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Chapter 3

Linear ODE: planar case

3.1 Introduction

In this chapter we deal with planar linear equations, that is with systems of two independent
variables whose behavior is described by two coupled linear ODEs. Two other restrictions are
introduced: first, we assume that the independent variable is time and we only consider the au-
tonomous case, that is the case in which the coefficients in the system are constant, i.e., independent
of time.

As with the scalar equation, any planar linear ODE has one unique solution. This makes it
interesting per se because it allows a complete taxonomy of the types of solution trajectories that we
can find. However, as a consequence of the Grobman-Hartmann theorem (see chapter on non-linear
ODEs), it provides a qualitative characterization of a large number of non-linear planar systems.
It also allows to determine which types of dynamics we can find in non-linear systems which are
nor present in linear ones.

Furthermore, a large proportion of dynamic systems in economics are either linear or have a
dynamics which is topologically equivalent to a linear ODE. In particular, we will see that most
characterizations of the solution to optimal control problems are done by linearization, i.e., by
approximating unknown solutions by solutions provided by an equivalent linear ODE.

Planar ODEs feature some new types of dynamics, when compared to the scalar case: first,
although asymptotic stability and (global) instability cases can exist, as in the scalar case, the
existence of saddle point dynamics (or conditional stability) is a new type of dynamics for the
planar case; second in addition to monotonic solution paths, as in the scalar case, several types of
non-monotonic solution paths can exist in the planar case. The saddle-point case is a very common
type of dynamics in both macroeconomics and growth theory and charaterizes solutions of most
optimal control problems.

The general (autonomous) linear planar ordinary differential equation, that we will study
in this chapter, is defined as

̇𝑦1 = 𝑎11𝑦1 + 𝑎12𝑦2 + 𝑏1

̇𝑦2 = 𝑎21𝑦1 + 𝑎22𝑦2 + 𝑏2.

1
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  Introducing the real value matrix A ∈ ℝ2×2, the real valued vector B ∈ ℝ2×1

A ≡ (𝑎11 𝑎12
𝑎21 𝑎22

) , B ≡ (𝑏1
𝑏2

) .

the vector function y ∶ T → ℝ2 and its gradient ẏ ∶ T → ℝ2

y(𝑡) = (𝑦1(𝑡)
𝑦2(𝑡)) , ẏ(𝑡) ≡ ( ̇𝑦1(𝑡)

̇𝑦2(𝑡)) ,

we write the planar ODE in the equivalent matrix form,

ẏ = Ay + B, y ∶ T ⊆ ℝ+ → Y ⊆ ℝ2. (3.1)

Solutions to linear planar ODEs exist and are unique, and can be generically written as y(𝑡) =
ΦΦΦ(𝑡; 𝑡0, y(𝑡0); A, B).

We show that, if det (A) ≠ 0 they can be formally written as

 y(𝑡) = ȳ  + eA(𝑡−𝑡0) (y(𝑡0) − ̄𝑦) (3.2)

  where 𝑡0 is an arbitrarily fixed point in time and y(𝑡0) ∈ 𝑌 is the unknown value associated with
it, belonging to Y which is the range of y, and ȳ ∈ 𝑌 is a steady state (not necessarily unique) of
the ODE.

If det (A) = 0 they can be formally written as

 y(𝑡) = ȳ + eA(𝑡−𝑡0) (y(𝑡0) − ̄𝑦) + (I − A+ A) B 𝑡 (3.3)

  where ȳ  = −A+ B+(I−A+ A) y(𝑡0) is not unique, because it is a function of an arbitrary y(𝑡0),
and A+ is a generalized inverse of A.

The previous equation is also called a general solution, and traces out a family of solutions.
There are three main elements: first, the type of family of the solutions, which is related to their
time behavior, depends on the algebraic properties of matrix A; second, the location, and sometimes
the existence, of steady states depends on vector B; and the pair (𝑡0, y(𝑡0)) allows for going from an
ODE for a model, or a problem, involving an ODE by allowing the introduction of side conditions.

For scalar ODE’s we saw that going from general solutions to particular solutions, which are
completely specified functions, we have to introduce one side condition. When time is an indepen-
dent variable, the side condition took the form of an initial or a terminal condition. For planar
ODE’s obtaining particular solutions, or completely specified solutions, we need to introduce
two  side conditions. If the two side conditions involve known values at time 𝑡0 = 0, as y(𝑡0) = y0,
we say we have an initial-value problem, if there is one side condition for the initial value and
another for the terminal (if T is finite) or asymptotic (if T → ∞) the problem can be called mixed-
value problem, and if the two conditions are on the terminal or asymptotic state we can call it
terminal-value problem. 1 

1If the independent variable is not time the last two cases are usually called boundary-value problems.
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Solution to the ODE always exists and are unique, and solutions to problems involving ODEs
always existe but may not be unique.

In order to find and characterize the solutions for the ODEs, we can follow, separately or jointly,
the following types of approaches:

• an algebraic approach by determining explicitly the solutions;

• an analytical and geometrical approach by studying the existence and uniqueness of the
steady states and other particular types of solutions (v.g., periodic solutions) and study their
stability properties, and by building the phase diagram.

This chapter proceeds as follows. In section 3.2 we present some algebraic useful algebraic facts
on Jordan canonical forms and on the related matrix exponential function eA𝑡. In section ?? we
obtain the solutions to planar ODE’s, first for homogenous equations and next for non-homogenous
equations. In section 3.5 we characterize analytically and geometrically the types of solutions for
linear planar ODE’s. In section 3.7 we provide a present the bifurcation analysis for this type of
ODE’s which will be useful in the ensuing chapters.

The chapter ends with the solution to problems involving ODE’s and with comments on the
economic applications.

3.2 Matrix A and the matrix exponential function eA𝑡

In this section we review some results from linear algebra, in subsection 3.2.1. In subsection 3.2.2
we derive the expressions for eA𝑡.

3.2.1 The algebraic properties of matrix A and the Jordan canonical forms

Matrix A fundamentally determines the solution to differential equation (3.1) and allows for the
characterization of its dynamics.

A fundamental result is that any matrix A is similar to one of the following three matrices,
called the Jordan canonical forms2 

ΛΛΛ1 = (𝜆− 0
0 𝜆+

) , ΛΛΛ2 = (𝜆 1
0 𝜆) , or ΛΛΛ3 = ( 𝛼 𝛽

−𝛽 𝛼) . (3.4)

 
Two matrices are similar if they have the same spectrum. The spectrum of matrix A is a tuple

belonging to ℂ2 (the space of two-dimensional complex numbers)

 𝜎(A) = {𝜆 ∈ ℂ2 ∶ det (A − 𝜆 I) = 0}. 

  where I is the (2 × 2) identity matrix and

A ≡ (𝑎11 𝑎12
𝑎21 𝑎22

) , and I ≡ (1 0
0 1) .

2See the appendix 3.A.1 where we gather some useful results from matrix algebra.
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  The elements of 𝜎(A) are called the eigenvalues of A. The characteristic polynomial associated
to matrix A is the square polynomial in 𝜆

det (A − 𝜆 I) = 𝜆2 − trace(A)  𝜆 + det (A),

  the trace and the determinant are

trace(A)  = 𝑎11 + 𝑎22, and det (A)  = 𝑎11 𝑎22 − 𝑎12 𝑎21.

  Equation det (A − 𝜆 I) = 0 is called characteristic equation. The eigenvalues are the solutions of
the characteristic equation:

𝜆− = trace(A)
2 − √Δ(A), 𝜆+ = trace(A)

2 + √Δ(A) (3.5)

  where Δ(A) ≡ (trace(A)
2 )

2
− det (A) is called the discriminant of A.

From equation (3.5), three types of distinctions can be made concerning the properties of the
eigenvalues (see Figure 3.1):

First, the two eigenvalues are real if Δ(A) ≥ 0 and they are complex conjugate if Δ(A) < 0.
In particular, if Δ(A) > 0 the eigenvalues are real and distinct and satisfy 𝜆− < 𝜆+, if Δ(A) = 0
the eigenvalues are real and multiple and satisfy 𝜆 = 𝜆− = 𝜆+ = trace(A)

2 , and if Δ(A) < 0 they
are complex conjugate and satisfy

𝜆± = 𝛼 ± 𝛽 𝑖, for 𝑖 ≡
√

−1

  where 𝛼 = trace(A)
2 and 𝛽 = √|Δ(A)|.

Second, the eigenvalues are generic in the sense that they will not change their type or sign
for small changes in the elements of the coefficient matrix A if Δ(A) ≠ 0, or det (A)  ≠ 0, or
trace(A) ≠ 0 and det (A)  ≥ 0, and they are not generic otherwise, that is if Δ(A) = 0, or
det (A)  = 0, or trace(A) = 0 and det (A)  ≥ 0.

In particular, if Δ(A) > 0 and trace(A) > 0 the two eigenvalues have positive real parts, if
Δ(A) > 0 and trace(A) < 0 the two eigenvalues have negative real parts and if Δ(A) < 0 the
two eigenvalues are real and symmetric signs (that is 𝜆− < 0 < 𝜆+). The following non-generic
cases include: the case Δ(A) = 0 in which the two eigenvalues are equal and have the same sign as
trace(A); the case det (A)  = 0 in which the eigenvalues are real and at least one of them is equal
to zero; the case det (A)  = 0 and trace(A) > 0 in which the eigenvalues are complex conjugate
with zero real part, and if trace(A) = det (A)  = 0 in which the two eigenvalues are both equal to
zero.

Figure 3.1, that we call a bifurcation diagram 3  for the linear planar ODE shows all the
possible relevant cases, in which there are five generic cases (corresponding to two-dimensional
subsets) , five non-degenerate cases of co-dimension-one cases (corresponding to lines) and one
co-dimension-two case (the origin).

3This designation will be made clear in the chapter where we deal with non-linear ODE’s
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detA

tr(A)

∆(A)=0 ∆(A)=0

λ− < 0 < λ+

λ− < λ+ < 0 0 < λ− < λ+

α± β i (α < 0) α± β i (α > 0)

±β i

λ− < 0 = λ+ λ− = 0 < λ+

λ− = λ+ < 0 λ− = λ+ > 0

λ− = λ+ = 0

Figure 3.1: Bifurcation diagram for the linear planar ODE in (trace(A), det (A)). The gray area
corresponds to the existence of complex conjugate eigenvalues.

There is a useful relating the coefficients of the characteristic equation with elementary opera-
tions between the eigenvalues of any matrix A:

𝜆− + 𝜆+ = trace(A), 𝜆− 𝜆+ = det (A). (3.6)

There is a close relationship between the discriminant of A and the the Jordan canonical form
which is similar to A4, which can be call the Jordan canonical form of A,  

Lemma 1. Jordan canonical form of a matrix A The Jordan canonical form of A is deter-
mined by the sign of Δ(A): if Δ(A) > 0 then the Jordan canonical form of A is ΛΛΛ1 if, if Δ(A) = 0
the Jordan canonical of A is ΛΛΛ2, and if Δ(A) < 0 the Jordan canonical form of A is ΛΛΛ3.

Given any matrix A and its canonical Jordan form in equation (3.4) fundamental theorem of
Algebra proves that there is a (non-singular) linear operator P ∈ ℝ2×2 such that the following
relationship holds

A = PΛΛΛ P−1 ⇔ ΛΛΛ = P−1 A P. (3.7)

Matrix P is called the eigenvector matrix  associated to matrix A.
The fact that any matrix A has a one-to-one relationship with one of the Jordan canonical

forms allows us to reduce the determination of the general solution of a planar ODE to the cases
involving a Jordan canonical form, and then using back the operator P.

4See the appendix 3.A.1.
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3.2.2 The matrix exponential function

 
We saw that the (general) solution of the scalar homogeneous equation ̇𝑦 = 𝜆𝑦 was 𝑦(𝑡) =

𝑦(0) 𝑒𝜆𝑡 where 𝑦(0) is an arbitrary element of 𝑌 ⊆ ℝ for 𝑡 = 0. Recall that the exponential function
has the series representation

𝑒𝜆𝑡 ≡
∞

∑
𝑛=0

(𝜆𝑡)𝑛

𝑛! = 1 + 𝜆𝑡 + 1
2 (𝜆𝑡)2 + 1

6 (𝜆𝑡)3 + …

For the planar problem we can also define a matrix exponential function

eA𝑡 ≡
+∞
∑
𝑛=0

1
𝑛!A

𝑛𝑡𝑛 = 𝐼 + A𝑡 + 1
2 A2𝑡2 + … (3.8)

which is a mapping eA𝑡 ∶ T  → ℝ2×2 with the following properties:

Lemma 2. Properties of matrix exponentials eAt.

(i) semigroup property: eA(t+s) = eAteA𝑠

(ii) inverse of the matrix exponencial is the the exponential of the inverse: (eAt)−1 = e−At

(iii) the time derivative commutes: 𝑑
𝑑𝑡eAt = AeAt = eAtA

(iv) if matrices A and B commute, (i.e., if A B = B A) then e(A+B)t = eAteBt

(v) Let P be a non-singular and square matrix. Then eP−1APt = P−1eAtP.

From Lemma 2 (v) as P−1AP = ΛΛΛ then eΛΛΛ𝑡 = eP−1AP𝑡  = P−1eA𝑡P or, equivalently

eAt = PeΛΛΛ𝑡P−1,

  where ΛΛΛ is the Jordan canonical of A.
Therefore, given any matrix A, the exponential matrix eAt if a (2 × 2) dimensional function

of 𝑡, and the time-dependency is determined a linear transformation of the matrix exponential of
Jordan canonical of A, eΛΛΛ𝑡.

This is an important result which means that the types of solutions, and the associated phase
diagrams, can be completely enumerated.

