital.
We can determine in an analogous way the multipliers for output:

∂y(t)

∂A
=
∂y

∂A
+
∂y

∂k

∂k(t)

∂A
+
∂y

∂c

∂c(t)

∂A

where
∂y

∂A
=

(1 + ξ) y

(α+ ξ)A
,
∂y

∂k
=
α (1 + ξ) y

(α+ ξ) k
,
∂y

∂c
= −θ (1− α) y

(α+ ξ) c
.

Again we find that the impact multiplier is ambiguous

∂y(0)

∂A
=

(1 + ξ) y

(α+ ξ)A
− θ (1− α) y

(α+ ξ) c

∂c(0)

∂A

but the long run multiplier is unambiguously positive

∂y(∞)

∂A
=
∂y

∂A
+
∂y

∂k

∂k

∂A
+
∂y

∂c

∂c

∂A

=
(1 + ξ) y

(α+ ξ)A

(α+ ξ + θ (1− α)2

(1− α) (θ + ξ)

)
> 0.
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We say TFP shocks are pro-cyclical: although there is a reduction in labor effort, via
substitution of labor for capital in production, the direct effect of the productivity shock and the
increase in the capital stock more than compensate that effect.

6.4 Non-additively separable utility

If the utility function is non-separable, we cannot separate the effect of consumption over q. This
means that the marginal utility of consumption responds to both changes in consumption and
labor effort. In this case, we can use the implicit function theorem in equation (41a) and (41b) to
solve both consumption and labor effort as a function of the adjoint variable q, c = C(q, k) and
ℓ = L(q, k). In appendix D we prove that all the partial derivatives in functions C(·) and L(·) have
ambiguous signs. However, it we expect that Lk > 0 and Cq < 0     The MHDS becomes

q̇ = q
(
ρ− fk

(
k, L(q, k)

))
(46a)

k̇ = y
(
k, L(q, k)

)
− C(q, k) (46b)

lim
t→∞

q(t) k(t) e−ρt = 0 (46c)

We provide in the problem set 2 several particular cases of this model.

7 References

The original Ramsey model is presented in Ramsey, 1928 and was rediscovered by Cass, 1965 and
Koopmans, 1965.

There are several textbook presentations of this model: in continuous time, recent presentations
can be found in Heijdra, 2009, sec. 14.5 Acemoglu, 2009, ch.8, Romer, 2019, ch 2 and Alogoskoufis,
2019, ch. 4.

The model with endogenous labor can be found in Wickens, 2008, sec 4.6 (discrete time version)
and Heijdra, 2009, ch. 7.
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A Solving the Ramsey problem for θ = α

A.1 Using the PMP

Looking at the Euler equation (11b) we can write it ċ = γc(t)c(t), where γc is the (variable growth
rate of consumption. It has a solution of type

c(t) = c(0)e
∫ t
0 γ(s) ds, where γ(t) ≡ Akα−1(t)− ρ

α

  where we do no know c(0). The idea is to obtain it from the transversality condition (11d). There
is another difficulty related to the fact that γ is a function if k and the transversality equation also
depends on k. In order to circumvent both difficulties define

z(t) ≡ k(t)

c(t)

  Therefore, taking log derivatives of time and substituting equations (11a) and (11b) we find ´

ż

z
=
k̇

k
− ċ

c
= Akα−1 − c

k
−
(
Akα−1(t)− ρ

α

)
= −1

z
+
ρ

α

  which is a linear ODE (without time varying coefficients)

ż =
ρ

α
z − 1.

  This ODE has the solution
z(t) =

α

ρ
+
(
z(0)− α

ρ

)
e

ρ
α
t

  where we do not know z(0) = k(0)/c(0) because c(0) is unknown. We find c(0) by using the
transversality condition (11d). Substituting in the transversality condition (11d) yields

lim
t→∞

c(t)−α k(t) e−ρ t = lim
t→∞

c(t)1−α z(t) e−ρ t

= lim
t→∞

c(t)1−α
[α
ρ
e−ρ t +

(k(0)
c(0)

− α

ρ

)
eρ
(

1−α
α

)
t
]
=

(because z(0) = k(0)/c(0))

= 0 + lim
t→∞

c(t)1−α
[(k(0)
c(0)

− α

ρ

)
eρ
(

1−α
α

)
t
]

(because lim
t→∞

e−ρ t = 0).

  It is equal to zero if and only if c(0) = ρ

α
k(0) because c(t) > 0 and limt→∞ eρ

(
1−α
α

)
t = ∞. Then,

z(t) = z̄ =
α

ρ
is a constant, which means that c(t) = ρ

α
k(t) for all t ∈ [0,∞).

