Universidade de Lisboa Instituto Superior de Economia e Gestão

PhD in Economics Advanced Mathematical Economics 2019-2020

Lecturer: Paulo Brito Exam: Época de Recurso (Re-sit exam) 6.7.2020 (18.00h-20.15h)

Warning:

• This is an online open book exam. This implies that in the assessment the following two points will be taken into consideration:

Your answer should be concise, objective and specific. Any notation, calculation, motivation, discussion or explanation **not strictly related to the specific question** it tries to address will either not be considered or have a negative assessment.

- Classification: 1 5 points, 2 5 points, 3 5 points, 4 5 points.
- Your exam will only be considered if it is uploaded in Aquila between 20:10 and 20:15.

1. Consider a Solow growth model in which the production function is

$$Y = K^{\alpha} L^{\beta} S^{1-\alpha-\beta}, \text{ for } 0 < \alpha < 1, \text{ and } 0 < \beta < 1-\alpha.$$
(1)

where K is private physical capital, S, are public infrastructures, and L is the labor input which is equal to total population. Assume population is constant, the investment expenditures in private capital is $I = \dot{K} + \delta K$ and government expenditures are only used to increase and maintain public capital $G = \dot{S} + \delta S$, where $\delta > 0$ is the depreciation rate. Assuming government expenditures are financed by income taxes and the government follows a balanced budget rule we have $G = \tau Y$, where $\tau \in (0, 1)$ is the tax rate. The equilibrium equation for the product market is Y = C + I + G. Defining $y \equiv Y/L$, $k \equiv K/L$ and $s \equiv S/L$ this economy is represented by the system of coupled differential equations over (k, s), where y = y(k, s) is the per-capita product associated to production function (1)

$$\dot{k} = (1 - c - \tau) y(k, s) - \delta k,$$

$$\dot{s} = \tau y(k, s) - \delta s$$
(2)

where $0 < c < 1 - \tau$ is the marginal (equal to average) propensity to consume, and $k(0) = k_0$ and $s(0) = s_0$ are given. Assume that $(k, s) \in \mathbb{R}^2_{++}$.

- (a) Draw the phase diagram of system (2).
- (b) Find the steady state and characterize analytically the phase diagram. Are there any local bifurcations ? Why ?
- (c) Study the long-run multipliers for an increase in the tax rate, τ . Which effect can we expect on the long-run output level ?

2. Consider the following optimal control problem

$$\min_{u(\cdot)} \int_0^\infty \left(x(t)^2 + \frac{\alpha}{2} u(t)^2 \right) e^{-\rho t} dt$$

subject to $\dot{x} = x(t) - u(t)$, for every $t \in (0, \infty)$ and $x(0) = x_0$ is given. All the parameters are positive, that is $\rho > 0$ and $\alpha > 0$. The terminal value of $x(\cdot)$ is free.

- (a) Write the problem as a calculus of variations problem. Find the first-order necessary conditions for optimality. Are they sufficient ?
- (b) Find the general solution to the Euler-Lagrange equation. Discuss the existence and uniqueness of a solution to the problem for different values of the parameter ρ .
- (c) Assume that $\rho \leq \tilde{\rho} \equiv 1 + \frac{\alpha}{2}$. Find the solution to the problem.
- 3. Consider the following stochastic resource-depletion problem, where $\{X(t)\}_{t\in\mathbb{R}}$ is the process for the stock of the resource, and $\{C(t)\}_{t\in\mathbb{R}}$ is the process for its use,

$$\max_{C(\cdot)} \mathbb{E}_0 \Big[\int_0^\infty \ln \left(C(t) \right) e^{-\rho t} \Big]$$

subject to

$$dX(t) = -C(t) dt + \sigma X(t) dW(t)$$
, for $t \in (0, \infty)$

where $\{W(t)\}_{t\in\mathbb{R}}$ is a Wiener process, and $X(0) = x_0 > 0$ is given. The rate of time preference and the volatility parameters, ρ and σ , are both positive and satisfy $\rho > \sigma^2$.

- (a) Write the first-order conditions for optimality according to the stochastic Pontriyagin's maximum principle.
- (b) Find the stochastic process for C(t).
- (c) Using $C(t) = \phi X(t)$, for an undetermined constant ϕ , as a trial function find the solution for the optimal X(t).
- 4. Consider the diffusion equation

$$dX(t) = -X(t)dt + dW(t), \ t \in [0,\infty)$$

where $\{W(t)\}$ is a standard Wiener process.

- (a) Let $X(0) = x_0$, where x_0 is a real number. Find the solution to the initial value problem.
- (b) Write the forward Fokker-Planck-Kolmogorov (FPK) for the density associated to X(t) = x, conditional on $X(0) = x_0$, that is $p(t, x) = \mathbb{P}[X(t) = x | X(0) = x_0]$.
- (c) Let $P(t,s) = \mathcal{F}[p(t,x)]$ be the Fourier transform of p(t,w). Find P(t,s), which is the solution to the transformed FPK equation together with the initial condition $P(0,s) = \mathcal{F}[\delta(x-x_0)] = e^{-2\pi i s x_0}$ (tip: $\mathcal{F}[x \partial_x p(t,x)] = -(P(t,s)+s \partial_s P(t,s))$ and $\mathcal{F}[\partial_{xx} p(t,x)] = -(2\pi s)^2 P(t,s))$.