The exponential matrices for the Jordan canonical forms are:

Lemma 3. Matrix exponentials for the Jordan canonical forms, e�t

Let ΛΛΛ be a matrix in an arbitrary Jordan canonical form as in equation (3.4) and let 𝜆−, 𝜆+, 𝜆, 𝛼
and 𝛽. be real numbers. Then,
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• If ΛΛΛ = ΛΛΛ1 then

 eΛΛΛ𝑡 = eΛΛΛ1𝑡 = (𝑒𝜆−𝑡 0
0 𝑒𝜆+𝑡) . (3.9)

• If ΛΛΛ = ΛΛΛ2 then

 eΛΛΛ𝑡 = eΛΛΛ2𝑡 = 𝑒𝜆𝑡 (1 𝑡
0 1) . (3.10)

• If ΛΛΛ = ΛΛΛ3 then

 eΛΛΛ𝑡 = eΛΛΛ3𝑡 = 𝑒𝛼𝑡 ( cos 𝛽𝑡 sin 𝛽𝑡
− sin 𝛽𝑡 cos 𝛽𝑡) . (3.11)

Proof. Consider the definition of matrix exponential, equation (3.8) and the Jordan canonical form
matrices in equation (3.4). In the first case, we have

eΛΛΛ1𝑡  = I2 + ΛΛΛ1𝑡 + 1
2 (ΛΛΛ1)2𝑡2 + … = (1 0

0 1) + (𝜆−𝑡 0
0 𝜆+𝑡) + 1

2  (𝜆2
−𝑡2 0
0 𝜆2

+𝑡2) + …

  then, performing the matrix additions,

eΛΛΛ1𝑡  = (1 + 𝜆−𝑡 + 1
2𝜆2

−𝑡2 + … 0
0 1 + 𝜆+𝑡 + 1

2𝜆2
+𝑡2 + …) = (𝑒𝜆−𝑡 0

0 𝑒𝜆+𝑡)

because 𝑒𝑦 = ∑+∞
𝑛=0

1
𝑛!𝑦𝑛. That result is straightforward to obtain because the Jordan matrix is

diagonal. This is not the case for Jordan matrix ΛΛΛ2, though. But if we decompose ΛΛΛ2 as

 ΛΛΛ2 = ΛΛΛ2,1 + ΛΛΛ2,2  = (𝜆 0
0 𝜆) + (0 1

0 0)

and because the two matrices commute, i.e. ΛΛΛ2,1ΛΛΛ2,2 = ΛΛΛ2,2ΛΛΛ2,1, then applying property (iv) of
Lemma 2 we obtain

eΛΛΛ2𝑡 = e(ΛΛΛ2,1+ΛΛΛ2,2)𝑡 = eΛΛΛ2,1𝑡 eΛΛΛ2,2𝑡

  where

eΛΛΛ2,1𝑡  = (𝑒𝜆𝑡 0
0 𝑒𝜆𝑡) = 𝑒𝜆𝑡I2.

  Using again formula (3.8) for matrix ΛΛΛ2,2 we get

eΛΛΛ2,2𝑡  = (1 0
0 1) + (0 𝑡

0 0) + 𝑡2

2   (0 0
0 0) + …   = (1 𝑡

0 1)

therefore multiplying by matrix eΛΛΛ2,1𝑡 yields (3.10).
In the third case, ΛΛΛ3 is again non-diagonal, but it can also be decomposed into the sum of two

matrices, ΛΛΛ3,1 and ΛΛΛ3,2, that commute

ΛΛΛ3 = ΛΛΛ3,1  + ΛΛΛ3,2 = (𝛼 0
0 𝛼) + ( 0 𝛽

−𝛽 0) .
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  Applying again property (iv) of Lemma 2 we get

eΛΛΛ3𝑡  = eΛΛΛ3,1𝑡 eΛΛΛ3,2𝑡,

  where

eΛΛΛ3,1𝑡 = 𝑒𝛼𝑡 (1 0
0 1) .

  Using again formula (3.8) for matrix ΛΛΛ3,2 we get

eΛΛΛ3,2𝑡 = (1 0
0 1) + ( 0 𝛽𝑡

−𝛽𝑡 0 ) + 𝑡2

2   (𝛽2𝑡2 0
0 −𝛽2𝑡2) + …   = ( cos 𝛽𝑡 sin 𝛽𝑡

− sin 𝛽𝑡 cos 𝛽𝑡) ,

  because sin 𝑦 = ∑+∞
𝑛=0

𝑦2𝑛+1

(2𝑛 + 1) and cos 𝑦 = ∑+∞
𝑛=0

𝑦2𝑛

(2𝑛), we get (3.11).

In the literature, there are two matrices that can we can call non-canonical:

A𝑑 ≡ ( 𝜆 0
0 𝜆) , or Aℎ ≡ ( 𝛼 𝛽

𝛽 𝛼) (3.12)

where 𝜆, 𝛼 and 𝛽 are real numbers. In the case of A𝑑 there are multiple eigenvalues, both equal
to 𝜆 although the matrix is not of the form ΛΛΛ2, and in the case of Aℎ the spectrum is 𝜎(Aℎ) =
{ 𝛼 + 𝛽, 𝛼 − 𝛽} which are two real numbers.

Lemma 4. If A is in the non-canonical form A𝑑, in equation (3.12), then

eA𝑑𝑡 = 𝑒𝜆𝑡 (1  0
0 1)

 

1. if A is in the non-canonical form Aℎ, in equation (3.12), then 5

eAℎ𝑡 = 𝑒𝛼 𝑡 (cosh (𝛽 𝑡)  sinh (𝛽 𝑡) 
sinh (𝛽 𝑡)  cosh (𝛽 𝑡) ) (3.13)

 

Proof. We know that A = PΛΛΛP−1, where ΛΛΛ is the Jordan form of A. Then eAt  = eP𝛬𝛬𝛬P−1t =
Pe�tP−1 by property (v) of Lemma 2. Matrix A = A𝑑 has two equal real eigenvalues equal to 𝜆
and, because it is diagonal it satisfies A𝑑 P𝑑 = P𝑑 A𝑑. Therefore P𝑑 = I and

eA𝑑𝑡 = P 𝑒𝜆𝑡 I P−1 = 𝑒𝜆𝑡 I.

Matrix A = Aℎ has the real spectrum 𝜎 = { 𝛼 + 𝛽, 𝛼 − 𝛽} and has eigenvector matrix

Pℎ = (1 −1
1 1 )

5Recall cosh (𝛽 𝑡)  = 1
2 (𝑒𝛽𝑡 + 𝑒−𝛽𝑡) and sinh (𝛽 𝑡)  = 1

2 (𝑒𝛽𝑡 − 𝑒−𝛽𝑡)
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  Therefore, the exponential matrix is

eAℎ𝑡 = (1 −1
1 1 ) (𝑒(𝛼+𝛽)𝑡 0

0 𝑒(𝛼+𝛽)𝑡) (1 −1
1 1 )

−1

  which, expanding the matrix multiplication, yields matrix (3.13).

We start by presenting, in section 3.3, the cases in which A = ΛΛΛ and in 3.4 the cases in
which matrix A is not in the Joerdan canonical form. We will see that the first case provides the
fundamental types of dynamic systems generated by planar linear ODE’s.

3.3 ODE with Jordan coefficients

The most simple type of planar ODEs is one in which the coefficient matrix A is in a Jordan
canonical form

ẏ = ΛΛΛy + B (3.14)

which covers the following cases

⎧{
⎨{⎩

  ̇𝑦1 = 𝜆− 𝑦1 + 𝑏1,
̇𝑦2 = 𝜆+ 𝑦2 + 𝑏2,

,
⎧{
⎨{⎩

  ̇𝑦1 = 𝜆 𝑦1 + 𝑦2 + 𝑏1,
̇𝑦2 = 𝜆 𝑦2 + 𝑏2,

, and
⎧{
⎨{⎩

  ̇𝑦1 = 𝛼 𝑦1 + 𝛽 𝑦2 + 𝑏1,
̇𝑦2 = −𝛽 𝑦1 + 𝛼 𝑦2 + 𝑏2

,

in which all the coefficients are real numbers and 𝑏1 and 𝑏2 can be any real number, including
B = 0.   We first find the solution for the homogenous ODE which satisfies B = 0:

Proposition 1. Solution for the homogenous ODE (3.14) for B = 0 Consider the ODE
(3.14) with B = 0. The solution always exist and is uniquely represented by the mapping ΦΦΦ ∶
T  × Y → Y ⊆ ℝ2,

y(𝑡) = ΦΦΦ(𝑡, y(0)) ≡ eΛΛΛ 𝑡y(0), for 𝑡 ∈ T = [0, ∞) (3.15)

where y(0) ∈ Y is an arbitrary element of the domain of y for 𝑡 = 0.

Proof. Conjecture that the solution is y(𝑡) = eΛΛΛ 𝑡y(0) for an arbitrary value of y(𝑡) when 𝑡 = 0. To
prove that this function satisfies ODE (3.14) we take a time derivative to find (from Lemma 2 (iii)

𝑑
𝑑𝑡y(𝑡) = 𝑑

𝑑𝑡eΛΛΛ 𝑡y(0) = ΛΛΛ eΛΛΛ 𝑡y(0) = ΛΛΛ y(𝑡).

 

The (general) solution of equation (3.14), y(𝑡) = ΦΦΦ(𝑡, y(0)) can take one of the following three
forms, where y(0) is an arbitrary value for y at time 𝑡 = 0:

1. if Λ = ΛΛΛ1 then the solution is similar to the solution for two coupled scalar ODE’s

y(𝑡) = (𝑒𝜆−𝑡 0
0 𝑒𝜆+𝑡) (𝑦1(0)

𝑦2(0))   = (𝑦1(0) 𝑒𝜆−𝑡

𝑦2(0) 𝑒𝜆+𝑡) (3.16)
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2. if Λ = ΛΛΛ2 then the type of solution is new to planar ODE’s

y(𝑡) = (𝑒𝜆𝑡 𝑡
0 𝑒𝜆𝑡) (𝑦1(0)

𝑦2(0))   = 𝑒𝜆𝑡 (𝑦1(0) + 𝑦2(0) 𝑡
𝑦2(0) ) (3.17)

3. or, if Λ = ΛΛΛ3 then we have again a new type of solution

y(𝑡) = 𝑒𝛼𝑡 ( cos 𝛽𝑡 sin 𝛽𝑡
− sin 𝛽𝑡 cos 𝛽𝑡) (𝑦1(0)

𝑦2(0)) = 𝑒𝛼𝑡 ( 𝑦1(0) cos 𝛽𝑡 + 𝑦2(0) sin 𝛽𝑡
−𝑦1(0) sin 𝛽𝑡 + 𝑦2(0) cos 𝛽𝑡) (3.18)

Now let B ≠ 0 in the planar ODE (3.14), which becomes a non-homogenous ODE. To study
this equation it is useful to consider its steady states.

The set of steady states of equation (3.14) is the set of elements of the range of y, Y such
that

ȳ  = {y ∈ Y ∶ ΛΛΛy + B = 0}. 

  Next we show that this set is non-empty, meaning steady-states always exist, but it may contain
several elements, meaning that steady-states may not be unique.

Lemma 5. A steady state (not necessarily unique) always exists such that

ȳ  = −ΛΛΛ+ B + (I − ΛΛΛ+ ΛΛΛ) y(0) (3.19)

where ΛΛΛ+ is the Moore-Penrose inverse of ΛΛΛ and y(0) is an arbitrary element of 𝑌 .

Proof. See (Magnus and Neudecker, 1988, p36).

The following cases are possible.
Non-degenerate case If det (ΛΛΛ) ≠ 0 then the Moore-Penrose inverse is the classical inverse,

that is ΛΛΛ+ = ΛΛΛ−1 which satisfies ΛΛΛ−1 ΛΛΛ = I. Thus, from equation (3.19), the steady state is unique
and it is

ȳ = −ΛΛΛ−1 B,

  is independent of the value of y(0). If B = 0 then the steady state is ȳ  = 0.
Degenerate cases If det (ΛΛΛ) = 0 then Δ(ΛΛΛ) > 0. Then all the eigenvalues are real, which

means that the Jordan matrix ΛΛΛ is diagonal, and it has at least one eigenvalue which is equal to
zero. There is one zero eigenvalue if trace(A) ≠ 0 and two zero eigenvalues if trace(A) = 0. This
means that the associated Jordan matrices can be

ΛΛΛ ∈ {  (𝜆− 0
0 0) , (0 0

0 𝜆+
) , (0 0

0 0) }  (3.20)

and the associated Moore-Penrose inverses are

 ΛΛΛ+ ∈ {  ⎛⎜
⎝

1
𝜆−

  0
0 0

⎞⎟
⎠

, ⎛⎜
⎝

0 0
0 1

𝜆+

⎞⎟
⎠

, (0 0
0 0) }. (3.21)
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  Therefore, substituting those matrices in equation (3.19) we find

I − ΛΛΛ+ ΛΛΛ ∈ {  (0 0
0 1) , (1 0

0 0) , (1 0
0 1) } 

  and there is always an infinite number of steady states depending on the arbitrary element y(0).
If trace(A) ≠ 0, for the two first cases, applying equation (3.19), we find the steady states are in
infinite number,

ȳ  = ⎛⎜
⎝

− 𝑏1
𝜆−

𝑦2(0)
⎞⎟
⎠

, or ȳ  = ⎛⎜⎜
⎝

𝑦1(0)
− 𝑏2

𝜆+

⎞⎟⎟
⎠

. (3.22)

  In both cases the steady states belong to a one-dimensional manifold in Y: in the first case it
traces out a line such that 𝑦1 = − 𝑏1

𝜆−
(a vertical line in a Cartesian diagram) and in the second

such that 𝑦2 = − 𝑏2
𝜆+

(a horizontal line in a Cartesian diagram).

If trace(ΛΛΛ) = 0 there is also an infinite number of steady states

̄𝑦 = (𝑦1(0)
𝑦2(0)) , (3.23)

  which in this case any point in the two-dimensional set (surface) Y is a steady state.
Therefore, a steady state always exists, it is unique if det (ΛΛΛ) ≠ 0 and there is in infinite number

if det (ΛΛΛ) = 0.
Next, we obtain a general form for the solution of ODE (3.14), for any matrices ΛΛΛ and B.

