
Advanced Mathematical Economics

Paulo B. Brito
PhD in Economics: 2020-2021

ISEG
Universidade de Lisboa

pbrito@iseg.ulisboa.pt

Lecture 2
23.9.2020



Chapter 1

Linear ODE: the scalar case

1.1 Introduction

A scalar ODE is a differential equation in which a (unknown) function 𝑦(𝑥) is derived from a
known function 𝐹(𝑦′(𝑥), 𝑦(𝑥).𝑥) = 0, where 𝑥 is the a real independent variable with domain X,
i.e., 𝑥 ∈ X ⊆ ℝ, and 𝑦 is a real valued function of 𝑥 with range in the one-dimensional space of real
numbers, that is 𝑦 ∶ X → Y ⊆ ℝ and 𝑦′(𝑥) is the derivative of 𝑦.

Recalling that
𝑦′(𝑥) ≡ 𝑑𝑦(𝑥)

𝑑𝑥 =   lim
ℎ→0

𝑦(𝑥 + ℎ) − 𝑦(𝑥)
𝑥

then a scalar ODE models phenomena which we describe by the existence of a local interaction.
The particular features of that local interaction is encoded in function 𝑓(⋅).

A scalar ODE in normal form that interests us takes has the form

𝑦′(𝑥) ≡ 𝑑𝑦(𝑥)
𝑑𝑥 =  𝑓(𝑦(𝑥), 𝑥),

Most of the times we are interested in equations of the form 𝑦′(𝑥) = 𝑓(𝑦(𝑥), 𝑥, 𝜑), where 𝜑 ∈ ℝ𝑚

is a vector of parameters and function 𝑓(⋅) is known.
The known function 𝑓(⋅) constrains the family of functions to which function 𝑦 belongs, which

we call 𝒴. If function𝑓(⋅) is continuous and differentiable, then the solution of solutions of the
differential equation are elements of the space of continuous and differentiable functions.

Solving a scalar ODE means finding a function, say 𝜙(𝑥), such that 𝜙 ∶ X → Y such that
𝜙′(𝑥) = 𝑓(𝜙(𝑥), 𝑥, 𝜑). The question of the existence and uniqueness of solutions is related to
number of elements of 𝒴 which satisfy the differential equation.

A linear scalar ODE in normal form is an ODE in which 𝑓(⋅) is a linear function of 𝑦. The
most general form is

𝑦′(𝑥) = 𝑎(𝑥) 𝑦 + 𝑏(𝑥)

1
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  where 𝑓(𝑦(𝑥), 𝑥) = 𝑎(𝑥) 𝑦 + 𝑏(𝑥).
Linear ordinary differential equations are the simplest ordinary differential equations (ODE).

They always have one and only one explicit (or closed form) solution. This means that we can
find exactly one and only one member of the functional space 𝒴 which solves. This means that a
unique solution always exist.

Most applications of differential equations have time, 𝑡, as the independent variable. In this
case, the convention is to use Newton’s notation for the derivative, i.e., ̇𝑦 ≡ 𝑑𝑦(𝑡)

𝑑𝑡 and write the
linear ODE as

̇𝑦 = 𝑎(𝑡) 𝑦 + 𝑏(𝑡)

  where 𝑦 ∶ T → ℝ, where usually T ⊆ ℝ.
The existence and uniqueness of solutions for linear ODE is known, the analysis of the solutions

for non-linear ODE can be done by comparing them to the linear ODE. In particular, the qualitative
theory for ODE is based upon the local approximation of non-linear ODE by linear ODE and by
verifying conditions under which a non-linear ODE is (topologically) equivalent to a linear ODE
(at least locally).

There are two major distinctions among scalar linear ODE, depending on the form of 𝑓(.). The
first, is related to the functional dependence of 𝑓 on the independent variable 𝑥 and the second
refers to homogeneity property of function 𝑓(⋅) regarding 𝑦. We say that the ODE is autonomous
if 𝑓(⋅) is independent of the independent variable 𝑥 and it is non-autonomous if 𝐹(⋅) depends
directly on the independent of it. We say that the ODE is homogeneous if 𝐹 is an homogeneous
function of 𝑦 and non-homogeneous otherwise.

In most applications, differential equations are supplemented by some side conditions which
may differ according to the problem under study.

In general a model (or a problem) involving an ODE takes the form

⎧{
⎨{⎩

𝑦′(𝑥) = 𝑓(𝑦(𝑥), 𝑥)
F[𝑦]  = constant

 

  where F[𝑦] is a functional over 𝑦, i.e., F ∶ ℱ → ℝ.
The characterization of the solution of a model featuring an ODE has a close relationship to

the type of side conditions which are assumed.
For instance, in models in which the independent variable is not time the constraint takes the

form ∫X  𝛽(𝑦(𝑥), 𝑥)𝑑𝑥 = 0. In general we have moment conditions, and we are interested in some
global characteristics of the solution curve.

