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Chapter 1

Introduction

This is a course on continuous dynamics in economics. By continuous dynamics we mean mod-
elling a function (or jointly determined functions) of one or more independent variables belonging
to a continuous domain  which is endowed with an order relationship. In most cases the
independent variable represents time, but it can also represent space, age, skills, dimension or the
states of nature. The fact that there is an order relationship means that the independent variable
is more than an indexing device for modelling heterogeneity. Its value involves a relationship such
as present-future, close-far away, high-low skill, small-large, for example.

The applications in economics cover a wide range of subjects: dynamic macroeconomics, growth
theory, population economics, spatial economics, finance and dynamic microeconomics.

Most of the economic models in the continuous are related to macroeconomics and growth the-
ory and feature time as the independent variable. In this case we say that we have continuous-time
dynamics relating short-run with long-run adjustments. In mathematical finance the major ana-
lytical contributions are modelled jointly in continuous-time and in a continuous probability space,
allowing to study the random dynamics. Macroeconomic dynamic general equilibrium models with
heterogeneous agents and dynamic game theory take both time and another continuous variable
as independent variables allowing to study the dynamics of distributions, i.e, the time-varying
behavior of distributions of capital and income.

Important theoretical developments in geographical economics or contract theory, for example,
consider a continuum of space or of types of agents within a static, i.e., time-independent domain.
However, increasingly these fields are joining macroeconomics with heterogeneous agents in featur-
ing the dynamics jointly in a continuous domain for space, types, income, capital and continuous
time.
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Although the particularities of the main variables may be different, for the different topics,
the models, whose solutions we may be interested in characterizing, share some common formal
structures. The purpose of this course is to provide an introduction to those common formal
structures. The fact that the space of independent variables is endowed with an order allows
for modelling the variables of interest by functions whose values at a particular point depend
on interactions with neighboring points along a particular gradient of the independent variable.
In particular, we will consider models including ordinary differential equations (ODE) , partial
differential equations (hyperbolic and parabolic) (PDE) and stochastic differential equations (SDE),
and the related optimal control of ODEs, PDEs and SDEs.

Continuous-time dynamic models have been at the core of growth theory and mathematical
finance and until the late eighties in macroeconomics1. Since the 1990’s the dynamic general equi-
librium (DGE) and dynamic stochastic general equilibrium models (DSGE) became the dominant
paradigm in macroeconomics. Most of DGE and DSGE have been modelled in a discrete time space
(see Ljungqvist and Sargent (2012) and Miao (2014)). This allows for a quantitative calibration,
simulation and estimation. However, the cost is introducing too much detail associated with the
timing of the decisions and renders the qualitative analysis of the models more difficult.

In other areas in economic theory modelling in the continuum was still dominant: in spatial
economics (see Fujita and Thisse (2002)), in finance (see Cvitanić and Zapatero (2004) and Stokey
(2009)).

Recently, the research in macroeconomics turned to DGE and DSGE models with heterogeneous
agents. This is starting to signify the comeback of continuous-time modelling (see Brunnermeier
and Sannikov (2016) and Gabaix et al. (2016) and the references therein.)

There are two advantages of using a continuous-time framework 2

1. obtaining qualitative dynamics results, in particular asymptotic dynamics, is not only easier
but can also be done drawing on a large body of results from other disciplines (applied
mathematics, physics and mathematical biology);

2. extending the models by including dynamics of distributions and stochastic dynamics and the
possibility of obtaining qualitative dynamic results is also made possible for the same reasons.

1The state of the art at that time can be seen in v.g. Burmeister and Dobell (1970), Turnovsky (1977), or in
Gandolfo (1997)

2Discussions continuous versus discrete time modelling Isohätälä et al. (2016) Brunnermeier and Sannikov (2016)
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1.1 Magnitudes

Functions mapping between number and numbers
Functionals mapping between a function and a number
Operators mapping between functions and functions
Algebrais equation
Functional equation
Operator equation
Next we present the generic structure of the models we will study.

1.2 Generic structure of the models

Consider an (unknown) function y(z), defined over an independent z, y(z), mapping

y ∶ 𝒵 → 𝒴, 𝒴 ∈ ℝ𝑛

  where 𝒵 may have different types of topology (for instance, it can be an Euclidean space or a
probability space) but satisfies dim(𝒵) = 𝑚. Therefore, z = (𝑧1, … , 𝑧𝑚) and

y = y(z) = ⎛⎜⎜⎜
⎝

𝑦1(z)
…

𝑦𝑛(z)

⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

𝑦1(𝑧1, … , 𝑧𝑚)
…

𝑦𝑛(𝑧1, … , 𝑧𝑚)

⎞⎟⎟⎟
⎠

.