Proposition 2. Solution for the non-homogenous ODE (3.14) Consider the ODE (3.14) for
an arbitrary real vector B ∈ R2. The solution to the ODE always exist and is uniquely given by

y(𝑡) = ȳ +  eΛΛΛ 𝑡 (y(0) − ȳ) + (I − ΛΛΛ+ ΛΛΛ) B 𝑡, for 𝑡 ∈ T = [0, ∞) (3.24)

where y(0) is an arbitrary element of Y for 𝑡 = 0 and ȳ is the corresponding steady state as in
equation (3.19).

Proof. We start with the case in which det (ΛΛΛ)  ≠ 0. Then again, matrix ΛΛΛ has a unique classical
inverse, ΛΛΛ+ = ΛΛΛ−1, which implies that ȳ = −ΛΛΛ−1 B and I −ΛΛΛ+ΛΛΛ = 0. Define z(𝑡) = y(𝑡)− ̄𝑦 where
y is given in equation (3.19). Then ̇𝑧 = ̇𝑦 = ΛΛΛ y + B = ΛΛΛ (y −  ȳ ) = ΛΛΛ z, yields a homogenous
ODE ̇z = ΛΛΛ z, whose solution is, from equation (3.15), z(𝑡) = 𝑒ΛΛΛ𝑡z(0). Going back to the original
variables we have

y(𝑡) = ȳ + 𝑒ΛΛΛ𝑡 (y(0) − ȳ).

   If det (A) = 0 the coefficient matrix itakes one of the forms in equation (3.20). Therefore, the
ODE’s can take one of the following forms

⎧{
⎨{⎩

̇𝑦1 = 𝜆− 𝑦1 + 𝑏1

̇𝑦2 = 𝑏2  
or 

⎧{
⎨{⎩

̇𝑦1 = 𝑏1

̇𝑦2 = 𝜆+ 𝑦2 + 𝑏2  
or 

⎧{
⎨{⎩

̇𝑦1 = 𝑏1

̇𝑦2 = 𝑏2.  
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  Using the results for the scalar ODE, the solutions are

⎧{
⎨{⎩

𝑦1(𝑡) = − 𝑏1
𝜆−

  + 𝑒𝜆−𝑡 (𝑦1(0) + 𝑏1
𝜆−

)

𝑦2(𝑡) = 𝑦2(0) + 𝑏2𝑡  
or 

⎧{
⎨{⎩

𝑦1(𝑡) = 𝑦1(0) + 𝑏1𝑡
𝑦2(𝑡) = − 𝑏2

𝜆+
+ 𝑒𝜆+𝑡 (𝑦2(0) + 𝑏2

𝜆+
)

or 
⎧{
⎨{⎩

𝑦1(𝑡) = 𝑦1(0) + 𝑏1𝑡
𝑦2(𝑡) = 𝑦1(0) + 𝑏1𝑡.  

  If we consider: first, that the steady states in the first and second cases are the same we obtained
in equation for the first two cases (3.22) and (3.23) for the third case; second, that the exponential
equations are, respectively

(𝑒𝜆−𝑡 0
0 1) , (1 0

0 𝑒𝜆+𝑡) , or (1 0
0 1) ;

  and, at last, their Jordan matrices in equation (3.20), their Moore-Penrose inverses in in equation
(3.21), we see that equation (3.24) covers all cases.

3.4 ODE with general coefficients

In this section we solve the general planar ODE

ẏ = Ay + B (3.25)

where matrix A is not in the Jordan canonical form and B can be any real vector. This covers
both the homogenous case in which B = 0 and the non-homogeneous case in which B ≠ 0.

We start by presenting an useful result

Lemma 6. Consider the coefficient matrix A and let P and ΛΛΛ be its associated eigenvector matrix
and Jordan canonical form. Then, the ODE (3.25) with general coefficient matrix A can be
transformed into an ODE with coefficient matrix 𝑚𝐿

y(𝑡) = P w(𝑡) (3.26)

  where P is the eigenvector matrix associated to A and w(𝑡) is the solution of the ODE

ẇ = ΛΛΛ w + P−1 B (3.27)

Proof. Recall the transformation A = PΛΛΛ P−1 where matrix P is non-singular. Then we can
introduce a unique linear transformation w(𝑡) = P−1y(𝑡). Then

ẇ = P−1ẏ = P−1 (Ay + B) = ΛΛΛP−1y + P−1B = ΛΛΛw + P−1B.
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Lemma 7. The solution to the ODE transformed coordinates w, equation (3.27) is

w(𝑡) = w̄  + eΛΛΛ𝑡(w(0) − w̄) + (I − ΛΛΛ+ ΛΛΛ) P−1 B 𝑡 (3.28)

  where
w̄  = −ΛΛΛ+ P−1 B + (I − ΛΛΛ+ ΛΛΛ) w(0)

  and w(0) = P−1 y(0).
Proof. ODE (3.27) is a non-homogeneous ODE in which the coefficient matrix is in the Jordan
canonical form. Comparing with equation (3.14) we find that instead of B we now have P−1B. By
performing this substitution in the solution to the last ODE, in equation (3.24) we find the solution
of the transformed ODE in equation (3.28).

Proposition 3. Steady state for the non-homogenous ODE (3.25) Steady states for equation
(3.25) exist and are given by

 ȳ = −A+ B + (I − A+ A) y(0), (3.29)

where A+ A = PΛΛΛ+ ΛΛΛ P−1.

Proof. Multiplying equation (3.26) by P we get

ȳ  = P w̄
= −PΛΛΛ+ P−1 B + P(I − ΛΛΛ+ ΛΛΛ) w(0)
= −𝐴+ B + P(I − ΛΛΛ+ ΛΛΛ) P−1 𝑦(0)
= −𝐴+B + (P P−1 − PΛΛΛ+ ΛΛΛ P−1 ) y(0)
= −𝐴+B + (I − A+ P P−1  A) y(0)
= −𝐴+B + (I − A+  A) y(0)

 

The general solution to equation (3.25) exists and is uniquely given by the next result.

Proposition 4. Solution for the non-homogenous ODE (3.25) Consider the ODE (3.25) for
any matrix A ∈ ℝ2×2 and vector B ∈ ℝ2. The solution to the ODE always exist and is uniquely
given by

y(𝑡) = ȳ +  eA 𝑡 (y(0) − ȳ) + (I − A+ A) B 𝑡, for 𝑡 ∈ T = [0, ∞) (3.30)

where the steady state ȳ is given in equation (3.29), and y(0) is an arbitrary element of Y for 𝑡 = 0.

Proof. Multiplying equation (3.26) by P we get the inverse transformation y(𝑡) = P w(𝑡). Using
the solution for the transformed variables in equation (3.28) we get

𝑦(𝑡) = P w̄ + PeΛΛΛ𝑡(w(0) − w̄) + P(I − ΛΛΛ+ ΛΛΛ) P−1 B 𝑡
= ȳ  + PeΛΛΛ𝑡P−1(y(0) − ȳ) + P(I − ΛΛΛ+ ΛΛΛ) P−1 B 𝑡
= ȳ + 𝑒A𝑡(y(0) − ȳ) + (I − PΛΛΛ+ ΛΛΛ P−1 ) B 𝑡

  which gives equation (3.30).

This general result is consistent with several cases for a general B matrix.
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3.4.1 Non-degenerate ODE’s

 
Next we present the specific forms for the ODE (3.25) in which det (A)  ≠ 0
If det (A)  ≠ 0 then A+ = A−1 then there is a unique steady state

̄𝑦 = A−1 B.

  Expanding the previous formula, we have

( ̄𝑦1
̄𝑦2
) = − 1

det (A)   ( 𝑎22 𝑏1 − 𝑎12 𝑏2
−𝑎21 𝑏1 − 𝑎11 𝑏2

) .

  Remembering that eA𝑡 = P eΛΛΛ𝑡 P−1, where eΛΛΛ𝑡 is the matrix exponential of the Jordan canonical
form which is similar to A, then the solution to the ODE, in equation (3.30), can be written as

y(𝑡) = y + P eΛΛΛ𝑡 k

where k = P−1(y(0) − ȳ), expanding

(𝑘1
𝑘2

) = 1
det (P)   ( 𝑃 +

2 −𝑃 +
1

−𝑃 −
2 𝑃 −

1
) (𝑦1(0) − 𝑦1

𝑦2(0) − 𝑦2
) .

in which y(0) is an arbitrary element of Y at time 𝑡 = 0.
Then the solution may be expanded in the following forms, by determining the eigenvalues as

in

1. If Δ(A) > 0 then the Jordan canonical form of matrix A is ΛΛΛ1. The general solution is

y(𝑡) = y + 𝑘1𝑒𝜆−𝑡P− + 𝑘2𝑒𝜆+𝑡P+

where P− (P+) is the simple eigenvector associated with 𝜆− (𝜆+), or, equivalently

( 𝑦1(𝑡)
𝑦2(𝑡) ) = (𝑦1

𝑦2
) + 𝑘1𝑒𝜆−𝑡  (𝑃 −

1
𝑃 −

2
) + 𝑘2𝑒𝜆+𝑡  (𝑃 +

1
𝑃 +

2
)

2. If Δ(A) > 0 then the Jordan canonical form of matrix A is ΛΛΛ2. The general solution is

y(𝑡) = y + 𝑒𝜆𝑡 (P1(𝑘1 + 𝑘2𝑡) + 𝑘2P2)

where P1 is a simple eigenvector and P2 is a generalized eigenvector (see the Appendix), or,
equivalently

(𝑦1(𝑡)
𝑦2(𝑡)) = (𝑦1

𝑦2
) + 𝑒𝜆𝑡 ((𝑘1 + 𝑘2𝑡)  (𝑃 −

1
𝑃 −

2
) + 𝑘2  (𝑃 +

1
𝑃 +

2
))
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3. If Δ(A) < 0 then the Jordan canonical form of matrix A is ΛΛΛ3. The general solution is

y(𝑡) = y + 𝑒𝛼𝑡 ((𝑘1 cos 𝛽𝑡 + 𝑘2 sin 𝛽𝑡)P1 + (𝑘2 cos 𝛽𝑡 − 𝑘1 sin 𝛽𝑡)P2) =
= 𝑦 + 𝑒𝛼𝑡 (𝑘1(cos 𝛽𝑡P1 − sin 𝛽𝑡P2) + 𝑘2(sin 𝛽𝑡P1 + cos 𝛽𝑡P2)) .

where P is a eigenvector (see the Appendix for the determination of the eigenvector matrix
in the case in which the eigenvectors are complex) or, equivalently,

( 𝑦1(𝑡)
𝑦2(𝑡) ) = (𝑦1

𝑦2
) + 𝑒𝛼𝑡 ( 𝑘1 (𝑃 1

1 cos 𝛽𝑡 − 𝑃 2
1 sin 𝛽𝑡

𝑃 1
2 cos 𝛽𝑡 − 𝑃 2

2 sin 𝛽𝑡) +  𝑘2 (𝑃 1
1 sin 𝛽𝑡 + 𝑃 2

1 cos 𝛽𝑡
𝑃 1

2 sin 𝛽𝑡 + 𝑃 2
2 cos 𝛽𝑡)) .

3.4.2 Degenerate cases

Degenerate cases occur for det (A)  = 0 implying that A+ ≠ A−1 and that the Jordan canonical
form is diagonal (i.e, of type ΛΛΛ1 in which one or two of the eigenvalues are equal to zero).

As A = PΛΛΛ P−1 then A+ = PΛΛΛ+ P−1 and A+ A = PΛΛΛ+ P−1 PΛΛΛ P−1 = PΛΛΛ+ ΛΛΛ P−1 where
ΛΛΛ is one of the Jordan forms in equation (3.20) and ΛΛΛ+ is the associated the Moore-Penrose in
equation (3.21), depending on the trace being trace(A) ≠ 0 or trace(A) = 0.

First observe that (3.30) can be expanded as

y(𝑡) = −PΛΛΛ+ P−1 B +  eA 𝑡 (y(0) + PΛΛΛ+ P−1 B) + (I − PΛΛΛ+ ΛΛΛ P−1) B 𝑡,

  where we can see that there are some components which are independent from the particular
Jordan form in equation (3.20) and others which depend on the particular Jordan form.

For the first case we have B̃ = P−1 B and w(0) = P−1 y(0), and write their expansion as

B̃ = (𝑏̃−
𝑏̃+

)   = 1
det (P) (−𝑃 −

2 𝑏1 + 𝑃 −
1 𝑏2

𝑃 +
2 𝑏1 − 𝑃 +

1 𝑏2
)

  and

w(0) = (𝑤−(0)
𝑤+(0))   = 1

det (P) (−𝑃 −
2 𝑦1(0) + 𝑃 −

1 𝑦2(0)
𝑃 +

2 𝑦1(0) − 𝑃 +
1 𝑦2(0) )

  For the second case we have, if 𝜆− < 0 = 𝜆+,

I − PΛΛΛ+ ΛΛΛ P−1 = 1
det (P) (−𝑃 −

2 𝑃 +
1 𝑃 −

1 𝑃 +
1

−𝑃 −
2 𝑃 +

2 𝑃 −
1 𝑃 +

2
)

  for the case in which 𝜆− = 0 < 𝜆+ we have

I − PΛΛΛ+ ΛΛΛ P−1 = 1
det (P) (𝑃 +

2 𝑃 −
1 −𝑃 +

1 𝑃 −
1

𝑃 +
2 𝑃 −

2 −𝑃 +
1 𝑃 −

2
)

  and for 𝜆− = 𝜆+ = 0 we have I − PΛΛΛ+ ΛΛΛ P−1 = I.
Therefore the solutions become
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1.

y(𝑡) = P+𝑤+(0) − P− 𝑏̃−
𝜆−

+ (𝑃 −
1 𝑒𝜆−𝑡

𝑃 −
2

) (𝑤−(0) +  
̃𝑏−

𝜆−
) − P+ ̃𝑏+ 

 

2. for 𝜆− = 𝜆+ = 0

y(𝑡) = P−𝑤−(0) − P+ 𝑏̃+
𝜆+

+ ( 𝑃 +
1

𝑃 +
2 𝑒𝜆+𝑡) (𝑤+(0) +  

̃𝑏+
𝜆+

) − P− ̃𝑏− 

 

From this point on I will post a revised version soon. 