In models in which the independent variable time the constraint sometimes takes to form ∫T  𝛿(𝑡−
𝑡0)𝑦(𝑡)𝑑𝑥 = 𝑦𝑡0

where 𝛿( ̇) is Dirac’s delta generalized function. In this case we fix the value of the
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function for a particular value of the independent variable time, and want to characterize the
evolution across Y across time. This leads to the stability and bifurcation analysis of the model:
stability regarding some fixed points of Y, existence of invariant sets, dependence of the solution
on parameters.

To distinguish the solution of an ODE from the solution to a model (or a problem) involving
an ODE we call general solution  to the solution of an ODE and particular solution  to the
solution of the latter. Although linear scalar ODE have one unique solution, models (or problems)
involving them may not have solutions (if the constraint cannot be satisfied by the solution of
the ODE). That is, the fact that a general solution exists and is unique does not imply that the
particular solution exists.

We present in 1.2 the solution and some examples in which the independent variable is not
time, and in section 1.3 we briefly present some results for ODEs as functions of other independent
variables.

1.2 General solutions of scalar ODE’s

Let us start with the homogeneous equation

𝑦′(𝑥) = 𝑎(𝑥)𝑦, 𝑦 ∶ X →  Y (1.1)

  where both X are Y are subsets of ℝ.

Proposition 1. The unique solution of ODE (1.1) is a function 𝑦

𝑦(𝑥) = 𝑘 𝑒∫X 𝑎(𝑥) 𝑑𝑥 (1.2)

where 𝑘 is an arbitrary element of Y

Proof. Recalling that we denoted 𝑦′(𝑥) = 𝑑𝑦
𝑑𝑥 = 𝑎(𝑥)𝑦, we use the method of separation of variables1

writing 𝑑𝑦
𝑦   = 𝑎(𝑥). Integrating, we have

∫
Y

𝑑𝑦
𝑦   = ∫

X
𝑎(𝑥) 𝑑𝑥 ⇔ log 𝑦 + 𝑘𝑦 = ∫

X
𝑎(𝑥) 𝑑𝑥 + 𝑘𝑥

  where 𝑘𝑦 and 𝑘𝑥 are constant of integration. Taking exponentials on both sides and writing
𝑘 = exp (𝑘𝑥 − 𝑘𝑦) yields the general solution (1.2).

There are two particular cases of this equation,
1There are several methods we can employ to find the proof (separation of variables, Laplace transforms, Fourier

transforms, transforming into an integral equation, using the concept of generating function, just to name a few)
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1. If 𝑎(𝑥) = 0, the solution (1.2) becomes 𝑦(𝑥) = 𝑘;

2. If 𝑎(𝑥) = 𝑎, a constant, the solution (1.2) becomes 𝑦(𝑥) = 𝑘 𝑒𝑥;

  where 𝑘 is an arbitrary element of Y, in both cases.
Now, we consider the non-homogeneous equation

𝑦′(𝑥) = 𝑎(𝑥)𝑦 + 𝑏(𝑥), 𝑦 ∶ X →  Y (1.3)

  where, again, both X are Y are subsets of ℝ.

Proposition 2. The unique solution of ODE (1.3) is a function 𝑦

𝑦(𝑥) = 𝑦(𝑥0) 𝑒∫𝑥
𝑥0

 𝑎(𝑠) 𝑑𝑠 + ∫
𝑥

𝑥0

𝑒∫𝑠
𝑥0

𝑎(𝑧) 𝑑𝑧 𝑏(𝑠)𝑑𝑠 (1.4)

where 𝑦0 is an arbitrary element of Y which we associate to 𝑥0, i.e., 𝑦(𝑥0) = 𝑦0

Proof. We apply the variation of constant method2. First, we consider the solution for the homo-
geneous equation, such that 𝑏(𝑥) = 0 for all 𝑥 ∈ X. From equation (1.2) its solution for the fixed
interval (𝑥0, 𝑥), for 𝑥0 < 𝑥 is

𝑦ℎ(𝑥, 𝑦0) = 𝑦0 𝑒∫𝑥
𝑥0

𝑎(𝑠)𝑑𝑠

  But we expect the solution to equation (1.3) to be, for an arbitrary element of 𝑥 > 𝑥0.

𝑦(𝑥) = 𝑦ℎ(𝑥, 𝑦0(𝑥)) = 𝑦0(𝑥)𝑒∫𝑥
𝑥0

𝑎(𝑠)𝑑𝑠. (1.5)

  Taking derivatives of the last equation we get

𝑦′(𝑥) = 𝑦′
0(𝑥)𝑒∫𝑥

𝑥0
𝑎(𝑠)𝑑𝑠 + 𝑦0(𝑥)𝑎(𝑥)𝑒∫𝑥

𝑥0
𝑎(𝑠)𝑑𝑠

  which should be equal to equation (1.3). Equating the right-hand sides of both equations we get
the ODE

𝑦′
0(𝑥) = 𝑏(𝑥)𝑒− ∫𝑥

𝑥0
𝑎(𝑠)𝑑𝑠.

  Applying the separation of variables to solve this equation we find

𝑦0(𝑥) = 𝑦0(𝑥0) + ∫
𝑥

𝑥0

𝑏(𝑠)𝑒− ∫𝑠
𝑥0

𝑎(𝑧)𝑑𝑧𝑑𝑠.