 
A differential equation is an equation of the form

F(𝐷𝑝
z(y), … , 𝐷z(y), y(z), z) = 0 (1.1)

  where the F(.) is known, where 𝐷z(y) is an appropriately defined gradient

𝐷z(y) ≡ (𝐷𝑧1
(y), … , 𝐷𝑧𝑚

(y))

  where

𝐷𝑧𝑖
(y) ≡

⎛⎜⎜⎜
⎝

𝜕𝑦1
𝜕𝑧𝑖

…
𝜕𝑦𝑛
𝜕𝑧𝑖

⎞⎟⎟⎟
⎠

, for 𝑖 ∈ {1, … , 𝑚} 

and 𝐷𝑝
z(y) is the multi-dimensional matrix of higher-order derivatives.
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In most economic applications the equations also involve a vector of parameters � ∈ 𝛷 ⊆ ℝ𝑞

then equation (1.1) becomes

F(𝐷𝑝
z(y), … , 𝐷z(y), y(z, �), z, �) = 0 (1.2)

 
Solving a differential equation means finding at least one function �(z), mapping 𝜙 ∶ 𝒵 → 𝒴 ⊆

ℝ𝑛, that satisfies equation (1.1). That is, if it satisfies

F(𝐷𝑝
z(�), … , 𝐷z(�), �(z), z) = 0 = 0.

  we call it general solution of equation (1.1). Function 𝜙(z), if it exists, may be unique or
multiple.

Additional information: in general we have additional information on the state of the system.
Different types of differential equations are obtained for different sets of independent variables,

𝒵 and 𝑚, for different 𝑛, 𝑝 and for different properties of function F(.).
Next, we see some of examples that we will be dealt in the course

1.3 Ordinary differential equations

Ordinary differential equation (ODE) are differential equations in which the independent vari-
able is of dimension one and belongs to the set of real numbers. That is 𝑚 = 1, z = 𝑧. and
𝒵 ≡ (𝑧0, 𝑧1) ⊆ ℝ. Therefore, (1.1) becomes

F(𝐷𝑝
𝑧(y), … , 𝐷𝑧(y), y(𝑧), 𝑧) = 0.

The value of 𝑝 gives the order of the equation. If 𝑝 = 1 the equation is called first order
equation, if 𝑝 = 2 it is called second order equation, and so forth. However, all equations
with 𝑝 ≥ 2 can be transformed into first order equations by defining the derivatives of 𝑦(.) as new
variables.

This means the an ODE can have the general representation

F(𝐷(y), y(𝑧), 𝑧) = 0 (1.3)

  where, again, F is known, and

𝐷(y) = (𝑑𝑦1(𝑧)
𝑑𝑧 , … , 𝑑𝑦𝑛(𝑧)

𝑑𝑧 )
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  is the gradient as regards the independent variable 𝑧. Equation (1.1) is called implicit ODE.
Let the gradient of F as regards 𝐷(y) be

 A (y, 𝑧) = 𝐷𝐷(y)F.

 
If F𝐷(y)(.) is monotonic and regular we can transform, at least locally, equation (1.3) into

A (y, 𝑧)𝐷(y) + G(y, 𝑧) = 0 (1.4)

  where A(.) is a 𝑛 × 𝑛 matrix and G(.) is a 𝑛 × 1 vector. This equation is called a quasi-linear
equation, because it is linear in the derivatives. If A is a matrix of constants, equation (1.4) can
be written in the explicit or normal form

𝐷(y) = H(y, 𝑧). (1.5)

 
Intuitively, we can see equation (1.5) as describing a movement within the Euclidean space,

while equation (1.3) describes a movement in a generalized surface (which can be regular or not).
Now, we can be more specific about the additional information we referred to in the previous

section. Let, again, 𝑧 ∈ [𝑧0, 𝑧1], where 𝑧0 < 𝑧1. If we set y(𝑧0) = y0 we call

F(𝐷(y), y(𝑧), 𝑧) = 0, y(𝑧0) = y0

  initial-value problem. The solution of this problem, y = � (𝑧, y0), is called particular solution
and it is a function of the independent variable and the data on the system y0. Observe that the
dimension of y0 is the same as the number of equations in F(.) = 0. If we keep the same relationship
between the number equations, (in the ODE system) but some variables are fixed at the 𝑧1 we say
we have a boundary-value problem.

Next we present some low-dimensional ODE models and related concepts we will deal further
in the course.

1.3.1 Scalar ODE

In this subsection we set 𝑛 = 1 and consider again the one-dimensional independent variable
𝑧 ∈ 𝒵 ⊆ ℝ+. When convenient we set 𝒵 = [𝑧0, 𝑧1] (or [𝑧0, 𝑧1), (𝑧0, 𝑧1] or (𝑧0, 𝑧1)).