3.5 Characterizing solutions to linear planar ODEs

3.5.1 solutions when A is a Jordan normal form

Characterizing the possible dynamics for coefficient matrix in one of the canonical forms is necessary
if matrix A is in a Jordan canonical form and it is useful if the coefficient matrix is not in a Jordan
canonical form. This is because an implication of Lemma 6 is that the time dependency of the
solution results from the dynamics of the associated canonical form. Furthermore, this means that
the number of cases to analyse can be explicitly enumerated.

We consider next the homogeneous ODE

ẇ = ΛΛΛ w.

  which can be seen as a homogeneous version of equation (3.14) or of equation (3.27)
We can enumerate the types of solutions along several criteria. We will focus on two criteria:

first, the time dependency of the solution, and, second, the asymptotic behavior of the solution,
i.e, the path of w(𝑡) when 𝑡 tends to infinity.

Time dependency of solutions

From the first perspective we can have the following type of solutions: stationary, monotonic,
oscillatory, periodic solutions and hump-shaped.

Stationary solutions We say the solution is stationary if w(𝑡) is a constant for all 𝑡 ∈ T. In
this case ẇ(𝑡) = 0 for all 𝑡.

Monotonic solutions We say the solution is monotonic if sign(ẇ(𝑡)) is the same for all 𝑡 ∈ T.
This means that the solution is monotonically increasing if ẇ(𝑡) > 0 for all 𝑡, it is monotonically
decreasing if ẇ(𝑡) < 0 for all 𝑡. A stationary solution can be seen as a particular type of monotonic
solution.
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Oscillatory solutions A solution is oscillatory if w(𝑡) = w(𝑡+𝑝(𝑡)) for 𝑡 ∈ T and time-dependent
period 𝑝(𝑡) ∈ T: the solution is repeated in increasing intervals if 𝑝′(𝑡) > 0 or in decreasing intervals
if 𝑝′(𝑡) < 0. For these solutions, there is a sequence of points, increasing or decreasing in time
𝜏 ∈ {𝑡0, 𝑡1, … , 𝑡𝑠, …} such that ẇ(𝜏) = 0. In our case if there are two complex eigenvalues with
non-zero real part, that is 𝛼 ≠ 0, then the solution is oscillatory

w(𝑡) = 𝑒𝛼𝑡  (𝑘1 cos 𝛽𝑡 + 𝑘2 sin 𝛽𝑡
𝑘2 cos 𝛽𝑡 − 𝑘1 sin 𝛽𝑡) .

 

Periodic solutions If a solution satisfies w(𝑡) = w(𝑡 + 𝑝) for 𝑡 ∈ T and 𝑝 ∈ 𝑇 it is a periodic
solution period 𝑝. This is a particular case of an oscillatory solution in which the period is constant.
In our case if there are two complex eigenvalues with zero real part then the solution is periodic

w(𝑡) = (𝑘1 cos 𝛽𝑡 + 𝑘2 sin 𝛽𝑡
𝑘2 cos 𝛽𝑡 − 𝑘1 sin 𝛽𝑡) .

  This case occurs if and only if trace(A) = 2𝛼 = 0. Observe that in this case and if we transform
the system into polar coordinates (see appendix 3.A.2 we have 𝑟(𝑡) = 𝑟0 constant and 𝜃(𝑡) = 𝜃0−𝛽𝑡.

Hump-shaped solutions If the solution of a planar equation is such that only one variable
satisfies 𝑤̇𝑖(𝑡) = 0 for a finite 𝑡 ∈ T and the other variable 𝑤−𝑖 is monotonic, then we say the
solution is hump-shaped. This case only occurs for the general homogeneous equation when there
are eigenvalues with real parts.

Steady states and stability analysis

The second perspective on equations deals with their convergence as regards steady states.

Steady states

Definition 1. Steady states A steady state is a fixed point to equation ?? such that ẏ = Ay = 0.

If A = ΛΛΛ is in the Jordan form we define the set of steady states

w  = {w ∈ Y ∶ ΛΛΛw = 0}.

An important distinction should be made: while a stationary solution is a function of 𝑡 such
that w(𝑡) is constant, for all 𝑡 ∈ T, a steady state is a fixed point of the vector field generated
by the differential equation. However, for a planar ODE the solution of the differential equation
is stationary if and only if it is a steady state. A stationary solution can only exist for particular
values of k ∈ Y. We will see that both the number of steady states and the convergence to or
divergence from a steady state are determined by the parameters (in vector ΛΛΛ).
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Let 0 ∈ Y. Then steady states always exist but need not be unique. We have again three main
cases: First if ΛΛΛ = ΛΛΛ1 the two eigenvalues are real and distinct and we have four possible cases.
i.e.,

w  ∈ {(0
0) , (𝑘1

0 ) , ( 0
𝑘2

) , (𝑘1
𝑘2

)}  

  where k = (𝑘1, 𝑘2)⊤ is an arbitrary element of Y. The steady state is an unique point 
w̄  = 0 ∈ Y If the two eigenvalues are non-zero, 𝜆+ ≠ 0 and 𝜆− ≠ 0. The steady state is a
one-dimensional manifold  in Y If 𝜆+ = 0, 𝜆− ≠ 0 and 𝑘1 ≠ 0 or if 𝜆+ ≠ 0, 𝜆− = 0 and 𝑘2 ≠ 0.
Every point in Y is a steady state if 𝜆+ = 𝜆− = 0. If the steady state is unique we call it a node
and when it is not unique we call it a degenerate node.

Second, if ΛΛΛ = ΛΛΛ2 then the two eigenvalues are real and equal and we have two possible cases

w  ∈ {(0
0) , (𝑘1

0 )}  

  The steady state is unique if w = 0 ∈ Y and the eigenvalue if different from zero, and the steady
state is one dimensional manifold in Y if the eigenvalue is equal to zero and 𝑘1 ≠ 0. If the steady
state is unique we call it a node with multiplicity and if it is not unique it is a degenerate
node with multiplicity.

Third, if ΛΛΛ = ΛΛΛ3 then the steady state is unique

w  = (0
0) .

  In this case, the steady state is called a focus.

Stability properties A solution w(𝑡) is asymptotically stable  if lim𝑡→∞ w(𝑡) = w  =  0 for
any k ≠ 0, i.e., the solution converges to the steady state.

A solution is unstable  if for any k ≠ w = 0 then lim𝑡→∞ w(𝑡) = ±∞, i.e., the solution
diverges. A solution is semi-stable (or conditionally stable) if there is a a subset of values ℰ𝑠 ∈ Y
such that if k ∈ ℰ𝑠 then lim𝑡→∞ w(𝑡) = w  =  0 but if k ∉ ℰ𝑠 then lim𝑡→∞ w(𝑡) = ±∞, i.e, the
solution is asymptotically stable for some values k but is unstable for others.

The eigenvalues of Λ not only determine the number of steady states but also their stability
properties:

Proposition 5. The asymptotic dynamic characteristics of the solution of equation (3.14) is de-
termined by the real part of the eigenvalues, Re(𝜆𝑖), 𝑖 = 1, 2 of matrix ΛΛΛ:

1. if all the eigenvalues have negative real parts then all solutions of ODE (3.14) are asymptot-
ically stable;

2. if all eigenvalues have positive real parts then all solutions are unstable;
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3. if there is one negative and one positive eigenvalue (𝜆1 > 0 > 𝜆−) then the solution to ODE
ẇ = ΛΛΛw is semi-stable: it is unstable if 𝑘1 ≠ 0 and it is asymptotically stable if 𝑘1 = 0;

4. if there is one zero eigenvalue the fixed point is a one-dimensional manifold (a center mani-
fold), the solution will converge to it if the other eigenvalue is negative (i.e., in case 𝜆+ = 0
and 𝜆− < 0) and will not converge to it if the other eigenvalue is positive (i.e., in case 𝜆+ > 0
and 𝜆− = 0). In the first case there is a degenerate stable node and in the second case a
degenerate unstable node

Proof.  (1) If we consider the solutions (3.16)-(3.18) such that the real parts of the eigenvalues are
negative (i.e, 𝜆+ < 0 and 𝜆− < 0, or 𝜆 < 0 or 𝛼 < 0 ) then we see that the solutions tend to the
fixed point w = 0 for any 𝑘1 and 𝑘2. (2) If there is an eigenvector with a positive real part (i.e,
𝜆+ > 0 or 𝜆− > 0, or 𝜆 > 0 or 𝛼 > 0 ) then given any point k  ≠ w then the solution will be
unbounded. All the other cases can be characterized in an analogous way.

 

Eigenspaces The solutions of equation ẏ = Ay is a weighted average of two elementary functions
weighted by h = (ℎ1, ℎ2). For example, if Λ = ΛΛΛ1 we could write its solution (??) as

y (𝑡) = ℎ1P1𝑒𝜆+𝑡 + ℎ2P2𝑒𝜆−𝑡. (3.31)

That is, the solution of the ODE is a superposition of two elementary function 𝑒𝜆+𝑡 and 𝑒𝜆−𝑡, acting
on the directions given by P1 and P2, respctively, and weighted by the arbitrary constants ℎ1 and
ℎ2. In other words, the elementary components of the time behavior of the solutions, 𝑒𝜆+𝑡 and 𝑒𝜆−𝑡,
are linearly transformed by the eigenvectors P1 and P2.

We define the eigenspaces  as the subsets of space Y which are followed by those two elemen-
tary solutions:

ℰ1 = { w ∈ Y ∶ spanned by P1} 
ℰ2 = { w  ∈ Y ∶ spanned by P2} 

Clearly the range of y satisfies Y = ℰ1 ⊕ ℰ2.
In the case of equation ẇ = ΛΛΛw because P = I we have

ℰ1 = { w ∈ Y ∶ 𝑤2 = 0} 
ℰ2 = { w ∈ Y ∶ 𝑤1 = 0} 

which is equivalent to setting 𝑘2 = 0 in the first case and 𝑘1 = 0 in the second.
We call stable, unstable and center eigenspaces to the subsets of Y which are spanned by the

eigenspaces associated to the eigenvalues with negative, positive and zero real parts. Formally the
stable eigenspace  is

ℰ𝑠 ≡ ⊕{ ℰ𝑗 ∶ Re(𝜆𝑗) < 0},  
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  the unstable eigenspace  is

ℰ𝑢 ≡ ⊕{ ℰ𝑗 ∶ Re(𝜆𝑗) > 0},  

  and the center eigenspace  is

ℰ𝑐 ≡ ⊕{ ℰ𝑗 ∶ Re(𝜆𝑗) = 0}. 

  Again we have
ℰ𝑠 ⊕ ℰ𝑢 ⊕ ℰ𝑐 = Y.

  Let 𝑛−, 𝑛+ and 𝑛𝑐 be respectively the number of eigenvalues with negative, positive and zero real
parts. Another way to see the relationship between the eigenspaces and the range of the dynamical
system is based on the observation that

𝑛− + 𝑛+ + 𝑛𝑐 = 2.

  and that the dimension of the there eigenspaces are therefore

dim(ℰ𝑠) = 𝑛−, dim(ℰ𝑢) = 𝑛+, dim(ℰ𝑐) = 𝑛𝑐,

  implying
dim(ℰ𝑠) + dim(ℰ𝑢) + dim(ℰ𝑐) = dim(Y) = 2.

  Therefore, for a planar ODE we have:

1. if all eigenvalues have negative real parts, i.e., if 𝑛− = 2, then ℰ𝑠 = ℰ1 ⊕ ℰ2 = Y, and ℰ𝑢 and
ℰ𝑐 are empty, which means that ℰ𝑠 is spanned by ℰ1 and ℰ2 (i.e, the elements in ℰ𝑠 are a
weighted sum of elements of ℰ1 and ℰ2). Then 𝑌 is the attracting set; 

2. if all eigenvalues have positive real parts, i.e., if 𝑛+ = 2, then ℰ𝑢 = ℰ1 ⊕ ℰ2 = Y, and ℰ𝑠 and
ℰ𝑐 are empty. Then 𝑌 / ̄𝑦 is the repelling set 

3. if there is a saddle point, i.e., if 𝑛− = 𝑛+ = 1, then ℰ𝑠 = ℰ2, ℰ𝑢 = Y/𝐸𝑠 and , and ℰ𝑐 is
empty. Then ℰ𝑠 is the attracting set and ℰ𝑢 is the repelling set

4. if there is at least one eigenvalue with zero real part, i.e., if 𝑛𝑐 ∈ {1, 2}, then ℰ𝑐 is non-empty.

Phase diagrams

The geometrical approach for solving ODE consists in drawing a phase diagram.
Phase diagrams for planar autonomous ODE are drawn in the space (𝑤1, 𝑤2) and contain the

following elements:

1. isoclines (or nullclines)  are lines in space (𝑤1, 𝑤2) such that 𝑤1 or 𝑤2 are constant, that
is

𝕀𝑤1
= { (𝑤1, 𝑤2) ∈ Y ∶ 𝑤̇1 = 0}, and 𝕀𝑤2

= { (𝑤1, 𝑤2) ∈ Y ∶ 𝑤̇2 = 0}.
  The steady states are the locus or loci where isoclines intersect;
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2. the eigenspaces  ℰ1 and ℰ2 are lines in Y whose slopes are given by those of the eigenvectors
P1 and P2. They span the stable, unstable and center manifolds, ℰ𝑠, ℰ𝑢, and ℰ𝑐, which are
lines or two-dimensional subsets of Y;

3. some representative trajectories, also called integral curves, that is parametric curves of
the solution to the ODE within space Y. They are usually represented with direction arrows
showing the direction of the solution with time.