  Substituting in equation (1.5) and because 𝑦0(𝑥0) = 𝑦(𝑥0) = 𝑦0 we finally get solution (1.4)

Next we see some applications of models involving non-autonomous ODE’s, which include par-
ticular side constraimnts

2Due to Lagrange (1811).
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1.2.1 Some applications

The Gaussian distribution

We can derive the standard Gaussian density probability from the ODE problem,

 𝑦′(𝑥) = −𝑥 𝑦(𝑥), 𝑥 ∈ X = (−∞, ∞) (1.6a)

∫
∞

−∞
  𝑦(𝑥)  𝑑𝑥 = 1 (1.6b)

While equation (1.6a) means that the rate of decay between to adjacent points in X is equal to
the value of 𝑥 in which we measure it, equation (1.6a) constraints 𝑌 (𝑥) = ∫𝑥

−∞ 𝑦(𝑠)𝑑𝑠 to be a
distribution.

The solution to the problem is

𝑦(𝑥) =
√

2 𝜋

𝑒−
𝑥2

2

  (1.7)

To prove this, we already know that the solution to equation (1.6a) is

𝑦(𝑥) = 𝑘 𝑒∫𝑥
−∞ 𝑠 𝑑𝑠  = 𝑘 𝑒−

𝑥2

2 .

  If we substitute this general solution in the constraint (1.6b) we find 𝑘 as the solution of the
equation

∫
∞

−∞
  𝑘 𝑒−

𝑥2

2   𝑑𝑥 = 1 ⇔ 𝑘
√

2𝜋 = 1,

  which yields (1.7).

The CRRA utility function

The function
𝑢(𝑥) = 𝑥1−𝜎 − 1

1 − 𝜎
  has many uses, not only in economics. In economics, in deterministic models it is called iso-
elastic utility function and in stochastic models it os called constant relative risk aversion (CRRA)
Bernoulli utility function CRRA. In applied-mathematical handbooks it is called a generalized
logarithmic function. 3

3If 𝜎 = 1 it can be showed that it is 𝑢(𝑥) = ln (𝑥).
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Using the analysis in Pratt (1964) it can be showed that it is a solution of the problem

  − 𝑢″(𝑥) 𝑥
𝑢′(𝑥)   = 𝜎, 𝑥 ∈ X = [1, ∞) (1.8a)

𝜎 ∫
∞

1
  𝑢′(𝑥)

𝑥   𝑑𝑥 = 1 (1.8b)

𝑢(1) = 0 (1.8c)

The first equation is a definition of the relative risk aversion, of that the symmetric of the elasticity
of 𝑢(⋅) is constant and equal to 𝜎, the first constraint conditions the relative slope of 𝑢(⋅) on all
its domain and the last constraint fixes the value of utility of consumption at one (this condition
makes transparent that a logarithm is hidden behind the utility function).

Equation (1.8a) is a second order ODE. We can transform it into a first order ODE by defining
𝑦(𝑥) = 𝑢′(𝑥). Then 𝑦′(𝑥) = 𝑢″(𝑥) and the ODE becomes equivalent to

𝑦′(𝑥)
𝑦(𝑥) = −𝜎

𝑥.

  We can simplify further if we define 𝑧(𝑥) = log (𝑦(𝑥) (thus 𝑧(𝑥) = log (𝑢′(𝑥)), which implies

𝑧′(𝑥) = 𝑑𝑧
𝑑𝑥 = −𝜎

𝑥 ⇒ 𝑧(𝑥) = 𝜎 log (𝑥) + 𝑘𝑧

  where 𝑘𝑧 is an arbitrary constant in the domain of 𝑧. Then

𝑢′(𝑥) = 𝑦(𝑥) = 𝑒𝜎 log (𝑥)+𝑘𝑧 = 𝑘𝑦𝑥−𝜎  

  where 𝑘𝑦 is an arbitrary constant in the domain of 𝑦. Integrating the last equation we find the
general solution for 𝑢(⋅)

𝑢(𝑥) = 𝑘𝑦
𝑥1−𝜎

1 − 𝜎  + 𝑘𝑢

  We can find the two arbitrary constants 𝑘𝑦 and 𝑘𝑢 by substituting in equations (1.8b) and (1.8c)
and solving. Note that

𝜎 ∫
∞

1
  𝑢′(𝑥)

𝑥   𝑑𝑥 = 𝜎 𝑘𝑧 ∫
∞

1
  𝑥−𝜎−1   𝑑𝑥 = 𝜎 𝑘𝑧(𝑥−𝜎

−𝜎 ∣
∞

𝑥=1
) = 𝑘𝑧

  Therefore 𝑘𝑧 = 1, and the last constraint writes 𝑢(𝑥)∣
𝑥=0

= 1
1 − 𝜎 +𝑘𝑢 = 0 implies 𝑘𝑢 = − 1

1 − 𝜎 .
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1.3 Equations having time as the independent variable

A scalar ODE is autonomous if the coefficients are constant, i.e, they are independent of the
exogenous variable 𝑡,