To obtain an intuition, let 𝑦(𝑠 + ℎ) be the value of 𝑦 at for 𝑧 = 𝑠 + ℎ and let 𝑦(𝑠) be the value
of 𝑦 for 𝑧 = 𝑠. Let the variation of 𝑦, be

𝑦(𝑠 + ℎ) − 𝑦(𝑠) = 𝑓(𝑦(𝑠), 𝑠)(𝑠 + ℎ − 𝑠) = 𝑓(𝑦(𝑠), 𝑠)ℎ.
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Then
𝑦(𝑠 + ℎ) − 𝑦(𝑠)

ℎ   = 𝑓(𝑦(𝑠))

Because the derivative of 𝑦(𝑧), taken at the point 𝑧 = 𝑠, is

𝑑𝑦(𝑠)
𝑑𝑠 = lim

ℎ→0
𝑦(𝑠 + ℎ) − 𝑦(𝑠)

ℎ ,

  if a derivative exists for all 𝑧 ∈ 𝒵 we see that a scalar ODE  in the normal form,

𝑦′(𝑧) ≡ 𝑑𝑦(𝑧)
𝑑𝑧 = 𝑓(𝑦(𝑧), 𝑧),

represents the behavior of a variable, 𝑦, if its infinitesimal variation is a function of its level and of
the value of the independent variable (this is the reason why we need an order structure imposed
on 𝒵).

From this point on we will assume that the independent variable is time. That is we let
𝑛 = 1 and 𝑧 = 𝑡 ∈ 𝒯 ⊆ ℝ+ where 𝒯 is the time interval, usually 𝒯 = [0, 𝑇 ] with 𝑇 finite or
𝒯 = [0, ∞). In this case the function 𝑦 ∶ 𝒯 → 𝒴 ⊆ ℛ and 𝐷(𝑦) = 𝑦′(𝑡) is denoted by ̇𝑦, which is 3

̇𝑦 ≡ 𝑑𝑦
𝑑𝑡 = lim

𝜖→0
𝑦(𝑡 + 𝜖) − 𝑦(𝑡)

𝜖 .

  The implicit ODE takes the form
𝐹( ̇𝑦, 𝑦, 𝑡) = 0.

  Solving an ODE means finding (or proving the existence, multiplicity and characterising) a
function 𝜙(𝑡) such that

𝐹( ̇𝜙(𝑡), 𝜙(𝑡), 𝑡) = 0

  this means that (non-rigorously) the continuity and differentiability properties of the solution are
inherited from the (known) function 𝑓(.).

Properties of 𝐹(.) As we saw the solution of the differential equation (roughly) inherits the
properties of 𝑓(.), as regards continuity and differentiability. We can consider the following cases:

• 𝐹 ̇𝑦( ̇𝑦, 𝑦) is non-differentiable as regards ̇𝑦. Consider the quasi-linear equation

𝑎(𝑦) ̇𝑦 = 𝑔(𝑦)
3We will use the dot notation, ̇𝑦, for time derivatives and the 𝑦′ (𝑧) notation for non-time independent variables.
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  where there are point 𝑦𝑠 such that 𝑎(𝑦𝑠) = 0 then 𝑓(.) is not regular in equation

̇𝑦 = 𝑓(𝑦) ≡ 𝑎(𝑦)−1𝑔(𝑦)

  which means that it is not locally Lipschitz (i.e. lim𝑦→𝑦𝑠
̇𝑦 = ±∞). In this case we have

constrained ODEs or singular ODEs.

• 𝐹 ̇𝑦( ̇𝑦, 𝑦) is differentiable as regards ̇𝑦 but 𝑓(.) is locally non-differentiable or non-continuous.
We can write the ODE in normal form, but such that

̇𝑦 =
⎧{
⎨{⎩

𝑓1(𝑦) if ℎ(𝑦) ≤ 0
𝑓2(𝑦) if ℎ(𝑦) < 0

  where, if 𝑦 = ̃𝑦 such that ℎ( ̃𝑦) = 0. We can have two cases

– non-differentiable: 𝑓1( ̃𝑦) = 𝑓2( ̃𝑦) and 𝐷(𝑓1( ̃𝑦)) ≠ 𝐷(𝑓2( ̃𝑦))
– non-continuous: 𝑓1( ̃𝑦) ≠ 𝑓2( ̃𝑦) and 𝐷(𝑓1( ̃𝑦)) ≠ 𝐷(𝑓2( ̃𝑦))

• both 𝐹 ̇𝑦( ̇𝑦, 𝑦) is differentiable as regards ̇𝑦 and 𝑓(.) are continuous, differentiable and
regular. In this case the ODE it takes the form

̇𝑦 = 𝑓(𝑦)

 

The quasi-linear equation can be written as

𝑎(𝑦, 𝑡) ̇𝑦 + 𝑔(𝑦, 𝑡) = 0

  If 𝑎(.) is everywhere different from zero, we say have the non-autonomous ODE in the normal
form 4 and write

̇𝑦 = 𝑑𝑦
𝑑𝑡 = 𝑓(𝑦, 𝑡). 