4. the vector field  indicating the direction of time evolution for a grid of points in Y.

There are four main types of phase diagrams: nodes, if all eigenvalues are real and have the
same sign, saddles if there is one positive and one negative eigenvalue, foci if the two eigenvalues
are complex conjugate with non-zero real parts, and centers if the two eigenvalues are complex
conjugate with zero real parts.

Next we present a complete list phase diagrams:

Stable nodes A stable node exists if there is at least one real negative eigenvalue and there are
no positive eigenvalues. There are three cases: the non-degenerate stable nodes (figure 3.2), the
degenerate stable node (see figure 3.3) and the stable node with multiplicity (see figure 3.4).

In the case of figure 3.2 the phase diagram contains the following elements

• there are two isoclines: the abcissa, associated 𝑤̇2 = 0 which is the loci where 𝑤2 is constant,
and the ordinate, associated 𝑤̇1 = 0 which is the loci where 𝑤1 is constant

• a fixed point where the two isoclines cross at (𝑤1, 𝑤2) = (0, 0)

• the eigenspace ℰ1 which is coincident with 𝑤̇2 = 0 associated to the eigenvector 𝜆+ and
eigenspace ℰ2 which is coincident with 𝑤̇1 = 0 associated to the eigenvector 𝜆−. This co-
incidence occurs for decoupled systems where A has the Jordan form ΛΛΛ1. The whole space
Y (with the exception of the fixed point) corresponds to the stable eigenspace ℰ𝑠. Both the
unstable eigenspace and the center eigenspace are empty.

• four representative trajectories. Observe that the slope of the trajectories is parallel to ℰ2 for
initial points far away from the fixed point and they tend asymptotically to ℰ1. To prove this
we write their slope in the phase diagram, for any 𝑡, 𝑠(𝑡)

𝑤2(𝑡)
𝑤1(𝑡)   = 𝑠(𝑡) ≡ 𝑘2

𝑘1
𝑒(𝜆−−𝜆+)𝑡.

  We see that 𝑠(0) = 𝑘2
𝑘1

, lim𝑡→−∞ 𝑠(𝑡) = ∞ and lim𝑡→∞ 𝑠(𝑡) = 0 because 𝜆− − 𝜆+ < 0. This
means that all trajectories converge to the steady state along trajectories which are tangent
to line 𝑤2 = 0, that is, to the eigenspace ℰ1, or to the direction defined by the eigenvector
P1 which is associated with the eigenvalue with smaller absolute value.
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In the case of the degenerate stable node, such that 0 = 𝜆+ > 𝜆−, in figure 3.3, we have ℰ𝑐 = ℰ2

and ℰ𝑠 = Y/ℰ2. ℰ𝑐 is also loci of fixed points which are in infinite number.
In the case of multiplicity (see figure 3.4) the trajectories approach 𝑃 1 whose slope is given by

the simple eigenvector P1 = (1, 0)⊤.

Figure 3.2: Stable node: phase diagram and representative trajectories for the ODE 𝑤̇1 = −0.5𝑤1,
𝑤̇2 = −𝑤2.

Saddle point A saddle points exists if the two eigenvalues are real and 𝜆− < 0 < 𝜆+. Figure 3.5
presents the phase diagram containing the following elements

• there are two isoclines: the abcissa, associated 𝑤̇2 = 0 which is the loci where 𝑤2 is constant,
and the ordinate, associated 𝑤̇1 = 0 which is the loci where 𝑤1 is constant

• a fixed point where the two isoclines cross at (𝑤1, 𝑤2) = (0, 0)

• the unstable eigenspace ℰ1, which is coincident with 𝑤̇2 = 0, associated to the eigenvector
𝜆+ > 0 and the stable eigenspace ℰ𝑠 = ℰ2, which is coincident with 𝑤̇1 = 0, associated to
the eigenvector 𝜆− < 0. The unstable eigenspace ℰ𝑢 is almost coincident with all set Y, as
ℰ𝑢 = Y/ℰ𝑠This coincidence occurs again for decoupled systems where A has the Jordan form
ΛΛΛ1

Unstable nodes A unstable node exists if there is at least one real positive eigenvalue and there
are no negative eigenvalues. There are three cases: the non-degenerate unstable nodes (figure 3.6),
the degenerate unstable node (see figure 3.7).

The interpretation is analogous to the stable nodes, if we introduce a time reversal, and if we
substitute the stable eigenspace with unstable eigenspace.
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Figure 3.3: Degenerate stable node: 𝑤̇1 = 0, 𝑤̇2 = −𝑤2.

Figure 3.4: Stable node with multiplicity: 𝑤̇1 = −0.5𝑤1 + 𝑤2, 𝑤̇2 = −0.5𝑤2.



Paulo Brito Advanced Mathematical Economics 2020/2021 24

Figure 3.5: Saddle point: 𝑤̇1 = 0.5𝑤1, 𝑤̇2 = −𝑤2.

Figure 3.6: Unstable degenerate node: 𝑤̇1 = 0.5𝑤1, 𝑤̇2 = 0.
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Figure 3.7: Unstable node: 𝑤̇1 = 𝑤1, 𝑤̇2 = 0.5𝑤2.

Figure 3.8: Unstable node with multiplicity: 𝑤̇1 = 0.5𝑤1 + 𝑤2, 𝑤̇2 = 0.5𝑤2.
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Stable foci  
A stable focus exists if there are two complex conjugate eigenvalues with negative real parts

(see figures 3.9 for 𝛽 > 0 and 3.10 for 𝛽 < 0).
In this case we see that there is asymptotic stability, as for the case of the stable node in figure

3.2, but the trajectories are oscillatory. We also see that the stable node with multiplicity 3.4 is a
boundary case between stable node and foci. The stable eigenspace is coincident with the whole
space Y and the unstable and center eigenspaces are empty.

Figure 3.9: Stable focus: 𝑤̇1 = −0.5𝑤1 + 0.5𝑤2, 𝑤̇2 = −0.5𝑤1 − 0.5𝑤2 (case 𝛼 < 0 and 𝛽 > 0).

Unstable foci  
An unstable focus exists if there are two complex conjugate eigenvalues with positive real parts

(see figures 3.11 for 𝛽 > 0 and 3.12 for 𝛽 < 0). The unstable eigenspace is coincident with the
whole space Y and the stable and center eigenspaces are empty.

Center A center (see figure 3.13 ) exists , if eigenvalues are complex conjugate and have zero
real parts. The center eigenspace, ℰ𝑐, is coincident with the whole space Y and the stable and the
unstable eigenspaces are empty. If 𝑤 ≠ 0 then all the trajectories are periodic.

3.5.2 Characterizing solutions when A is not in the Jordan form

Now we address the general planar linear homogeneous equation ẏ = Ay already derived in equation
(??),

y(𝑡) = Pe�t h
  where h = P−1k. By observing that y(𝑡) = Pw(𝑡) we see that the solution in this case is a linear
transformation of the solution for the case in which the coefficient matrix is in the Jordan form.
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Figure 3.10: Stable focus:𝑤̇1 = −0.5𝑤1 − 0.5𝑤2, 𝑤̇2 = 0.5𝑤1 − 0.5𝑤2 (case 𝛼 < 0 and 𝛽 < 0).

Figure 3.11: Unstable focus: 𝑤̇1 = 0.5𝑤1 + 0.5𝑤2, 𝑤̇2 = −0.5𝑤1 + 0.5𝑤2 (case 𝛼 > 0 and 𝛽 > 0).
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Figure 3.12: Unstable focus: 𝑤̇1 = 0.5𝑤1 − 0.5𝑤2, 𝑤̇2 = 0.5𝑤1 + 0.5𝑤2 (case 𝛼 < 0 and 𝛽 < 0).

Figure 3.13: Center: 𝑤̇1 = −0.5𝑤2, 𝑤̇2 = 0.5𝑤1 and 𝑤̇1 = 0.5𝑤2, 𝑤̇2 = −0.5𝑤1 (cases 𝛼 = 0 and
𝛽 > 0, and 𝛼 = 0 and 𝛽 < 0).
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This means that

1. the qualitative properties of the dynamics are the same, in particular, the number and stability
type of the steady state(s)

2. the dimensions of the stable, unstable and center eigenspaces, partitioning the range Y, is the
same

3. the only difference is related to the slopes of the eigenspaces and therefore of the solution
trajectories, because the eigenvector matrix P is different from the identity matrix.

In particular we can have one of the following (general) solutions

1. if ΛΛΛ = ΛΛΛ1, the general solution is

y(𝑡) = ℎ1𝑒𝜆+𝑡P1 + ℎ2𝑒𝜆−𝑡P2

or, equivalently

(𝑦1(𝑡)
𝑦2(𝑡)) = ℎ1𝑒𝜆+𝑡  (𝑃 −

1
𝑃 −

2
) + ℎ2𝑒𝜆−𝑡  (𝑃 +

1
𝑃 +

2
)

2. if ΛΛΛ = ΛΛΛ2, the general solution is

y(𝑡) = 𝑒𝜆𝑡 (P1(ℎ1 + ℎ2𝑡) + ℎ2P2)

or, equivalently

(𝑦1(𝑡)
𝑦2(𝑡)) = 𝑒𝜆𝑡 ((ℎ1 + ℎ2𝑡)  (𝑃 −

1
𝑃 −

2
) + ℎ2  (𝑃 +

1
𝑃 +

2
))

3. if ΛΛΛ = ΛΛΛ3, the general solution is

y(𝑡) = 𝑒𝛼𝑡 ((ℎ1 cos 𝛽𝑡 + ℎ2 sin 𝛽𝑡)P1 + (ℎ2 cos 𝛽𝑡 − ℎ1 sin 𝛽𝑡)P2) =
= 𝑒𝛼𝑡 (ℎ1(cos 𝛽𝑡P1 − sin 𝛽𝑡P2) + ℎ2(sin 𝛽𝑡P1 + cos 𝛽𝑡P2)) .

or, equivalently,

(𝑦1(𝑡)
𝑦2(𝑡)) = 𝑒𝛼𝑡 ( ℎ1 (𝑃 −

1 cos 𝛽𝑡 − 𝑃 +
1 sin 𝛽𝑡

𝑃 −
2 cos 𝛽𝑡 − 𝑃 +

2 sin 𝛽𝑡) +  ℎ2 (𝑃 −
1 sin 𝛽𝑡 + 𝑃 +

1 cos 𝛽𝑡
𝑃 −

2 sin 𝛽𝑡 + 𝑃 +
2 cos 𝛽𝑡)) .

The next example allows for a comparison between the solutions of an homogeneous problem
when the coefficient matrix is a Jordan form with the case in which it is a similar matrix but not
in the Jordan normal form
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Example 1 Solve the planar ODE assuming that w ∈ ℝ2.

𝑤̇1 = 3𝑤1

𝑤̇2 = −3𝑤2

  We readily see that the coefficient matrix in in the Jordan form 𝜆+

A = (3 0
0 −3) .

  The (general) solution of the ODE is

(𝑤1(𝑡)
𝑤2(𝑡)) = ( ℎ1𝑒3𝑡

ℎ2𝑒−3𝑡) = ℎ1 (1
0) 𝑒3𝑡 + ℎ2 (0

1) 𝑒−3𝑡

  Therefore: (1) there is a unique steady state w  = (𝑤1, 𝑤2) = (0, 0); (2) the steady state is
a saddle point; (3) the eigenvalues of the coefficient matrix are 𝜆+ = 3 and 𝜆− = −3 and the
associated eigenvectors are P1 = (1, 0)⊤ and P2 = (0, 1)⊤; (4) the eigenspaces associated to the
eigenvalues 𝜆+ and 𝜆− are

ℰ1 = { w ∈ ℝ2 ∶ 𝑤2 = 0},  ℰ2 = { w ∈ ℝ2 ∶ 𝑤1 = 0};

  (5) then the center eigenspace ℰ𝑐 is empty and the stable and unstable eigenspaces are both of
dimension 1 and the unstable and stable eigenspaces are

ℰ𝑠 = ℰ2, ℰ𝑢 = ℝ2/ℰ𝑠

  meaning that for any k ≠ (0, 𝑘2) the solution is unstable.
That is, trajectories belonging to the stable subspace, that is converging to the steady state,

should have 𝑘1 = 0, that is they are

(𝑤1(𝑡)
𝑤2(𝑡)) = ( 0

ℎ2𝑒𝜆−𝑡)

  The phase diagram for this equation is very similar to the one depicted in Figure 3.5.

Example 2 Solve the homogeneous ODE over the domain y = (𝑦1, 𝑦2) ∈ ℝ2:

̇𝑦1 = −2𝑦1 + 5𝑦2,
̇𝑦2 = 𝑦1 + 2𝑦2.

(3.32)

  where

A = (−2 5
1 2) .