̇𝑦 = 𝜆𝑦 + 𝛽 (1.9)

  where (𝜆, 𝛽) ∈ ℝ2 are known constants. A scalar ODE is non-autonomous if the coefficients
depend on the the independent variable 4

̇𝑦 = 𝜆(𝑡)𝑦 + 𝛽(𝑡), (1.10)

  where (𝜆, 𝛽) ∶ T → ℝ2 are known functions of 𝑡.
A scalar ODE is homogeneous if 𝐹(𝑦, .) is a homogeneous function of 𝑦 and it is non-

homogeneous if 𝐹(𝑦, .) is non-homogeneous. Homogeneity of degree 𝑛 holds if, for a constant
𝜉 we have 𝐹(𝜉𝑦) = 𝜉𝑛𝐹(𝑦). Therefore

̇𝑦 = 𝜆𝑦, and ̇𝑦 = 𝜆(𝑡)𝑦

  are homogeneous and
̇𝑦 = 𝜆𝑦 + 𝛽, and ̇𝑦 = 𝜆(𝑡)𝑦 + 𝛽(𝑡)

  are non-homogeneous.
Solving  an autonomous ODE means finding a function 𝑦(𝑡) = 𝜙(𝑡, 𝑦; .), mapping 𝜙 ∶ T → Y,

depending on the parameters 𝜆 and 𝛽 and on an arbitrary element 𝑦 ∈ Y. Characterizing  the
solution roughly means tracking the behavior of the flow of the elements of Y, denoted as (𝑦(𝑡))𝑡∈T,
when the independent variable changes.

This behavior is determined by function 𝐹(𝑦). In order to take account of it we introduce the
following definitions:

• equilibrium point  (or steady state): it is a point in range of 𝑦 such that 𝐹(𝑦) = 0, that is

̄𝑦 = { 𝑦 ∈ Y ∶ 𝐹 (𝑦) = 0} 

 

• stability properties of the equilibrium point: the steady state is asymptotically stable if
for any 𝑦 ∈ Y the flow generated by the ODE (1.11), (𝑦(𝑡))𝑡∈T, has the property

lim
𝑡→∞

𝜙(𝑡) = 𝜙(∞) = ̄𝑦;

  the steady state is unstable if for any 𝑦 in a neighborhood of ̄𝑦, 𝑦(𝑡) does not converge to
̄𝑦;

4If we redefine the independent variable as 𝑡 = 𝜏 we can transform the non-autonomous scalar linear ODE into a
planar non-linear equation: ̇𝑦1 = 𝜆(𝑦2)𝑦1 + 𝛽(𝑦2) ̇𝑦2 = 1 where 𝑦2(𝑡) = 𝑡.
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• invariant subsets are partitions of set Y containing the whole solution path (𝑦(𝑡))𝑡∈T; we
call attractor set to the subset of points 𝑦 ∈ Y such that the solution will converge to the
steady state and repelling set to the set of points 𝑦 ∈ Y such that the solution will not
converge to the steady state.

At last, we draw a distinction between an ODE and a problem involving an ODE. To get an
intuition of the difference, observe that equations (1.9) and (1.10) involve a time variation of 𝑦(𝑡)
independent of the starting or the terminal point. While the solution of the scalar ODE is called
general solution, the solution to a problem involving an ODE is called particular solution.

There are basically two types of problems. We have an initial-value problem if we have
an ODE together with a known value for 𝑦 at the initial time, and we have a terminal-value
problem if we have an ODE together with a known value for 𝑦 for the terminal time (or there is
a functional constraint over the solution). In the first case, we call the ODE a forward ODE 
because the solution will be obtained from future instants (assuming that the present time is 𝑡 = 0)
and in the second case we call the ODE a backward ODE.

The evolution described by the ODE can be done forward in time (if we know the initial point) or
backward in time (if we know a terminal point). With this additional information we can uniquely
determine a forward or a backward path.

As we will see, uniqueness of the solution of an ODE is not the same as uniqueness of a
problem involving an ODE. And this distinction has important conceptual differences in economic
applications.

1.3.1 Autonomous equations

Next we introduce homogeneous and the non-homogeneous autonomous equations and their related
problems.

We assume that Y = ℝ. This means that, with the exception of the ODE and the initial or
terminal constraints, there is no other constraint on the evolution of 𝑦.

The scalar homogeneous ODE is the linear equation

̇𝑦 = 𝜆𝑦, 𝑦 ∶ T → Y (1.11)

where 𝑦 = 𝑦(𝑡) is an unknown function with domain T and range Y. Usually T = [0, ∞) and Y is
the set of real numbers (ℝ) or non-negative real numbers (ℝ+), and 𝜆 is a real-valued parameter
(𝜆 ∈ ℝ).

As with any equation (or problem) there are three issues related to its solution: existence of
solutions, number of solutions and characterisation of the solution
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Proposition 3. The unique solution of equation (1.11)  is a function 𝜙 ∶ T → Y

𝜙(𝑡, 𝑘; 𝜆) = 𝑘𝑒𝜆𝑡 (1.12)

  where 𝑘 ∈ Y, is an arbitrary member of the range, and 𝑡 ∈ T.