  If time does not enter explicitly as an argument of 𝑓(.), we say we have an autonomous ODE
(in the normal form)

̇𝑦 = 𝑑𝑦
𝑑𝑡 = 𝑓(𝑦).  (1.6)

 
In most applications we consider a set of parameters 𝜑 ∈ 𝛷

̇𝑦 = 𝑓(𝑦, 𝜑).
4The convention of not writing the time-dependence of the dependent variable 𝑦 is common in the literature.
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ODEs and problems involving ODEs

Let 𝑦 = 𝑦(𝑡) for 𝑡 ∈ [0, 𝑇 ]
Initial value problem: defined by an ODE and an initial value for the unknown function

̇𝑦 = 𝑓(𝑦) and 𝑦(0) = 𝑦0 known

 
Boundary value problem: defined by an ODE and a terminal value for the unknown function

̇𝑦 = 𝑓(𝑦) and 𝑦(𝑇 ) = 𝑦𝑇 known.

 

Integral representation Another intuition can be drawn from the relationship with an integral
equations, displaying backward or forward deendencies.

Let 0 < 𝑡 < 𝑇 and let 𝑦(𝑡), display backward dependency as

𝑦(𝑡) = ∫
𝑡

0
𝑓(𝑦(𝑠))𝑑𝑠

  that is, is the value at 𝑡 of a function is an integral (a generalized sum) of a function of its past
values. It we take a time derivative, and apply the Leibnitz rule, we have equation (1.6).

In the case in which the value of variable at time 𝑡, 𝑦(𝑡), display forward dependency as

𝑦(𝑡) = − ∫
𝑇

𝑡
𝑓(𝑦(𝑠))𝑑𝑠,

  we get equation (1.6) time-differentiating.
Therefore we can, and this classification is used in the stochastic differential equations (SDE)

literature call forward ODE  when we have a ODE jointly with an initial value and call backward
ODE  when we have a ODE jointly with a terminal value.

Examples

of scalar ODE’s
Example 1: the exponential growth model for population growth

̇𝑁 = 𝜇𝑁
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  where 𝑁(𝑡) is population at time 𝑡 and 𝜇 is a parameter representing the instantaneous rate of
growth of the population. This ODE is usually interpreted as a forward equation, i.e, we have
information on 𝑁(0) and want to find the behavior os population 𝑁(𝑡) for 𝑡 > 0.

Example 2: a generic budget constraint

𝑊̇ = 𝑌 (𝑡) − 𝐷(𝑡) + 𝑟(𝑡)𝑊

  where 𝑊 is the stock of financial assets, 𝑌 and 𝐷 are non-financial income and expenditures, and
𝑟, is the instantaneous rate of return. This equation can be interpreted as a forward or a backward
equation. In the first case we know 𝑊(0) and want to determine the future behavior of 𝑊(𝑡) and
in the second case we fix a, usually bounded, value for 𝑊(𝑇 ) (or for its present value) and want to
determine the initial value 𝑊(0) which is consistent with it.

Example 3: the Solow growth model

𝑘̇ = 𝑠(𝑘) − 𝛿𝑘

  where 𝑘 is the per capital capital stock, 𝑠(𝑘) is the savings function, and 𝛿 is the rate of depreciation
of capital. This ODE is also usually interpreted as a forward ODE.

1.3.2 Planar and higher-dimensional ODE

If 𝑛 = 2, and keeping 𝑧 = 𝑡, we have the planar ODE, where y(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡)) ∈ 𝒴 ⊆ ℝ2. The
ODE in implicit for is

𝐹1 ( ̇𝑦1, ̇𝑦2, 𝑦1, 𝑦2) = 0
𝐹2 ( ̇𝑦1, ̇𝑦2, 𝑦1, 𝑦2) = 0

  where 𝐹𝑖(.), for 𝑖 = 1, 2 can take non continuous, or non-differentiable regular or singular forms
as for the planar equation. If 𝐹(.) is well-behaved we have the ODE in its normal form

̇𝑦1 = 𝑓1(𝑦1, 𝑦2)
̇𝑦2 = 𝑓2(𝑦1, 𝑦2).

In this case we can also have the initial value (or the forward ODE) and the terminal-value
problems (or the backward ODE) cases as in the scalar case. However, we have a new case:
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Mixed boundary-initial value problem: defined by an ODE and a number of initial and
terminal value conditions which is equal to the dimension of 𝑦 (𝑛). Example: let 𝑦 = (𝑦1, 𝑦2)

̇𝑦1 = 𝑓1(𝑦1, 𝑦2), 𝑦1(0) = 𝑦0

̇𝑦2 = 𝑓2(𝑦1, 𝑦2), 𝑦2(𝑇 ) = 𝑦𝑇

The optimality condition for optimal control problems take the form (for 𝑇 → ∞)

̇𝑦1 = 𝑓1(𝑦1, 𝑦2), 𝑦1(0) = 𝑦0

̇𝑦2 = 𝑓2(𝑦1, 𝑦2), lim
𝑡→∞

ℎ(𝑦1(𝑡), 𝑦2(𝑡), 𝑡) = 0

We can say that in this case we have a forward-backward ODE

Examples

Example 4: the Ramsey model featuring the couple dynamics of consumption, 𝑐 and capital, 𝑘,
and is

̇𝑐 = 𝑐(𝑟(𝑘) − 𝜌)
𝑘̇ = 𝑦(𝑘) − 𝑐

  the first equation has been called several names, such as Euler equation, Keynes-Ramsey rule,
consumer arbitrage condition, and the second is a budget constraint.