  As trace(A) = 0 and det(A) = −9 the eigenvalues are 𝜆+ = 3 and 𝜆− = −3, which means that
the coefficient matrix is similar to the previous example. The eigenvector matrix is

P = (P1, P2) = (1 −5
1 1 ) .
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  This means that the eigenspaces are

ℰ1 = { y ∈ ℝ2 ∶ 𝑦1 − 𝑦2 = 0}, ℰ2 = { (y ∈ ℝ2 ∶ 𝑦1 + 5 𝑦2 = 0}

  As det(A) ≠ 0 then the fixed point exists and is unique and is ȳ = ( ̄𝑦1, ̄𝑦2)⊤ = (0, 0)⊤.
The (general) solution of the equation, y(𝑡) = Pe�t h, is

𝑦(𝑡) = ℎ1 (1
1) 𝑒3𝑡 + ℎ2 (−5

1 ) 𝑒−3𝑡. (3.33)

  The stable and the unstable eigenspaces (the center eigenspace is empty. Why ?) are

ℰ𝑠 = { (𝑦1, 𝑦2) ∶ 𝑦1 + 5𝑦2 = 0}, ℰ𝑢 = ℝ2/(ℰ𝑠 ∪ {(0, 0)} . 

  and the stable subspace is equal to the eigenspace ℰ2. Then, if the initial point is such that
(𝑦1(0), 𝑦2(0)) = (−5𝑦2(0), 𝑦2(0)) for any choice of 𝑦2(0) the solution converges to the steady state

̄𝑦 = (0, 0)⊤. For any other initial point the solution is asymptotically unbounded.
We can prove this in two different but equivalent ways: First, we can consider the general

solution in equation of (3.36) and set ℎ1 = 0. Comparing to the case in which the coefficient
matrix is in the similar Jordan form we have

(ℎ1
ℎ2

) = 1
6  (𝑘1 + 5𝑘2

−𝑘1 + 𝑘2
) .

  we see that this holds if and only if 𝑦1(0)+5𝑦2(0) = 0, because the constant 𝑘1 and 𝑘2 are arbitrary.
The second way (which we can used without having to determine ℎ1) consider the general solution
and the observation, again, that we can only eliminate the unbounded part of the solution if we
have ℎ1. This means that the solution along the stable subspace is

𝑦1(𝑡) = −5ℎ2𝑒−3𝑡, 𝑦2(𝑡) = ℎ2𝑒−3𝑡

  By eliminating ℎ2𝑒−3𝑡 in the two equations we have 𝑦1(𝑡) = −5𝑦2(𝑡).
To study the equation geometry we draw the phase diagram  (see figure 3.14). Given the

fact that we have a positive and a negative eigenvalue we know that it is a saddle. However, to
determine their configuration in this case, we draw the following elements:

1. the isoclines, that is, the loci for ̇𝑦1 = 0 and ̇𝑦2 = 0

𝕀𝑦1
= { (𝑦1, 𝑦2) ∶ −2𝑦1 + 5𝑦2 = 0},  𝕀𝑦2

= { (𝑦1, 𝑦2) ∶ 𝑦1 + 2𝑦2 = 0}

 

2. the eigenspaces ℰ1 and ℰ2;

3. the vector field;

4. as the model is linear and the vector field should show us that the stable eigenspace is
coincident with the eigenspace associated to the eigenvector P2;
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5. all the isoclines and the eigenvectors cross at the steady state (0, 0);

6. if the initial point is not at the origin, then two types of paths are possible: first, if they start
at ℰ𝑠 they will converge to the origin; second, if they do not start at the origin they will be
parallel to ℰ2 at the beginning and will converge to ℰ1 asymptotically. Observe that when
they cross any isocline they should change direction as regards the variable associated to the
isocline. For instance, if they cross 𝕀𝑦1

(𝕀𝑦2
) they should be tangent to a vertical (horizontal)

line.

Figure 3.14: Saddle: ̇𝑦1 = −2𝑦1 + 5𝑦2, ̇𝑦2 = 𝑦1 + 2𝑦2.

3.6 The non-homogeneous equation

In this section we solve the non-homogeneous equation (3.1), ẏ = Ay + B, where A is similar to
one of the Jordan forms already presented or is equal to a new matrix

ΛΛΛ4 = (𝜆 0
0 𝜆) .

 
It is convenient to start by addressing the existence and number of steady states, or stationary

solutions.

Steady states are defined as the elements of the set

y  = { y ∈ Y ∶ Ay + B = 0}
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Again we write the eigenvector matrix associated to coefficient matrix A

P = (𝑃 −
1 𝑃 +

1
𝑃 −

2 𝑃 +
2

) .

 

Proposition 6. (Existence and number of fixed points)

1. If A has no zero eigenvalues then a steady state exists and is unique and it is

y = −A−1B.

2. If Δ(A) > 0, and 𝜆+ = 0, 𝜆− < 0, and 𝑃 +
2 𝑏2 = 𝑃 +

1 𝑏1 then there is an infinite number of
equilibrium points belonging to a one-dimensional manifold (a line)

𝑦 ∈ { (𝑦1, 𝑦2) ∈ Y ∶ 𝑃 −
1 (𝜆−𝑦2 − 𝑏2) = 𝑃 −

2 (𝜆+𝑦1 − 𝑏1)}.

 

3. If Δ(A) > 0, and 𝜆+ > 0, 𝜆− = 0, and 𝑃 −
1 𝑏2 = 𝑃 −

2 𝑏1 then there is an infinite number of
equilibrium points belonging to a one-dimensional manifold

𝑦 ∈ { (𝑦1, 𝑦2) ∈ Y ∶ 𝑃 +
2 (𝜆+𝑦1 − 𝑏1) = 𝑃 +

1 (𝜆−𝑦2 − 𝑏2)} .

4. If Δ(A) = 0, 𝜆 = 0, and 𝑃 +
2 𝑏1 = 𝑃 +

1 𝑏2 then there is an infinite number of equilibrium points
belonging to a one-dimensional manifold

𝑦 ∈ { (𝑦1, 𝑦2) ∈ Y ∶ 𝑃 −
2 (𝑦1 − 𝑏1) = 𝑃 −

1 (𝑦2 − 𝑏2)} .

5. if A = 0 and 𝑃 +
2 𝑏2 − 𝑃 +

1 𝑏1 = 𝑃 −
1 𝑏2 − 𝑃 −

2 𝑏1 = 0 then we have an infinity of equilibrium points
belonging to a two-dimensional manifold (i.e., the whole space Y).

6. If none of the former conditions hold there are no steady states.

Proof. A steady state is a point y such that Ay = −B. If det (A) ≠ 0 then a there is a unique
inverse matrix A−1 and therefore a unique fixed point exits y = −A−1B. If matrix A is singular,
that is det (A) = 0, then a classical inverse does not exist. In this case, observe that Ay = −B
is equivalent to PΛΛΛP−1y = −B and also ΛΛΛP−1y = −P−1 B. Because in this case there only real
eigenvalues, there are two forms for expanding this equation. The first form is

(𝜆+ 0
0 𝜆2

) ( 𝑃 +
2 −𝑃 +

1
−𝑃 −

2 𝑃 −
1

) (𝑦1
𝑦2

) = ( 𝑃 +
2 −𝑃 +

1
−𝑃 −

2 𝑃 −
1

) (𝑏1
𝑏2

)

  for 𝜆+ = 0 and 𝜆− ≠ 0, 𝜆+ ≠ 0 and 𝜆− = 0 or 𝜆+ = 𝜆− = 0. Then, in the first case,

𝑃 +
2 𝑏2 = 𝑃 +

1 𝑏1, and 𝑃 −
1 (𝜆−𝑦2 − 𝑏2) = 𝑃 −

2 (𝜆−𝑦1 − 𝑏1)
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  in the second case

𝑃 −
1 𝑏2 = 𝑃 −

2 𝑏1, and 𝑃 +
2 (𝜆+𝑦1 − 𝑏1) = 𝑃 +

1 (𝜆+𝑦2 − 𝑏2)

  in the third case, we have 𝑃 +
2 𝑏2 − 𝑃 +

1 𝑏1 = 𝑃 −
1 𝑏2 − 𝑃 −

2 𝑏1 = 0 which is a condition for existence.
The second form is

(0 1
0 0) ( 𝑃 +

2 −𝑃 +
1

−𝑃 −
2 𝑃 −

1
) (𝑦1

𝑦2
) = ( 𝑃 +

2 −𝑃 +
1

−𝑃 −
2 𝑃 −

1
) (𝑏1

𝑏2
)

  which is equivalent to

𝑃 +
2 𝑏1 = 𝑃 +

1 𝑏2, and 𝑃 −
2 (𝑦1 − 𝑏1) = 𝑃 −

1 (𝑦2 − 𝑏2)

  In all other cases, fixed points will not exist.

 
Next we derive the general solution for the case in which there is a steady state

Proposition 7. Consider the planar ode (3.1), and assume that an equilibrium point y ∈ Y exists.
Then, the unique solution is

y(𝑡) = y + Pe�t P−1(h − y) (3.34)

where h ∈ Y is an arbitrary element of the range of y.

Proof. Assume that a fixed point y exists. Let y(𝑡) − y = Pw(𝑡). Then w (𝑡) = P−1(y(𝑡) − y) and
ẇ = P−1ẏ = P−1(Ay + B) = P−1A ((Pw + y) + B) = ΛΛΛw + ΛΛΛP−1Ay  + P−1B = ΛΛΛw − P−1B +
P−1B = ΛΛΛw for any matrix ΛΛΛ. Then, we get equivalently ẇ = ΛΛΛw, which has solution w(𝑡) = e�tk,
where k is a vector of arbitrary constants. Therefore, the solution for y is y(𝑡) = y + Pw(𝑡) =
y + Pe�t P−1(h − y)  where h is a vector of arbitrary constants, in the units of y.

The solution (3.34) can be written as

y(𝑡) = y + Pe�t k

where

(𝑘1
𝑘2

) = 1
det (P)   ( 𝑃 +

2 −𝑃 +
1

−𝑃 −
2 𝑃 −

1
) (ℎ1 − 𝑦1

ℎ2 − 𝑦2
) .

Then, recalling what we have learned from solving equation (??), it can take one of the following
three forms

1. if ΛΛΛ = ΛΛΛ1, the general solution is

y(𝑡) = y + 𝑘1𝑒𝜆+𝑡P1 + 𝑘2𝑒𝜆−𝑡P2

or, equivalently

( 𝑦1(𝑡)
𝑦2(𝑡) ) = (𝑦1

𝑦2
) + 𝑘1𝑒𝜆+𝑡  (𝑃 −

1
𝑃 −

2
) + 𝑘2𝑒𝜆−𝑡  (𝑃 +

1
𝑃 +

2
)
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2. if ΛΛΛ = ΛΛΛ2, the general solution is

y(𝑡) = y + 𝑒𝜆𝑡 (P1(𝑘1 + 𝑘2𝑡) + 𝑘2P2)

or, equivalently

(𝑦1(𝑡)
𝑦2(𝑡)) = (𝑦1

𝑦2
) + 𝑒𝜆𝑡 ((𝑘1 + 𝑘2𝑡)  (𝑃 −

1
𝑃 −

2
) + 𝑘2  (𝑃 +

1
𝑃 +

2
))

3. if Λ = Λ3, the general solution is

y(𝑡) = y + 𝑒𝛼𝑡 ((𝑘1 cos 𝛽𝑡 + 𝑘2 sin 𝛽𝑡)P1 + (𝑘2 cos 𝛽𝑡 − 𝑘1 sin 𝛽𝑡)P2) =
= 𝑦 + 𝑒𝛼𝑡 (𝑘1(cos 𝛽𝑡P1 − sin 𝛽𝑡P2) + 𝑘2(sin 𝛽𝑡P1 + cos 𝛽𝑡P2)) .

or, equivalently,

( 𝑦1(𝑡)
𝑦2(𝑡) ) = (𝑦1

𝑦2
) + 𝑒𝛼𝑡 ( 𝑘1 (𝑃 −

1 cos 𝛽𝑡 − 𝑃 +
1 sin 𝛽𝑡

𝑃 −
2 cos 𝛽𝑡 − 𝑃 +

2 sin 𝛽𝑡) +  𝑘2 (𝑃 −
1 sin 𝛽𝑡 + 𝑃 +

1 cos 𝛽𝑡
𝑃 −

2 sin 𝛽𝑡 + 𝑃 +
2 cos 𝛽𝑡)) .

Eigenspaces and stability analysis Let ΛΛΛ = ΛΛΛ1. We can determine again the eigenspaces,
spanned by eigenvectors P1 and P2, by making 𝑘2 = 0 and 𝑘1 = 0, respectively. Then 6

ℰ1 = {y ∈ Y ∶ 𝑃 −
1 (𝑦2 − 𝑦2) = 𝑃 −

2 (𝑦1 − 𝑦1)}

and
ℰ2 = {y ∈ Y ∶ 𝑃 +

1 (𝑦2 − 𝑦2) = 𝑃 +
2 (𝑦1 − 𝑦1)}

We can also partition the state space according to the stability properties of the solutions
belonging to them. We define the stable eigenspace as

ℰ𝑠 = {h  ≠ y ∈ Y ∶   lim
𝑡→∞

y(𝑡, h)  = y}

we define the unstable eigenspace as

ℰ𝑢 = {h ≠ y ∈ Y ∶   lim
𝑡→−∞

y(𝑡, h)  = y}

and the center eigenspace  as

ℰ𝑐 = {h ∈ Y ∶ y(𝑡, h)  = const }

if there is at least one eigenvalue with zero real part.
If all eigenvalues have negative real parts then we have asymptotic stability, and ℰ𝑠 =

ℰ1 ⊕ ℰ2 = Y, and ℰ𝑢 and ℰ𝑐 are empty. If all eigenvalues have positive real parts then we have
instability and ℰ𝑢 = ℰ1 ⊕ ℰ2 = Y, and ℰ𝑠 and ℰ𝑐 are empty. If there is one negative and one
positive eigenvalue then we have a saddle point and ℰ𝑠 = ℰ2 and ℰ𝑢 = Y/ℰ2.

6If we set 𝑘2 = 0 we have ℎ1𝑒𝜆+𝑡𝑃 1
1 = 𝑦1(𝑡) − 𝑦1 and ℎ1𝑒𝜆+𝑡𝑃 1

2 = 𝑦2(𝑡) − 𝑦2. Thus ℎ1𝑒𝜆+𝑡 = 𝑦1(𝑡) − 𝑦1
𝑃 1

1
=

 𝑦2(𝑡) − 𝑦2
𝑃 1

2
. We proceed in an analogous way for ℰ2.
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Changes in the phase diagrams Next we extend the case in Example 2 to show that adding a
vector B only changes the value of the steady state but not its stability properties, as regards the
associated homogeneous case.

Example 3 Consider the ODE, where 𝑦 ∈ ℝ2, which is slightly modification of equation (3.32):

̇𝑦1 = −2𝑦1 + 5𝑦2 − 1/5,
̇𝑦2 = 𝑦1 + 2𝑦2 − 4/5.