Proof. We use the separation of variables approach. It consists in four steps: first, as ̇𝑦 ≡ 𝑑𝑦/𝑑𝑡
we can write equation (1.11) in an equivalent way, by separating 𝑦 from 𝑡

𝑑𝑦
𝑦 = 𝜆𝑑𝑡.

  Second, we integrate both sides of the equation

∫ 𝑑𝑦
𝑦 = ∫ 𝜆𝑑𝑡

  because 𝜆 is a constant
∫ 𝑑𝑦

𝑦 = 𝜆 ∫ 𝑑𝑡

  third, we find the primitives
ln (𝑦) + 𝐶𝑦 = 𝜆𝑡 + 𝐶𝑡

  where 𝐶𝑦 ∈ Y and 𝐶𝑡 ∈ T are two arbitrary constants of integration; at last, if we take exponentials
of the two sides we get

𝑒ln (𝑦)  = 𝑦 = 𝑒𝜆𝑡+(𝐶𝑡−𝐶𝑦)

  and we write 𝑘 = 𝑒𝐶𝑡−𝐶𝑦

We see that the solution 𝑦(𝑡) = 𝜙(𝑡, 𝑘; 𝜆) depends on the parameter 𝜆 and on an arbitrary point
𝑘 in the domain Y. This is the general solution to equation (1.11).

Characterizing the solution means describing the behavior of the path (𝑦(𝑡))𝑡∈T from any point
𝑘. We readily see that: (1) if 𝜆 < 0 the solution converges to 0 if 𝑡 → ∞ independently from the
value of 𝑘; (2) if 𝜆 = 0 the solution becomes 𝑦(𝑡) = 𝑘 for any 𝑡 ∈ T, i.e, a constant; and (3) if 𝜆 > 0
the solution depends on the value 𝑘; it converges to zero if 𝑘 = 0 and if converges to +∞ if 𝑘 > 0
and to −∞ if 𝑘 < 0.

The steady states for equation (1.11) are

̄𝑦 =
⎧{
⎨{⎩

𝑘, if 𝜆 = 0
0, if 𝜆 ≠ 0.

  In the first case there is an infinite number  of equilibria, consisting in all points in Y, and in
the second there is a single  equilibria if 0 ∈ Y, or no equilibria if 0 ∉ Y.

When there is a steady state, that is, when 𝜆 ≠ 0 we can characterize its stability properties:
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𝑦

̇𝑦

b

̇𝑦 = 𝜆𝑦

𝑡

𝑦(𝑡)

b

Figure 1.1: Phase diagram and trajectories of equation ̇𝑦 = 𝜆𝑦 for 𝜆 < 0

• if 𝜆 < 0 then lim𝑡→∞ 𝜙(𝑡, 𝑘, 𝜆) = 0 = ̄𝑦 then the equilibrium point is asymptotically stable;

• if 𝜆 > 0 then

lim
𝑡→∞

𝜙(𝑡, 𝑘, 𝜆) =
⎧{
⎨{⎩

±∞ , if 𝑘 ≠ 0
0 , if 𝑘 = 0

  and the equilibrium point ̄𝑦 is unstable. In this case we say the solution can be non-
stationary.

Therefore, if 𝜆 ≠ 0, and ̄𝑦 ∈ Y, there are only two kinds of possible invariant sets:

• if 𝜆 < 0 the basin of attraction for ̄𝑦 is the whole set Y and Y is the attraction set. Then
we say ̄𝑦 is globally asymptotically stable;

• if 𝜆 > 0 then ̄𝑦 is repelling and unstable and Y/ ̄𝑦 is the unstable invariant set.

Figures 1.1 and 1.2 contain the phase diagram  (left hand panel) and representative orbits 
(right-hand panel) for the asymptotically stable and unstable cases of the homogeneous equation,
respectively.

The case 𝜆 = 0, where ̇𝑦 = 0, with solution 𝜙(𝑡) = 𝑘 a constant is thus a degenerate case in
which the solution is always  time-invariant, i.e., it is independent from the exogenous variable
𝑡. Intuitively we can say that there are no dynamics, or that this corresponds to a boundary case
between stability and instability. We can also get time-invariant solutions when 𝜆 ≠ 0 but only in
one case: when 𝑘 = ̄𝑦, i.e., if the arbitrary value of Y happens to be the steady state.

The scalar linear non-homogenous  ODE is

̇𝑦 = 𝛽 + 𝜆𝑦, 𝑦 ∈ Y ⊆ ℝ (1.13)
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𝑦

̇𝑦

bc

̇𝑦 = 𝜆𝑦

𝑡

𝑦(𝑡)

bc

Figure 1.2: Phase diagram and trajectories of equation ̇𝑦 = 𝜆𝑦 for 𝜆 > 0

  where 𝛽 and 𝜆 are real-valued parameters.

Proposition 4. The unique solution of equation (1.13)  is a function 𝜙 ∶ T → Y

𝜙(𝑡, 𝑘; 𝛽, 𝜆) =
⎧{
⎨{⎩

̄𝑦 + (𝑘 − ̄𝑦)𝑒𝜆𝑡, if 𝜆 ≠ 0
𝑘 + 𝛽𝑡, if 𝜆 = 0

(1.14)

  where
̄𝑦 = −𝛽

𝜆 

  where 𝑘 ∈ Y, is an arbitrary member of the range, and 𝑡 ∈ T.