Example 5: the Ramsey model with endogenous labor

̇𝑐 = 𝑐(𝑟(𝑘, 𝑙) − 𝜌)
𝑘̇ = 𝑦(𝑘, 𝑙) − 𝑐
𝑐 = 𝐶(𝑘, 𝑙)

  where 𝑙 is the labor effort can be transformed into a planar equation.
Those are both cases of forward-backward ODEs.

1.3.3 Higher-dimensional ODE’s

If 𝑛 > 2 the ODE in normal form is

̇𝑦1 = 𝑓1(𝑦1, … , 𝑦𝑛)
…

̇𝑦𝑛 = 𝑓𝑛(𝑦1, … , 𝑦𝑛)
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we have a multidimensional ODE.
Example 6: the Ramsey model with government debt dynamics can have the form

̇𝑐 = 𝑐((1 − 𝜏)𝑟(𝑘, 𝑏) − 𝜌)
𝑘̇ = 𝑦(𝑘) − 𝑐
̇𝑏 = 𝑔 − 𝜏𝑦(𝑘) + 𝑟(𝑘, 𝑏)𝑏

  where 𝑏 is the level of government debt, 𝜏 is the tax rate, and 𝑔 public expenditures. Again this
is a forward-backward ODEs, where the dimension of the forward (backward) component depends
on the condition on 𝑏.

1.3.4 Optimal control of ODE’s

Consider two unknown functions u ∶ 𝒯 → ℝ𝑢 and x ∶ 𝒯 → ℝ𝑛, and define the value functional 

𝑉 (u, x) = ∫
𝑡1

𝑡0

ℎ(𝑡, u(𝑡), x(𝑡))𝑑𝑡 (1.7)

  the ODE
ẋ = 𝑓(u, x). (1.8)

and addition conditions on 𝑡 = 0, 𝑡 = 𝑇 and the associated values 𝑥(𝑡0) = 𝑥0 or 𝑥(𝑡1) = 𝑥𝑡1
,

or restrictions upon them. In the simplest problem, we assume we know (𝑡0, x(𝑡0)) = (0, x0) and
(𝑡1, x(𝑡1)) = (𝑇 , x𝑇 ).

The optimal control problem (OCP) is to find the functions u∗(.) and x∗(.) that

max
u(.)

𝑉 (u, x)

  subject to equation (1.8), given x(0) = x0 and other information on 𝑇 or x(𝑇 ).
The most common problem in economics has the value function

𝑉 (u, x) = ∫
∞

0
ℎ(u(𝑡), x(𝑡))𝑒−𝜌𝑡𝑑𝑡

  and is called infinite horizon discounted optimal control problem.
There are several methods for solving the OCP all leading to a ODE.
From now on let us assume that the control and the state variables are scalar.
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Calculus of variations problem

If we can write ̇𝑥 = 𝑓(𝑢, 𝑥) as 𝑢 = 𝑔( ̇𝑥, 𝑥) then the problem becomes

max
𝑥(.)

∫
𝑇

0
𝐹( ̇𝑥, 𝑥, 𝑡)𝑑𝑡

  The optimality condition is the Euler-Lagrange equation

𝜕𝐹( ̇𝑥, 𝑥, 𝑡)
𝜕𝑥 + 𝑑

𝑑𝑡 ( 𝜕𝐹( ̇𝑥, 𝑥, 𝑡)
𝜕 ̇𝑥 ) = 0

  together with initial and terminal conditions (it is a mixed-value problem).
The EL equation is a second order ODE, evaluated at an optimum,

𝐹𝑥( ̇𝑥, 𝑥, 𝑡) + 𝐹𝑥̇𝑡( ̇𝑥, 𝑥, 𝑡) + 𝐹𝑥̇𝑥( ̇𝑥, 𝑥, 𝑡) ̇𝑥 + 𝐹𝑥̇𝑥̇( ̇𝑥, 𝑥, 𝑡) ̈𝑥 = 0.

 

Pontriyagin’s maximum principle

Introducing the co-state variable 𝑞(𝑡) and the Hamiltonian function

𝐻(𝑥, 𝑢, 𝑡) = ℎ(𝑥, 𝑢, 𝑡) + 𝑞(𝑡)𝑓(𝑥, 𝑢, 𝑡)

  the necessary conditions for an optimum involve the modified Hamiltonian dynamic system
(MHDS ), which is a system of two first order equations,

̇𝑞 = −𝐻𝑥(𝑥, 𝑢(𝑞, 𝑥), 𝑡)
̇𝑥 = 𝑓(𝑥, 𝑢(𝑞, 𝑢), 𝑡)

if the functions 𝑓(.) and ℎ(.) are sufficiently differentiable, together with initial and terminal con-
ditions. Examples 4 and 5 are MHDS

Dynamic programming

 
Optimality conditions are given by an implicit ODE’s the Hamilton-Jacobi-Bellman (HJB)

equation: value function 𝑉 (𝑥, 𝑡) satisfies at the optimum the HJB equation

−𝑉𝑡(𝑥, 𝑡)  = max
𝑢(.)