(3.35)

  This is a non-homogenous equation of type ẏ = Ay + B, where matrix A is as in example (3.32).
As trace(A) = 0 and det(𝐴) = −9 then the eigenvalues are 𝜆 ∈ {−3, 3}. The steady state is

̄𝑦 = −𝐴−1𝐵 = (2/5
1/5) .

  In this case the general solution is

𝑦(𝑡) = (2/5
1/5) + ℎ1 (1

1) 𝑒3𝑡 + ℎ2 (−5
1 ) 𝑒−3𝑡. (3.36)

  where

(ℎ1
ℎ2

) = P−1  (𝑘1 − ̄𝑦1
𝑘2 − ̄𝑦2

) = 1
6 (𝑘1 + 5ℎ2 − 7/5

−𝑘1 + 𝑘2 + 1/5) .

  Therefore, the eigenspaces are

ℰ1 = {(𝑦1, 𝑦2) ∶ 𝑦1 + 5𝑦2 − 7/5 = 0}, ℰ2 = {(𝑦1, 𝑦2) ∶ −𝑦1 + 𝑦2 + 1/5 = 0}

  The fixed point is again a saddle point and the stable eigenspace is again ℰ𝑠 = ℰ1

The phase diagram is in figure 3.15. If we compare with figure 3.14 we see that they have the
same shape (i.e, the isoclines and the eigenspaces have the same slopes) with the fixed point shifted
from the origin to the new steady state ̄𝑦 = (2/5, 1/5)⊤.

Comparing examples 1, 2, and 3, with phase diagrams in 3.5, 3.14 and 3.15 lead to the following
observations:

1. as we already saw, when the equation is homogeneous, i.e., B = 0, but matrix A is not in a
Jordan normal form, the steady state is still in the origin but the isoclines and the eigenspaces
are rotated (compare figures 3.5 and 3.14);

2. when the equation is non-homogeneous, i.e., vector B ≠ 0, the steady state is shifted out of
the origin but the isoclines and the eigenspaces are the same as for the similar homogeneous
equation (compare figures 3.14 and 3.15).

Next we present a case in which we have a stable node and show that hump-shaped trajec-
tories can occur for a non-homogeneous ODE.
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Example 4 Consider the ODE, where 𝑦 ∈ ℝ2:

̇𝑦1 = −2𝑦1 + 𝑦2 + 1/5,
̇𝑦2 = 𝑦1 − 2𝑦2 + 4/5.

(3.37)

  Prove that the solution for the initial value problem, for any y(0) = (𝑦1(0), 𝑦2(0)) is

𝑦(𝑡) = (
2
5
3
5
) + 1

2 (−𝑦1(0) + 𝑦2(0) − 1
5 ) (−1

1 ) 𝑒−3 𝑡 + 1
2 (𝑦1(0) + 𝑦2(0) − 1 ) (1

1) 𝑒− 𝑡

  The phase diagram is in figure 3.16. We see that it is a stable node. In addition, the unstable
and the centre subspaces are empty and the stable subspace is the whole set minus the fixed point

̄𝑦 = (2
5 , 3

5)⊤. In addition observe that the trajectories at 𝑡 = 0 tend to be parallel to the eigenspace
associated to the negative eigenvalue larger in absolute value ℰ1 = {(𝑦1, 𝑦2) ∶ 𝑦1 + 𝑦2 = 0} and
they become asymptoticaly tangent to the eigenspace associated to the negative eigenvalue smaller
in absolute value ℰ2 = {(𝑦1, 𝑦2) ∶ 𝑦1 − 𝑦2 = 0}. This means that are trajectories that cross the
isoclines and which are, therefore, non-monotonous.

Non-monotonous trajectories The previous example displays another difference between ho-
mogeneous and similar non-homogeneous equations (see phase diagram in Figure 3.15). Consider a
planar ODE (homogeneous or not) in which the coefficient matrix A is such that there is a unique
steady state which is a stable nodes (i.e., there are two real eigenvalues with negative and distinct
real parts). Now compare the cases with similar matrices for the case in A is a Jordan form, as in
figure 3.2, and it is not, as in figure 3.16). We observe that in the last case we see that there are
hump-shaped trajectories, that is, trajectories that converge to the steady state after crossing
an isocline, but affecting only one variable which.

This also allows for a partition of space Y. The isoclines 𝕀𝑦1
and 𝕀𝑦2

allow for a partition of Y
into for subsets, say

Y++ = { y ∈ Y ∶ ̇𝑦1 > 0, ̇𝑦2 > 0} 
Y−+ = { y ∈ Y ∶ ̇𝑦1 < 0, ̇𝑦2 > 0} 
Y+− = { y ∈ Y ∶ ̇𝑦1 > 0, ̇𝑦2 < 0} 
Y−− = { y ∈ Y ∶ ̇𝑦1 < 0, ̇𝑦2 < 0}

  As we saw, for stable nodes, the solution path will be asymptotically attracted to the direction
defined by the eigenspace associated to the smaller eigenvalue in absolute value. In our case it is
ℰ1. This eigenspace will be contained in the union of two of the subsets defined by the isoclines.
It can be proved that if h does not belong to union of those subsets then one of the variables will
be hump-shaped.

For example, let ℰ1 ⊂ Y++ ∪ Y−−. If h ∈ Y−+ ∪ Y+− then one of the solution paths will be
hump-shaped, depending which isocline is crossed: if it crosses 𝕀𝑦1

then 𝑦1(𝑡) will be hump-shaped
and 𝑦2(𝑡) will be monotonous and if it crosses 𝕀𝑦2

then 𝑦2(𝑡) will be hump-shaped and 𝑦1(𝑡) will be
monotonous
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Figure 3.15: Saddle: ̇𝑦1 = −2𝑦1 + 5𝑦2 − 0.2, ̇𝑦2 = 𝑦1 + 2𝑦2 − 0.8.

Figure 3.16: A sink or stable node: ̇𝑦1 = −2𝑦1 + 𝑦2 + 0.2, ̇𝑦2 = 𝑦1 − 2𝑦2 + 0.8.
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Summing up, we may have three types of trajectories, independently from the uniqueness and
stability properties of steady states:

1. monotonous trajectories both stable and unstable: if the steady state is a saddle point, or
a node and the coefficient matrix A is in the Jordan form or if it is not the arbitrary constant
does not involve trajectories crossing isoclines;

2. oscillatory trajectories both stable and unstable: when there is a focus

3. hump-shaped trajectories: when there is a node, the coefficient matrix is not in the Jordan
form and trajectories cross isoclines.

3.7 Main result on stability theory

The dynamic behavior of the solution for equation (3.1) is similar to that of equation (??), but
relative to a fixed point which is not necessarily coincident with the origin .

Theorem 1. Consider the planar ODE (3.1). Assume that a fixed point y ∈ 𝑌 exists if det (A) ≠ 0
or that an infinite number of fixed points exist if det (A) = 0. The asymptotic properties of the
solution as a function of the trace and determinant of A are:

1. asymptotic stability if and only if trace(A) < 0 and det (A) ≥ 0;

2. saddle path (or conditional) stability if and only if det (A) < 0;

3. instability if and only if trace(A) > 0 and det (A) ≥ 0;

4. stability but not asymptotic stability if trace(A) = 0 and det (A) ≥ 0.  

 
In figure 3.17 we present a bifurcation diagram where the phase diagrams associated to the

different values of the trace and determinant of A ar epresented

3.8 Problems involving planar ODE’s

As we saw all the solutions involve a vector of arbitrary elements of Y, k or h. This means that
we have existence but not uniqueness for general  solutions.

In applications we introduce further information on the system. The type of problem involv-
ing planar ODE’s depends on this additional information. We can define the following types of
problems:

• if we know the initial point y(0) = y0 = (𝑦1,0, 𝑦2,0) and want to solve the problem forward in
time, we say we have an initial-value problem;

• if we know the value of at least one variable at a point in time 𝑇 > 0, y(𝑇 ) = y𝑇 , or
𝑦1(𝑇 ) = 𝑦1,𝑇 , 𝑦2(𝑇 ) = 𝑦2,𝑇 , we say we have a boundary-value problem;
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detA

tr(A)

∆(A)=0 ∆(A)=0

saddle

stable node unstable node

stable focus unstable focus

center

saddle-node (stable) saddle-node (unstable)

stable node
with multiplicity

unstable node
with multiplicity

degenerate
saddle-node

Figure 3.17: Bifurcation diagram in the (trace𝐴, det 𝐴) space
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• in economics a common problem is a mixes initial-terminal value problem, where we know the
initial value for one variable and a boundary condition for the asymptotic value of another.
Example: 𝑦1(0) = 𝑦1,0 and lim𝑡→∞ 𝑒−𝜇𝑡𝑦2(𝑡) = 0, where 𝜇 is a non-negative constant.

When the initial, boundary or terminal conditions are imposed we say we have particular
solutions. Off course, the issues of existence, uniqueness and characterization still hold.

In economics it has been standard to refer to problems having an unique solution as determi-
nate and to problems having multiple solutions as indeterminate.

3.8.1 Initial-value problems

Proposition 8. Let y(0) = y0 then the solution for the initial-value problem is unique

y(𝑡) = y + PeΛΛΛ𝑡P−1(y0 − y)

 

Proof. The general solution for a planar non-homogeneous equation is

y(𝑡) = y + PeΛΛΛ𝑡 k.

  As e�t |𝑡=0 = I then evaluating the solution at time 𝑡 = 0, we have

y(0) − y = Pk

  then, because P is non-singular
k = P−1(y(0) − y)

  Plugging the initial condition we have a particular value for k

h = P−1(y0 − y).

 

3.8.2 Terminal value problems

Proposition 9. Consider the problem defined by planar non-homogeneous equation and the limiting
constraint

lim
𝑡→∞

y(𝑡) = y ∈ Y.

  Then:

(1) if y is a stable node or a stable focus then the solution is indeterminate

y(𝑡) = y + PeΛΛΛ𝑡 k

  for any k = P−1(h − y with  h ∈ Y;
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(2) if y is an unstable node or an unstable focus then the solution is determinate

y(𝑡) = y, for all 𝑡 ∈ T

 

(3) if y is a saddle-point then the solution is indeterminate

y(𝑡) = y + 𝑘2P2𝑒𝜆−𝑡.

 

Proof.   (1) If all the eigenvalues of A have negative real parts then

lim
𝑡→∞

eΛΛΛ𝑡 = I2×2

  which implies lim𝑡→∞ y(𝑡) = y independently of the value of h. (2) if all the eigenvalues of A
have positive real parts then all the exponential functions 𝑒𝜆+𝑡, 𝑒𝜆−𝑡, 𝑒𝜆𝑡 or 𝑒𝛼𝑡 become unbounded,
which means that we can only have lim𝑡→∞  Pe�t k = 0 if and only if k = 0. Then as k is uniquely
determined, the solution is unique. (3) If the steady state is a saddle point we know that the
Jacobian form of A is ΛΛΛ1, the solution takes the form

y(𝑡) = y + 𝑘1P1𝑒𝜆+𝑡 + 𝑘2P2𝑒𝜆−𝑡

  and lim𝑡→∞ 𝑒𝜆+𝑡 = +∞ and lim𝑡→∞ 𝑒𝜆−𝑡 = 0. Therefore lim𝑡→∞ y(𝑡) = y if and only if 𝑘1 = 0,
and the solution is

y(𝑡) = y + 𝑘2P2𝑒𝜆−𝑡.

 

3.8.3 Initial-terminal value problems

Proposition 10. Consider the problem defined by planar non-homogeneous equation in which the
steady state is a saddle point, the limiting constraint

lim
𝑡→∞

y(𝑡) = y

  and the initial value 𝑦1(0) = 𝑦10 hold. Then the solution exists and is unique

y(𝑡) = y + (𝑦1,0 − 𝑦1)
𝑃 2

1
P2𝑒𝜆−𝑡.

 

Proof. We can take the solution of case (3) of the terminal-valure problem and evaluate it at time
𝑡 = 0 to get

y(0) = y + 𝑘2P2 ⇔ 𝑘2P2 + y − y(0) = 0,
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   or, expanding and substituting the initial condition

(𝑃 2
1

𝑃 2
2

) 𝑘2 + ( 𝑦1 − 𝑦1,0
𝑦2 − 𝑦2(0)) = (0

0) .

  As we want to solve this system for for 𝑦2(0) − 𝑦2 and 𝑘2 it is convenient to re-arrange it as

(𝑃 2
1 0

𝑃 2
2 1) ( 𝑘2

𝑦2 − 𝑦2(0)) = (𝑦1,0 − 𝑦1
0 ) .

  Then

( 𝑘2
𝑦2 − 𝑦2(0)) = (𝑃 2

1 0
𝑃 2

2 1)
−1

(𝑦1(0) − 𝑦1
0 ) =

= 1
𝑃 2

1
( 1 0

−𝑃 2
2 𝑃 2

1
) (𝑦1,0 − 𝑦1

0 ) =

= ( 1
−𝑃 2

2
) (𝑦1,0 − 𝑦1)

𝑃 2
1

.

 

In this case the initial value for 𝑦2(0) is determined

𝑦2(0) = 𝑦2 + 𝑃 2
2

𝑃 2
1

(𝑦1,0 − 𝑦1)

  where 𝑃 2
2

𝑃 2
1

is the slope of ℰ2 which is co-incident with the stable eigenspace ℰ𝑠.

Sometimes if we assume we know the initial value for variable 𝑦2, 𝑦2(0) = 𝑦2,0 the difference

𝑦2,0 − (𝑦2 + 𝑃 2
2

𝑃 2
1

(𝑦1,0 − 𝑦1)) is interpreted as the initial ”jump” to the saddle path.