Proof. First assume that 𝜆 ≠ 0. Introduce a change in variables 𝑧(𝑡) = 𝑦(𝑡) + 𝛽/𝜆. Then ̇𝑧 = 𝜆𝑧,
because

̇𝑧 = ̇𝑦 = 𝛽 + 𝜆𝑦 = 𝛽 + 𝜆 (𝑧 − 𝛽
𝜆) = 𝜆𝑧. 

  But we already know that the solution of ̇𝑧 = 𝜆𝑧 is 𝑧(𝑡) = 𝑘𝑧𝑒𝜆𝑡 where 𝑘𝑧 belongs to the domain
of 𝑧. Mapping back to the domain of 𝑦 we have

𝑦(𝑡) + 𝛽
𝜆 =   (𝑘 + 𝛽

𝜆) 𝑒𝜆𝑡.

  As ̄𝑦 = −𝛽/𝜆 is the unique equilibrium point of equation (1.13) yields equation (1.14).
Next, let 𝜆 = 0, then from the l’Hôpital’s rule.
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𝜙(𝑡; 𝜆 = 0) = 𝑘𝑒𝜆𝑡 − 𝛽 (1 − 𝑒𝜆𝑡)
𝜆 ∣𝜆=0=

= 𝑘 − lim
𝜆→0

𝑑 (𝛽 (1 − 𝑒𝜆𝑡))
𝑑𝜆

𝑑(𝜆)
𝑑𝜆

=

= 𝑘 − −𝛽𝑡
1 =

= 𝑘 + 𝛽𝑡.

 

The solutions are qualitatively similar to the homogeneous case (i.e, when 𝛽 = 0) when 𝜆 ≠ 0.
The only (quantitative) difference are:

• the steady state is also unique, although it is shifted from ̄𝑦 = 0, if 𝛽 = 0, to ̄𝑦 = −𝛽/𝜆, if
𝛽 ≠ 0;

• the stability behavior is qualitatively the same but now relative to the equilibrium point
̄𝑦 = −𝛽/𝜆: it is asymptotically stable if 𝜆 < 0 and it is unstable if 𝜆 > 0.

The solutions are qualitatively different when 𝜆 = 0. While in the homogenous case (i.e., if
𝛽 = 0) the solution is stationary and there is an infinite number of steady states (all the elements
of Y) in the non-homogeneous case (i.e, if 𝛽 ≠ 0) there are no steady states  and the solution
of the ODE is always non-stationary.

Figures 1.3 and 1.4 illustrate the phase diagram (left-hand panel) and orbits (right-hand panel)
for the asymptotically stable and unstable cases, respectively, for the non-homogeneous equation.

1.3.2 Problems involving scalar ODE

The previous solutions are usually called general or fundamental solutions. In most applica-
tions we know (or we set) the value, say 𝑦𝜏 ∈ Y, at a particular point in time, say 𝑡 = 𝜏 . So a
problem involving an ODE takes the form

̇𝑦 = 𝜆𝑦, 𝑦(𝜏) = 𝑦𝜏 ∈ Y. (1.15)

Proposition 5. The unique solution for problem (1.15), usually called particular solution, is

𝜙(𝑡, 𝑦𝜏 ; 𝜆) = 𝑦𝜏𝑒𝜆(𝑡−𝜏), for 𝑡, 𝜏 ∈ T, and 𝑦𝜏 ∈ Y (1.16)
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𝑦

̇𝑦

b

̇𝑦 = 𝜆𝑦 + 𝛽

𝑡

𝑦(𝑡)

̄𝑦 b

Figure 1.3: Phase diagram and trajectories for ̇𝑦 = 𝜆𝑦 + 𝛽 for 𝜆 < 0 and 𝛽 > 0

𝑦̇𝑦 bċ𝑦 = 𝜆𝑦 + 𝛽 𝑡𝑦(𝑡)̄𝑦

bc

Figure 1.4: Phase diagram and trajectories for ̇𝑦 = 𝜆𝑦 + 𝛽 for 𝜆 > 0 and 𝛽 < 0
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Proof. By using the separation of variables assuming that 𝑡 > 𝜏 (the method is the same if we
consider 𝑡 < 𝜏) we get

∫
𝑦(𝑡)

𝑦𝜏

𝑑𝑦
𝑦   = 𝜆 ∫

𝑡

𝜏
𝑑𝑡

  for any 𝑡 ≥ 0. Finding the definite integrals we get

ln (𝑦(𝑡)) − ln (𝑦𝜏) = ln (𝑦(𝑡)/𝑦𝜏) = 𝜆(𝑡 − 𝜏).

  Taking exponentials to both sides we get again (1.16).

Proof. (Alternative) Take the general solution for the homogenous equation, (1.12), and evaluate
it at point 𝑡 = 𝜏 , to get 𝜙(𝜏, .) = 𝑘𝑒𝜆𝜏 . But, to solve the problem we should have 𝜙(𝜏, .) = 𝑦𝜏 , a
number. Solving for 𝑘 we get 𝑘 = 𝑦𝜏𝑒−𝜆𝜏 and substituting in the general solution, we get function
(1.16).