{ ℎ(𝑥, 𝑢, 𝑡) + 𝑉𝑥(𝑥, 𝑡) 𝑓(𝑥, 𝑢, 𝑡)}  
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  This is a partial differential equation (PDE) in implicit form.
For infinite-horizon autonomous problems the HJB equation becomes an ODE (in the implicit

form)
𝜌𝑉 (𝑥) = max

𝑢(.)
{ ℎ(𝑥, 𝑢) + 𝑉 ′(𝑥) 𝑓(𝑥, 𝑢)}  

  where 𝑉 (𝑥) is unknown. The policy function takes the form 𝑢 = 𝑢(𝑥, 𝑉 ′(𝑥)) then the HJB
function becomes the implicit ODE

𝜌𝑉 (𝑥) =  ℎ (𝑥, 𝑢(𝑥, 𝑉 ′(𝑥))) + 𝑉 ′(𝑥) 𝑓 (𝑥, 𝑢(𝑥, 𝑉 ′(𝑥))) .

 

Extensions

The former definition of optimal control problem can be extended in several different ways, for
instance:

• by increasing the number of control variables (see example 5)

• by increasing the dimension of the state vector 𝑥 = (𝑥1, … , 𝑥𝑛) (which doubles the dimension
of the ODE representing the first order conditions)

• by introducing a instantaneous value terminal state or control 𝑉 (𝑥(𝑡), 𝑢(𝑇 ), 𝑇 )

• by introducing constraints on the terminal state or control 𝐻(𝑥(𝑇 ), 𝑢(𝑇 ), 𝑇 ) ≤ 0

• by introducing constraints on the trajectories of the state or control variables 𝐻(𝑥(𝑡), 𝑢(𝑡), 𝑡) ≤
0 .

1.3.5 Solving ODEs and problems involving ODEs

Ideally we would like to find function 𝜙(𝑡, .) explicitly. However this is only possible for a small
number of equations.

The three main issues regarding solving differential equations that cannot be solved explicitly
are associated with:

• existence of solutions

• uniqueness of solutions
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• characterization of solutions, i.e., their behavior relative to the independent variable, 𝑡, and
the other data of the problem (parameters, initial or terminal values). The main tool for this
is the qualitative theory of ODE or bifurcation theory.

1.4 Partial differential equations

A partial differential equation (PDE) is one equation involving one or more than one function
of at least two independent variables together with its derivatives. In economics applications one
of the independent variable is time. In equation (1.1) we have 𝑚 > 1, 𝒵 ⊆ ℝ𝑚, 𝑝 = 2 and F(.) be
monotonic and regular in all the derivative arguments.

1.4.1 First-order PDE

Let 𝑚 = 2 and consider the function y = y(𝑡, 𝑥) where (𝑡, 𝑥) ∈ ℝ2.
A first-order partial differential equation takes the general form

F(𝐷𝑡(y), 𝐷𝑥(y), y(𝑡, 𝑥), 𝑡, 𝑥) = 0

If 𝑛 = 1 a quasi-linear hyperbolic PDE is

𝑎(𝑡, 𝑥)𝑦𝑡 + 𝑏(𝑡, 𝑥)𝑦𝑥 = 𝑓(𝑦),

  where 𝑦 ∶ ℝ2 → 𝒴 ⊆ ℝ, 𝑦𝑡 = 𝜕𝑦(𝑡,𝑥)
𝜕𝑡 and 𝑦𝑥 = 𝜕𝑦(𝑡,𝑥)

𝜕𝑥 . Some times we represent the partial
derivatives by 𝜕𝑡𝑦(𝑡, 𝑥) and 𝜕𝑥𝑦(𝑡, 𝑥).

This type of equations models for instance transport, conservative, age-dependent distributions
along time. It represents a distribution moving along time.

Example 6 Dynamics of an age-dependent population. The density of population 𝑛 = 𝑛(𝑎, 𝑡)
is equal to the number of individuals of age 𝑎 at time 𝑡 is governed by the McKendrick PDE

𝑛𝑡 + 𝑛𝑎 = 𝜇(𝑎)𝑛

  where 𝜇(.) is the mortality rate. In general the equation is complemented with a condition for
the newborns 𝑛(0, 𝑡) = ∫𝑎max

0 𝛽(𝑎)𝑛(𝑎, 𝑡)𝑑𝑎 when fertility is age-dependent.