Then, if we choose the optimal consumption rule, we can obtain the optimal path for capital by
solving problem (13). This is a Bernoulli ODE than can be transformed into a linear ODE. Define
x(t) ≡ k(t)1−α. Then

ẋ

x
= (1− α)

k̇

k
= (1− α)

(
Akα−1 − ρ

α

)
= (1− α)

(A
x
− ρ

α

)
,



Paulo Brito Advanced Macroeconomics 2022/2023 45

which is equivalent to the linear ODE

ẋ = (1− α)
(
A− ρ

α
x
)

  which has the solution
x(t) =

αA

ρ
+
(
x(0)− αA

ρ

)
e−ρ
(

1−α
α

)
t.

  By transforming back to k we find the optimal capital accumulation as a function of time (14).

A.2 Using the DPP

The HJB equation, if θ = α, is

ρ v(k) = max
c

{c1−α − 1

1− α
+ v′(k)

(
Akα − c

)}
   The optimality condition for consumption is

c−α = v′(k) ⇒ C(k) = (v′(k))−
1
α

  After substitutiong C(k) back in the HJB equation yields the implicit differencial equation for
v(k) over k,

ρ v(k) =
α

1− α
(v′(k))

α−1
α + v′(k)Akα − 1

1− α

  Although this is a highly non-linear equation we can obtain an explicit solution by using the
method of undetermined coefficients. Unfortunately, it does not provide a constructive way to
obtain the solution: we conjecture a functional form of the equation, depending on unknown
parameters; if the functional form is right, by substituting in the HJB equation, we would obtain
the values of those parameters. Of course that depends on our ability to conjecture the right explicit
functional form (assuming that it exists).

Let us conjecture that the solution is of type

v(k) = β0 + β1 k
1−α

  where β0 and β1 are arbitrary real coefficients. The derivative of this function is

v′(k) = β1 (1− α) k−α.

  Substituting in the HJB equation, we have

ρ
(
β0 + β1 k

1−α
)
=

α

1− α

(
β1 (1− α)

)α−1
α
k1−α +Aβ1 .(1− α)− 1

1− α

  We can find β0 and β1 by matching the term depending on k1−α and the constant term on both
sides of the equation, which means solving the system of equations

ρ β0 = Aβ1 .(1− α)− 1

1− α
,

ρ β1 =
α

1− α

(
β1 (1− α)

)α−1
α
.
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  Therefore the solution of the HJB equation is

v(k) =
1

ρ

(
A
(α
ρ

)α
− 1

1− α

)
+

1

1− α

(α
ρ

)α
k1−α

  and the optimal policy function is ´

c∗ = C(k) = v′(k)−
1
k =

ρ

α
k

  which is the same as the one we obtained by using the PMP. We follow the same approach to
find the optimal capital accumulation function k∗(t) and c∗(t).

B Solving the Ramsey problem for the case θ ̸= α

Consider the variational MHDS (18). The jacobian matrix, J , has a positive trace, tr(J) = ρ > 0

and a negative determinant, because

det(J) =
c̄r

′
(k̄)

θ
=
c̄α(α− 1)Ak̄α−2

θ
< 0

  Then, the eigenvalues are both real and

λs =
ρ

2
−
[(ρ

2

)2
− det(J)

]1/2
< 0, λu =

ρ

2
+

[(ρ
2

)2
− det(J)

]1/2
> 0.

Therefore the steady state (c̄, k̄) is a saddle point.
The eigenvector matrix associated to J 29 is(

1 1

λu λs

)

  and therefore, the general solution is(
k(t)− k̄

c(t)− c̄

)
= h1

(
1

λu

)
neλst + h2

(
1

λs

)
eλut,

  where h1 and h2 are arbitrary constants. We determine them by requiring that the solution will
converge asymptotically to a steady state and the predetermined variable k satisfies k(0) = k0. As
the explosive dynamics is generated by eλu t we set h2 = 0 and by setting h1 = k(0)− k̄ the initial
condition is satisfied. Then we obtain the approximate solution (??).