Exercise 1. Find the solution of the problem ̇𝑦 = 𝛽 + 𝜆𝑦, where 𝑦(𝜏) = 𝑦𝜏 ∈ Y.

We have an initial-value problem when we have information on the value of the variable 𝑦
at time 𝑡 = 0, 𝑦(0) = 𝑦0, and T = [0, 𝑇 ] for 𝑇 > 0. In this case the solution exists and is unique
and is given by

𝜙(𝑡, 𝑦0; 𝜆) = 𝑦0 𝑒𝜆𝑡, for 𝑡 ∈ [0, 𝑇 ] .
 

We call terminal value problem (sometimes called boundary value problem) if we know (or
want to set) he solution for a terminal time 𝑇 as 𝑦(𝑇 ) = 𝑦𝑇 . In this case the solution exists and is
unique

𝜙(𝑡, 𝑦𝑇 ; 𝜆, 𝑇 ) = 𝑦𝑇 𝑒−𝜆(𝑇 −𝑡), for 𝑡 ∈ [0, 𝑇 ] .
 

1.3.3 Non-autonomous equations

The scalar non-autonomous homogeneous equation

̇𝑦 = 𝑎(𝑡)𝑦 (1.17)

  where 𝑎(𝑡) is any function defined over T.

Proposition 6. Equation (1.24) has the unique solution

𝑦(𝑡) = 𝑘𝑒∫ 𝑎(𝑡)𝑑𝑡 (1.18)

  where 𝑘 ∈ Y.
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Proof. Separating variables and integrating we get

∫ 𝑑𝑦
𝑦   = ∫ 𝑎(𝑡)𝑑𝑡,

  which is equivalent to
ln 𝑦(𝑡) + 𝐶𝑦 = ∫ 𝑎(𝑡)𝑑𝑡

  where 𝐶𝑦 is a constant of integration, thus leading to equation (1.18) if we set 𝑘 = 𝑒𝐶𝑦 .

The initial value problem 
⎧{
⎨{⎩

̇𝑦 = 𝑎(𝑡)𝑦,
𝑦(𝑡0) = 𝑦0

(1.19)

  for T = [𝑡0, 𝑡1], has the unique solution

𝑦(𝑡) = 𝑦0𝑒∫𝑡
𝑡0

𝑎(𝑠)𝑑𝑠, for 𝑡 ∈ [𝑡0, 𝑡1]. (1.20)

 
Exercise: prove this.
The initial value problem

⎧{
⎨{⎩

̇𝑦 = 𝑎(𝑡)𝑦 + 𝑏(𝑡)
𝑦(𝑡0) = 𝑦0

(1.21)

  for T = [𝑡0, 𝑡1].

Proposition 7. The initial value problem (1.19) has the unique (particular) solution

𝑦(𝑡) = 𝑦0𝑒∫𝑡
𝑡0

𝑎(𝑠)𝑑𝑠 + ∫
𝑡

𝑡0

𝑏(𝑠)𝑒∫𝑡
𝑠 𝑎(𝑧)𝑑𝑧𝑑𝑠, for 𝑡 ∈ [𝑡0, 𝑡1] (1.22)

 

Proof. We apply the variation of constant method5. First, we consider the solution for the homo-
geneous equation, such that 𝑏(𝑡) = 0 for all 𝑡 ∈ T. Its solution is, using equation (1.20)

𝑦ℎ(𝑡, 𝑦𝐶) = 𝑦𝐶𝑒∫𝑡
𝑡0

𝑎(𝑠)𝑑𝑠.

  We expect the solution to problem (1.21) to be

𝑦(𝑡) = 𝑦ℎ(𝑡, 𝑦𝐶(𝑡)) = 𝑦𝐶(𝑡)𝑒∫𝑡
𝑡0

𝑎(𝑠)𝑑𝑠. (1.23)
5Due to Lagrange (1811).
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  Taking time derivatives of the last equation we get

̇𝑦 = ̇𝑦𝐶𝑒∫𝑡
𝑡0

𝑎(𝑠)𝑑𝑠 + 𝑦𝐶(𝑡)𝑎(𝑡)𝑒∫𝑡
𝑡0

𝑎(𝑠)𝑑𝑠

  which should be equal to equation (1.21). Equating the right-hand sides of both equations we
get the ODE

̇𝑦𝐶 = 𝑏(𝑡)𝑒− ∫𝑡
𝑡0

𝑎(𝑠)𝑑𝑠.

  Applying the separation of variables to solve this equation we find

𝑦𝐶(𝑡) = 𝑦𝐶(𝑡0) + ∫
𝑡

𝑡0

𝑏(𝑠)𝑒− ∫𝑠
𝑡0

𝑎(𝑧)𝑑𝑧𝑑𝑠.