1.4.2 Parabolic partial differential equations

A parabolic PDE has the general form

F(𝐷2
𝑥(y), 𝐷𝑡(y), 𝐷𝑥(y), y(𝑡, 𝑥), 𝑡, 𝑥) = 0
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that is, it involves a second derivative as regards the ”spatial” variable.
If 𝑛 = 1 a quasi-linear parabolic PDE is

𝑎(𝑡, 𝑥)𝑦𝑡 + 𝑏(𝑡, 𝑥)𝑦𝑥 + 𝑐(𝑡, 𝑥)𝑦𝑥𝑥 = 𝑓(𝑦),

  where 𝑦 ∶ ℝ2 → 𝒴 ⊆ ℝ and 𝑦𝑥𝑥 = 𝜕2𝑦
𝜕𝑥2 .

In Economics and Finance there are two types of PDE’s we should distinguish:

• forward  parabolic PDE
𝑦𝑡(𝑥, 𝑡) − 𝑦𝑥𝑥(𝑥, 𝑡)) = 𝑓(𝑦(𝑥, 𝑡))

  models forward diffusion phenomena starting from one known initial distribution 𝑦(0, 𝑥) =
𝜙(𝑥) and diffusing out through time;

• backward parabolic PDE

𝑦𝑡(𝑥, 𝑡) + 𝑦𝑥𝑥(𝑥, 𝑡)) = 𝑓(𝑦(𝑥, 𝑡))

  is very common on mathematical finance, in which a terminal distribution 𝑦(𝑇 , 𝑥) = ℎ(𝑥)
is known and an initial distribution 𝑦(0, 𝑥) = 𝜙(𝑥) is to be determined.

Example 7 The heath equation is the simplest case of a forward equation

𝑢𝑡(𝑥, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑡)

  where 𝑢(𝑥, 𝑡) is the temperature of an one-dimensional rod, at location 𝑥 at time 𝑡.
Example 8 The well known Black-Scholes is an example of a backward equation

𝑣𝑡(𝑆, 𝑡) = −𝜎𝑆2

2 𝑣𝑆𝑆(𝑆, 𝑡) + (𝑣(𝑆, 𝑡) − 𝑆𝑣𝑆(𝑆, 𝑡))

  where 𝑣(𝑆, 𝑡) is the value of an option over an underlying asset with price 𝑆 at time 𝑡, 𝜎 is the
instantaneous volatility of the underlying asset and 𝑟 is the risk-free interest rate.

1.4.3 Optimal control of PDE’s

Although much less well known, and usually very hard to solve, there are optimal control problems
for systems governed by PDE’s. The first order conditions are generally forward-backward PDE’s.



Paulo Brito Advanced Mathematical Economics 2019/2020 16

Optimal control of first-order PDE’s

Consider two unknown functions 𝑢 ∶ 𝒟 → ℝ𝑢 and 𝑦 ∶ 𝒟 → ℝ𝑛 where 𝒟 = (𝑥, ̄𝑥) × (0, ∞) An
optimal control problem of hyperbolic PDE has the form

max
𝑢(.)

∫
𝑥̄

𝑥
∫

∞

0
ℎ(𝑢(𝑥, 𝑡), 𝑦(𝑥, 𝑡), 𝑥, 𝑡)𝑑𝑡𝑑𝑥

  subject to the first-order PDE

𝑦𝑡(𝑥, 𝑡)  + 𝑦𝑥(𝑥, 𝑡) = 𝑓(𝑢(𝑥, 𝑡), 𝑦(𝑥, 𝑡))

  plus initial 𝑦(0, 𝑥) = 𝑦0(𝑥) and possibly boundary conditions. This models the optimal choice of
a distribution along time.

The first order conditions, from the Pontryagin’s maximum principle
Consider the co-state variable 𝑞(𝑡, 𝑥) and the Hamiltonian function

𝐻(ℎ(𝑢(𝑡, 𝑥), 𝑦(𝑡, 𝑥), 𝑥, 𝑡) = ℎ(𝑢(𝑡, 𝑥), 𝑦(𝑡, 𝑥), 𝑥, 𝑡) + 𝑞(𝑡, 𝑥)𝑓(𝑢(𝑡, 𝑥), 𝑦(𝑡, 𝑥))

  necessary f.o.c. include involve a system of two first-order PDE (one moving forward and the
other backward)

𝑞𝑡 = − 𝑞𝑥 + 𝐻𝑦(𝑢(𝑞, 𝑦), 𝑦, .)
𝑦𝑡  = 𝑦𝑥  + 𝑓(𝑢(𝑞, 𝑦), 𝑦)

the solution, if it exists, features an optimal distribution evolving along time, possibly converging
to a bounded asymptotic distribution.

Parabolic PDE’s

Consider two unknown functions 𝑢 ∶ 𝒵 → ℝ𝑢 and 𝑥 ∶ 𝒵 → ℝ𝑛 where 𝒵 = (𝑥, ̄𝑥) × (0, ∞) An
optimal control problem of parabolic PDE has the form

max
𝑢(.)