C Proof of equation (28)

Solving the household’s Euler equation (22a) for the isoelastic case we get

c(t) = c(0)e
∫ t
0 γc(s)ds, for γc(t) =

r(t)− ρ

γ

29We determine the column P j by solving the homogeneous system (J−λjI)P
j = 0, where I is the (2×2) identity

matrix, for non-zero solutions.
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  on the other hand integrating the budget constraint we get and substituting consumption yields

a(t) = e
∫ t
0 r(s)ds a0 +

∫ t

0
e
∫ t
s r(z)dzw(s)ds− c(0)

∫ t

0
e
∫ t
s r(z)dz e

∫ s
0 γc(z).dzds

  Therefore, after some algebra we have

c(t)−θ a(t) e−ρt = c(0)−θ

[
a0 + ht(0)− c(0)

∫ t

0
e−

∫ s
0 γ(z)dzds

]

  where γ(t) =
(θ − 1)r(t) + ρ

θ
and ht(0) =

∫ t
0 e

−
∫ s
0 r(z) dz w(s) ds. The transversality condition,

limt→∞ c(t)−θ a(t) e−ρt = 0, holds if and only if

c∗(0) =
a0 + h∞(0)∫∞

0 e−
∫ s
t γ(z)dzds

  which is the optimal initial level of consumption from the point of view of the household equation.
Therefore, households consumption for any time t ∈ (0,∞) becomes

c∗(t) =

(
a0 + h∞(0)

)
e
∫ t
0 γc(s)ds∫∞

0 e−
∫ s
t γ(z)dzds

  and the optimal level of net wealth at time t is

a∗(t) = e
∫ t
0 r(s)ds

(
a0 + ht(0)− c∗(0)

∫ t

0
e−

∫ s
0 (r(z)−γc(z))dzds

)
=

= e
∫ t
0 r(s)ds

(
a0 + h∞(0)− h∞(t)e−

∫ t
0 r(s)ds − c∗(0)

∫ t

0
e−

∫ s
0 γ(z))dzds

)
=

= −h∞(t) + e
∫ t
0 r(s)ds

(
c∗(0)

∫ ∞

0
e−

∫ t
0 γ(s)dsdt− c∗(0)

∫ t

0
e−

∫ s
0 γ(z))dzds

)
=

= −h∞(t) + c∗(0) e
∫ t
0 r(s)ds

(∫ ∞

0
e−

∫ t
0 γ(s)dsdt−

∫ t

0
e−

∫ s
0 γ(z))dzds

)
=

= −h∞(t) + c∗(t) e
∫ t
0 γ(s)ds

(∫ t

0
e−

∫ s
0 γ(s)dsdt+ e−

∫ t
0 γ(s)ds

∫ ∞

t
e−

∫ s
t γ(z)dzds−

∫ t

0
e−

∫ s
0 γ(z))dzds

)
=

= −h∞(t) + c∗(t)

∫ ∞

t
e−

∫ s
t γ(z)dzds

which solving for c∗(t) is equation (28). We have used the fact that h∞(0) = ht(0)+e−
∫ t
0 r(s)dsh∞(t).

D Behavioral functions for the non-additive separable model

Differencing the optimality conditions, equation (41a) and (41b), we have(
ucc(c, ℓ) ucℓ(c, ℓ)

ucℓ(c, ℓ) uℓℓ − q fℓℓ(k, ℓ)

) (
d c

d ℓ

)
=

(
1 0

fℓ(k, ℓ) q fℓk(k, ℓ)

) (
dq

dk

)
.

  Writing 
dc

dq

dc

dk
dℓ

dq

dℓ

dk

 =

(
Cq(q, k) Ck(q, k)

Lq(q, k) Lk(q, k)

)



Paulo Brito Advanced Macroeconomics 2022/2023 48

  we have (
Cq Ck

Lq Lk

)
=

(
ucc(c, ℓ) ucℓ(c, ℓ)

ucℓ(c, ℓ) uℓℓ − q fℓℓ(k, ℓ)

)−1 (
1 0

fℓ(k, ℓ) qfℓk(k, ℓ)

)

=
1

D

(
uℓℓ − q fℓℓ(k, ℓ) −ucℓ(c, ℓ)

−ucℓ(c, ℓ) ucc(c, ℓ)

)(
1 0

fℓ(k, ℓ) qfℓk(k, ℓ)

)

=
1

D

(
uℓℓ − q fℓℓ(k, ℓ)− ucℓ(c, ℓ)fℓ(k, ℓ) −ucℓ(c, ℓ) q fℓk(k, ℓ)

−ucℓ(c, ℓ) + ucc(c, ℓ)fℓ(k, ℓ) ucc(c, ℓ) q fℓk(k, ℓ)

)

  where D ≡ uccuℓℓ − u2cℓ − quccfℓℓ has an ambiguous sign.
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