  Substituting in equation (1.23) and because 𝑦𝐶(𝑡0) = 𝑦(𝑡0) = 𝑦0 we finally get solution (1.22)

In economics the following models are of interest:

Example 1 Consider the initial value problem

̇𝑦 = 𝑎𝑦 + 𝑏(𝑡), for 𝑡 ∈ [0, ∞)

  where 𝑎 ≠ 0 and

𝑏(𝑡) =
⎧{
⎨{⎩

𝑏0 if 0 ≤ 𝑡 < 𝑡∗

𝑏1 if 𝑡∗ ≤ 𝑡 < ∞
  and 𝑦(0) = 𝑦0 is given.

The solution is

𝑦(𝑡) =
⎧{
⎨{⎩

𝑦0𝑒𝑎𝑡 + 𝑏0
𝑎 (𝑒𝑎𝑡 − 1)   if 0 ≤ 𝑡 < 𝑡∗

𝑦0𝑒𝑎𝑡 + 𝑏0
𝑎 𝑒𝑎𝑡 + (𝑏1 − 𝑏0

𝑎  ) 𝑒𝑎(𝑡−𝑡∗) − 𝑏1
𝑎   if 𝑡∗ ≤ 𝑡 < ∞

 
Observe that the solution, at any point in time, is capitalizing on the past changes of the variable

𝑏(𝑡).

Example 2 Consider the terminal value problem

̇𝑦 = 𝑎𝑦 + 𝑏(𝑡), for 𝑡 ∈ [0, ∞)

  where 𝑎 > 0 and

𝑏(𝑡) =
⎧{
⎨{⎩

𝑏0 if 0 ≤ 𝑡 < 𝑡∗

𝑏1 if 𝑡∗ ≤ 𝑡 < ∞
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  and lim𝑡→∞ 𝑦(𝑡)𝑒−𝑎𝑡 = 0.
The solution for the problem is

𝑦(𝑡) =
⎧{
⎨{⎩

−𝑏0
𝑎   − (𝑏1 − 𝑏0

𝑎 )  𝑒𝑎(𝑡−𝑡∗)  if 0 ≤ 𝑡 < 𝑡∗

−𝑏1
𝑎 if 𝑡∗ ≤ 𝑡 < ∞

  Comparing to the initial-value problem we see that the solution has an anticipating feature: for
0 < 𝑡 < 𝑡∗ the solution depends on the value of the variable 𝑏(𝑡) after its change, 𝑏1, and after the
change, for 𝑡 ≥ 𝑡∗, it is not influenced by the value before the change, 𝑏0.

1.3.4 Economic applications

In economics, the following problem is common

̇𝑦 = 𝜆𝑦, lim
𝑡→∞

𝑦(𝑡)𝑒−𝜇𝑡 = 0 (1.24)

where T = [0, ∞), 0 ∈ Y and 𝜇 > 0.
To get the solution observe that

lim
𝑡→∞

𝑦(𝑡)𝑒−𝜇𝑡 = lim
𝑡→∞

𝑘𝑒(𝜆−𝜇)𝑡

then we have the following cases: (1) if 𝜆 ≥ 𝜇 > 0 then there is only one solution if 𝑘 = 0; if 𝜆 < 𝜇
then there is an infinity  of solutions, that is the terminal condition is met for any 𝑘 ∈ Y.

In economic models we use the following classification of variables and economic equilibrium

• pre-determined  and non-pre-determined  variables: the first are observed and the sec-
ond are anticipated, that is, we have information for 𝑡 = 0 for the first type of variables and
we have asymptotic information on the second type of variables;

• stationary or non-stationary variables if they converge to a constant or are unbounded
asymptotically (i.e., when 𝑡 → ∞);

• determinacy  or indeterminacy if an equilibrium or a state of the economy modelled by
a differential equation is unique or not

The relationship between them depends on the existence or not of a steady state and on their
stability properties, for states within set Y.

For instance

• if a variable is pre-determined the trajectory described by the solution is always determinate,
however, it can be stationary (if 𝜆 < 0) or non-stationary (if 𝜆 > 0). The first case is common
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in models with adaptative expectations, v.g. ̇𝑝 = 𝜆( ̄𝑝 − 𝑝), for 𝜆 > 0 and 𝑝 is the log of
price. The second case is common in endogenous growth models in which the GDP dynamics
is given by ̇𝑦 = 𝐴𝑦, where 𝑦 is GDP per capita;

• if a variable is non-predetermined the trajectory can be determinate if 𝑘 is determined uniquely
and is indeterminate if 𝑘 can be any value within set Y. For scalar models the solutions are
usually stationary if the terminal condition is of the type lim𝑡→∞ 𝑦(𝑡)𝑒−𝜇𝑡 = 0 for 𝜇 > 0.

Table 1.1 summarizes this concepts, used in dynamic general equilibrium models (DGE).

Table 1.1: Classification of equilibrium paths in DGE models

𝑦 𝜆 < 0 𝜆 = 0 𝜆 > 0
pre-determined determined and stable determined and stationary determined and non-stationary
non- pre-determined indeterminate ambiguous determined

1.4 References

Mathematics: there is a huge literature on scalar linear ODE, but (Hale and Koçak, 1991, ch 1) is
a great modern.

Applications to economics: Gandolfo (1997).
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