∫
𝑥̄

𝑥
∫

∞

0
ℎ(𝑢(𝑥, 𝑡), 𝑦(𝑥, 𝑡), 𝑥, 𝑡)𝑑𝑡𝑑𝑥

  subject to the forward parabolic PDE

𝑦𝑡(𝑥, 𝑡) = 𝑦𝑥𝑥(𝑥, 𝑡)  + 𝑓(𝑢(𝑥, 𝑡), 𝑦(𝑥, 𝑡))

  plus initial, 𝑦(0, 𝑥) = 𝑦0(𝑥), and possibly boundary conditions
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The first order conditions, from the Pontryagin’s maximum principle Consider the co-state
variable 𝑞(𝑡, 𝑥) and the Hamiltonian function

𝐻(ℎ(𝑢(𝑡, 𝑥), 𝑦(𝑡, 𝑥), 𝑥, 𝑡) = ℎ(𝑢(𝑡, 𝑥), 𝑦(𝑡, 𝑥), 𝑥, 𝑡) + 𝑞(𝑡, 𝑥)𝑓(𝑢(𝑡, 𝑥), 𝑦(𝑡, 𝑥))

  necessary f.o.c. include involve a system of two parabolic PDE (one forward and one backward)

𝑞𝑡 = − 𝑞𝑥𝑥 + 𝐻𝑦(𝑢(𝑞, 𝑦), 𝑦, .)
𝑦𝑡  = 𝑦𝑥𝑥  + 𝑓(𝑢(𝑞, 𝑦), 𝑦)

the solution, if it exists, features an optimal distribution evolving along time, possibly converging
to a bounded asymptotic distribution. Reference: Li and Yong (1995).

1.5 Stochastic differential equations

1.5.1 The diffusion equation

Let: 𝑚 = 2, 𝒵 ⊆ ℝ × 𝛺 (𝛺 is a probability space) , 𝑝 = 1 and 𝐹(.) monotonic and regular in all
the derivative arguments

Then 𝑦 = 𝑦(𝑡, 𝜔) where 𝜔 ∈ (𝛺, ℱ, ℙ) is a probability space
A Itô’s stochastic differential equation (SDE) takes the form

𝑑𝑦 = 𝑓(𝑦)𝑑𝑡 + 𝜎(𝑦)𝑑𝑊

  where 𝑑𝑊 is a standard Wiener process, i.e., a stochastic process following a normal distribution
with zero mean and variance 𝑑𝑡: 𝑑𝑊 ∼ 𝑁(0, 𝑑𝑡). An important fact about 𝑦(𝑡, 𝜔) is that it is not
differentiable (in the classic sense) as regards 𝑡. Therefore, in order to solve a SDE we need to
apply the Itô’s or stochastic calculus. Essentially this

There are relationships between SDE’s and PDE’s. Ex: the probability distribution as of time
𝑡 = 0 that 𝑦(𝑡, 𝜔) = 𝑥, 𝑝(𝑥, 𝑡), satisfies the Kolmogorov forward or Fokker-Planck equation

𝑝𝑡 (𝑥, 𝑡) = 1
2 𝜕𝑥𝑥[𝜎(𝑥)𝑝(𝑥, 𝑡)]  − 𝜕𝑡[𝑓(𝑦(𝑥, 𝑡)𝑝(𝑥, 𝑡)],

  which is a parabolic PDE.

1.5.2 Optimal control of SDE’s

Consider two unknown functions 𝑢 ∶ 𝒵 → ℝ𝑢 and 𝑥 ∶ 𝒵 → ℝ𝑛 where 𝒵 = 𝛺 × (0, ∞) where 𝛺 is
again a probability space
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An optimal control problem of SDE can take the form

max
𝑢(.)

𝔼 [  ∫
∞

0
ℎ(𝑢(𝑡), 𝑦(𝑡), 𝑡)𝑑𝑡]

  subject to the SDE
𝑑𝑦 = 𝑓(𝑢, 𝑦)𝑑𝑡 + 𝜎(𝑢, 𝑦)𝑑𝐵

  plus initial and boundary conditions.
Note that

𝔼 [  ∫
∞

0
ℎ(𝑢(𝑡), 𝑦(𝑡), 𝑡)𝑑𝑡] = ∫

𝛺
∫

∞

0
ℎ(𝑢(𝑡, 𝜔), 𝑦(𝑡, 𝜔), 𝑡)𝜋(𝜔)𝑑𝑡𝑑𝜔

  where 𝜋(.) is a density function
To find the optimum it is convenient to use the stochastic dynamic programming principle
The value function 𝑉 (𝑦, 𝑡) satisfies at the optimum the HJB equation

−𝑉𝑡(𝑦, 𝑡)  = max
𝑢(.)

{ ℎ(𝑦, 𝑢, 𝑡) + 𝑉𝑦(𝑦, 𝑡) 𝑓(𝑦, 𝑢) + 1
2𝜎(𝑢, 𝑦)2𝑉𝑦𝑦(𝑦, 𝑡) }  

  which is an implicit parabolic PDE.
Much less known is a version SDE version to the maximum principle. Reference: Peng (1990)

and Yong and Zhou (1999).
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