3.9 Applications in Economics

Types of variables and types of problems

1. macroeconomics pre rational expectations models: are usually initial-value problems in which
the dynamic system is a for stable node or stable focus;

2. post rational expectations and DGE (dynamic general equilibrium) models: are usually initial-
terminal value problems in which the dynamic system is a saddle point. This structure
allows for the both forward (pre-determined) and backward (non-predetermined or expected)
dynamics and for existence and uniqueness of DGE paths;

3. neo-Keynesian DGE models: are interested in cases in which for initial-terminal value problem
in which the dynamic system can be a stable node or stable focus. This structure allows for
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the both forward (pre-determined) and backward (non-predetermined or expected) dynamics,
for the existence of DGE paths but non necessarily for their uniqueness. If DGE paths are not
unique the dynamics is said to be indeterminate, meaning that self-fulfilling prophecies are
possible, and these are related with the existence of imperfections in the markets (externalities,
incompleteness of contracts, policy rules, etc);

4. growth theory models: are usually initial or initial-terminal value problems in which there
are no positively valued steady states or steady states are a degenerate node (with a zero and
a positive eigenvalue). Two-dimensional endogenous growth models usually feature dynamic
systems with a zero and a positive real eigenvalue which is associated with the existence of a
balanced-growth path.

3.10 Bibliographic references

Mathematical textbooks: Hirsch and Smale (1974), (Hale and Koçak, 1991, ch 8) and Perko (1996)
Economics textbooks: on dynamical systems applied to economics (Gandolfo (1997), Tu (1994)),

general mathematical economics textbooks with chapters on dynamic systems (Simon and Blume,
1994, ch. 24,25), de la Fuente (2000).
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3.A Appendix

3.A.1 Review of matrix algebra

Consider matrix A of order 2 with real entries

A = (𝑎11 𝑎12
𝑎21 𝑎22

)

  that is A ∈ ℝ2×2. The trace  and the determinant  of A are, respectively,

trace(A) = 𝑎11 + 𝑎22, det (A) = 𝑎11𝑎22 − 𝑎12𝑎21.

  The kernel (or null space) of matrix A is a vector v defined as

kern(A) = { v ∶ Av = 0}

  The dimension of the kernel gives a measure of the linear independence between the rows of A.
The characteristic polynomial of matrix A is

det (A − 𝜆I2) = 𝜆2 − 𝑡𝑟𝑎𝑐𝑒(A)𝜆 + det (A) (3.38)

where 𝜆 ∈ ℂ is an eigenvalue, which is complex valued.
The spectrum of A is the set of eigenvalues

𝜎(A) ≡ {  𝜆 ∈ ℂ ∶ det (A − 𝜆I2)  = 0} 

  The eigenvalues of any 2 × 2 matrix A are

𝜆+ = trace(A)
2 + Δ(A) 1

2 , 𝜆− = trace(A)
2 − Δ(A) 1

2 (3.39)

where the discriminant is

Δ(A) ≡ (trace(A)
2 )

2
− det (A).

A useful result on the relationship between the eigenvalues and the trace and the determinant
of A:

Lemma 8. Let 𝜆+ and 𝜆− be the eigenvalues of a 2 × 2 matrix A. Then they are verify:

𝜆+ + 𝜆− = trace(A)
𝜆+𝜆− = det (A).

Three cases can occur:

1. if Δ(A) > 0 then 𝜆+ and 𝜆− are real and distinct and 𝜆+ > 𝜆−

2. if Δ(A) = 0 then 𝜆+ = 𝜆− = 𝜆 = trace(A)/2 are real and multiple,
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3. if Δ(A) < 0 then 𝜆+ and 𝜆− are complex conjugate 𝜆+ = 𝛼 + 𝛽𝑖 and 𝜆− = 𝛼 − 𝛽𝑖 where
𝛼 = 𝑡𝑟(𝐴)

2 and 𝛽 = √|Δ(A)| and 𝑖 =
√

−1.

In the last case, we can write the eigenvalues in polar coordinates as

𝜆+ = 𝑟(cos 𝜃 + sin 𝜃𝑖), 𝜆− = 𝑟(cos 𝜃 − sin 𝜃𝑖)

where 𝑟 = √𝛼2 + 𝛽2 and tan 𝜃 = 𝛽/𝛼, or

𝛼 = 𝑟 cos 𝜃, 𝛽 = 𝑟 sin 𝜃

Jordan canonical forms Two matrices A and A′ with the equal eigenvalues are called similar.
This allows for classifying matrices according to their eigenvalues.

The Jordan canonical forms for 2 × 2 matrices are

ΛΛΛ1 = (𝜆− 0
0 𝜆+

) , ΛΛΛ2 = (𝜆 1
0 𝜆) , ΛΛΛ3 = ( 𝛼 𝛽

−𝛽 𝛼) . (3.40)

Lemma 9 (Jordan canonical from of matrix A). Consider any 2 × 2 matrix with real entries and
its discriminant Δ(A). Then

1. If Δ(A) > 0 then the Jordan canonical form associated to A is ΛΛΛ1.

2. If Δ(A) = 0 then the Jordan canonical form associated to A is ΛΛΛ2.

3. If Δ(A) < 0 then the Jordan canonical form associated to A is ΛΛΛ3.

The Jordan canonical form ΛΛΛ3 can also be represented by a diagonal matrix with complex entries

ΛΛΛ3 = (𝛼 + 𝛽𝑖 0
0 𝛼 − 𝛽𝑖) .

  In this sense, if Δ(A) ≠ 0 then matrix A is diagonalizable and it is not diagonalizable if Δ(A) = 0.
Figure 3.18 presents the different cases in a (trace(A), det(A)) diagram. It has the following

information:

• Jordan canonical forms are associated to the following areas: ΛΛΛ1 is outside the parabola; ΛΛΛ3
is inside the parabola, and ΛΛΛ2 is represented by the parabola;

• in the positive orthant the two eigenvalues have positive real parts, in the negative orthant
they have negative real parts and bellow the abcissa there are two real eigenvalues with
opposite signs;

• the abcissa corresponds to the locus of points in which there is at least one zero-valued
eigenvalue, the upper part of the ordinate corresponds to complex eigenvalues with zero real
part, and the origin to the case in which there are two eigenvalues equal to zero.
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Figure 3.18: Eigenvalues of A in the trace-determinant space:

Eigenvectors of A

Lemma 10. Let A be a 2 × 2 matrix with real entries. Then, there exists a non-singular matrix
P such that

A = PΛΛΛP−1

where ΛΛΛ is the Jordan canonical form of A, and matrix P is a 2×2 eigenvector matrix associated
to A.

There are two types of eigenvectors:

1. simple eigenvectors if Δ(A) ≠ 0. In this case the eigenvector is P = (P−, P+) concatenat-
ing the eigenvectors P− and P+ associated to the eigenvalues 𝜆+ and 𝜆−, which are obtained
from solving the homogeneous system

 (A − 𝜆𝑗I2)P𝑗 = 0, 𝑗 = 1, 2

  where I2 is the identity matrix of order 2. Observe that P𝑗 = kern(A − 𝜆𝑗I2), i.e, it is the
null space of matrix (A − 𝜆𝑗I2);

2. generalized eigenvectors if Δ(A) = 0, that is, when we have multiple eigenvalues 𝜆+ =
𝜆− = 𝜆. In this case we determine P = (P1, P2) where P1 is a simple eigenvalue and P2 is a
generalized eigenvalue. They are obtained in the following way: first, P1 solves (A−𝜆I)P1 =
0, where I = I2; second, (a) if (A−𝜆I)2 ≠ 0 we determine P2 from (A−𝜆I)2P2 = 0; however,
(b) if (A − 𝜆I)2 = 0 then we determine P2 from (A − 𝜆I)P2 = P1.

When Δ(A) < 0 we can use one of the following two approaches:
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1. either we write the Jordan matrix as a complex-valued matrix

Λ3 = (𝛼 + 𝛽𝑖 0
0 𝛼 − 𝛽𝑖)

  and compute P𝑗 as a complex-valued vector from

 (A − 𝜆𝑗I2)P𝑗 = 0,

 

2. or we write the Jordan matrix as a real-valued matrix as in equation (3.40) and compute
P as a real-valued matrix by setting P = (u, v) where Q = u + v𝑖 is the solution of the
homogeneous system

(A − (𝛼 + 𝛽𝑖)I2)Q = 0

 

Conclusion: given a matrix A, we can find matrices ΛΛΛ and P such that A = PΛP−1 where P
is invertible. Equivalently Λ = P−1AP.

Proposition 11. The eigenvector matrices associated to the Jordan canonical forms are:

( 1 0
0 1) , (1 1

0 1) , ( 1 1
−1 1) (3.41)

for Λ = ΛΛΛ1, ΛΛΛ = ΛΛΛ2 and ΛΛΛ = ΛΛΛ3, respectively

Proof. For ΛΛΛ = ΛΛΛ1, because (ΛΛΛ1 − 𝜆+I)P− = 0 and (ΛΛΛ1 − 𝜆−I)P+ = 0 are

(0 0
0 𝜆− − 𝜆+

) (𝑃 −
1

𝑃 −
2

) = (0
0) , (𝜆+ − 𝜆− 0

0 0) (𝑃 +
1

𝑃 +
2

) = (0
0)

then we get P = (P−P+) = I, because 𝜆+ ≠ 𝜆−. For ΛΛΛ = ΛΛΛ2 we determine the simple eigenvector
from (ΛΛΛ2 − 𝜆I)P− = 0. To determine the second eigenvector as (𝜆− − 𝜆I)2 = 0, because

(𝜆− − 𝜆I)2 = (0 1
0 0)

2

= (0 0
0 0) ,

then we use (ΛΛΛ2 − 𝜆I)P2 = P1,

(0 1
0 0) (𝑃 −

1
𝑃 −

2
) = (0

0) , (0 1
0 0) (𝑃 +

1
𝑃 +

2
) = (𝑃 −

1
𝑃 −

2
) ,

to get P1 = (1, 0) and P2 = (1, 1).
For ΛΛΛ = ΛΛΛ3 consider eigenvalue 𝜆+ = 𝛼 + 𝛽𝑖 and assume that there is a complex vector

z = (𝑢1 + 𝑣1𝑖
𝑢2 + 𝑣2𝑖)
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that solves (Λ3 − (𝛼 + 𝛽𝑖)𝐼)z = 0, that is 7

⎧{
⎨{⎩

𝛽 (𝑢2 + 𝑣1 + (𝑣2 − 𝑢1)𝑖) = 0
𝛽 ((𝑣2 − 𝑢1) − (𝑢2 + 𝑣1)𝑖) = 0

then we should have 𝑢1 = 𝑣2 and 𝑢2 = −𝑣1. We can arbitrarily set 𝑢1 = 1 and 𝑣1 = 1, in
P1 = (𝑢1, 𝑢2)⊤ and P2 = (𝑣1, 𝑣2)⊤, to get the third eigenvector matrix.

 

Eigenspaces As matrix P is non singular it forms a basis for vector space A. Then vector space
A can be seen as a direct sum A = ℰ1 ⊕ ℰ2 where

ℰ1 = {eigenspace associated with 𝜆+}
ℰ2 = { eigenspace associated with 𝜆−}. 

3.A.2 Polar coordinates

When the eigenvalues are complex (or the model is non-linear) sometimes we can simplify the
solution and get a better geometrical intuition of it, if we transform the ODE from cartesian
coordinates (𝑦1, 𝑦2) ∈ ℝ into polar coordinates (𝑟, 𝜃) by using the transformation:

𝑦1(𝑡) = 𝑟(𝑡) cos(𝜃(𝑡)), 𝑦2(𝑡) = 𝑟(𝑡) sin(𝜃(𝑡)).

  where 𝑟 measures the distance from a reference point (the radius) and 𝜃 the angular coordinate.
The following relationships hold 𝑟2 = 𝑦2

1 + 𝑦2
2, because cos(𝜃)2 + sin(𝜃)2 = 1 and tan(𝜃) =

sin(𝜃)/ cos(𝜃) = 𝑦2/𝑦1. If we take time derivatives of this two relationships we find

𝑟′ = 𝑦1 ̇𝑦1 + 𝑦2 ̇𝑦2
𝑟  

𝜃′ = 𝑦1 ̇𝑦2 − 𝑦2 ̇𝑦1
𝑟2

 
Exercise: provide a proof (hint 𝑑(tan(𝜃(𝑡))/𝑑𝑡 = (1 + tan(𝜃)2)𝜃′ = (1 + (𝑦2/𝑦1)2)𝜃′ .
In order to apply this transformation, consider the ODE

̇𝑦1 = 𝛼𝑦1 + 𝛽𝑦2

̇𝑦2 = −𝛽𝑦1 + 𝛼𝑦2

  The ODE in polar coordinates becomes

𝑟′ = 𝛼𝑟 
𝜃′ = −𝛽

7We use the rules for sums and multiplications of complex numbers: if 𝑥1 = 𝑎1 + 𝑏1𝑖 and 𝑥2 = 𝑎2 + 𝑏2𝑖, then
𝑥1 + 𝑥2 = (𝑎1 + 𝑎2) + (𝑏1 + 𝑏2)𝑖 and 𝑥1𝑥2 = (𝑎1𝑎2 − 𝑏1𝑏2) + (𝑎1𝑏2 + 𝑎2𝑏1)𝑖 because 𝑖2 = −1.
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  which has the general solution

𝑟(𝑡) = 𝑟0𝑒𝛼𝑡

𝜃(𝑡) = 𝜃0 − 𝛽𝑡

  If 𝛼 < 0 the radius converges to zero (meaning that the the dynamics is stable) and if 𝜃 > 0 the
movement is clockwise.

3.A.3 Second order equations

Consider a general second order equation.

̈𝑦 − 𝑎1 ̇𝑦 + 𝑎0𝑦 = 0

If we define 𝑦1 = 𝑦 and 𝑦2 = ̇𝑦 = ̇𝑦1, then, we can transform the equation into the system

̇𝑦1 = 𝑦2,
̇𝑦2 = 𝑎0𝑦1 + 𝑎1𝑦2.
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