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Chapter 6

Calculus of variations

 

6.1 Calculus of variations: introduction

Calculus of variations problems consist in finding an extreme of a functional over a function 𝑦 ∶
X → Y, which can be subject to additional requirements. Solving a calculus of variations problem
means finding function 𝑦∗(𝑥).

The objective functional  takes the form

J[𝑦] ≡ ∫
𝑥1

𝑥0

𝐹(𝑥, 𝑦(𝑥), 𝑦′(𝑥)) 𝑑𝑥 (6.1)

  in which we call 𝐹(.) is known.
We assume that 𝐹𝑦′(𝑥, 𝑦, 𝑦′) = 𝜕𝐹(𝑥, 𝑦, 𝑦′)

𝜕𝑦′) ≠ 0, except maybe in a subset of measure zero. This

is the characteristic of function 𝐹(.) which makes the problem a dynamic optimization problem (if
time is the independent variable), in the sense that the optimization involves a trade-off between
the current state 𝑦(𝑥) and the change in the current state, 𝑦′(𝑥). If 𝐹𝑦′(𝑥, 𝑦(𝑥), 𝑦′(𝑥)) = 0 globally,
for any 𝑥 ∈ X the problem will degenerate to a static functional optimization.

To understand the effect of the derivative on the optimum, consider instead the objective func-
tional

J0[𝑦] ≡ ∫
𝑥1

𝑥0

𝐹(𝑥, 𝑦(𝑥)) 𝑑𝑥.

If there are no other conditions, if 𝑦∗(𝑥) is the optimum, a necessary condition is

𝛿J0[𝑦∗]
𝛿𝑦(𝑥) = 𝐹𝑦(𝑥, 𝑦∗(𝑥)) = 0, for every 𝑥 ∈ X

  where 𝐹𝑦(𝑥, 𝑦) = 𝜕𝐹(𝑥, 𝑦)
𝜕𝑦 . This condition is a point-wise optimality criterium: the optimum

𝑦∗(𝑥) is found by finding an extremum for every point in 𝑥 ∈ X independent of any other point
∈ X. If the objective function depends on the derivative of function 𝑦(⋅), 𝑦′(⋅), this means that the
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local interaction influences the value of the problem. This has two consequences: first, the optimum
cannot be just determined by a point-wise extremum, and, second, any constraint on the value of
𝑦 will influence the solution.

This also means that the should look for solutions 𝑦 ∈ 𝐶1(X; Y), where 𝐶1(X; Y) is the set of
continuously differentiable functions mapping X into Y.

Two observations are important referring to the nature of the independent variable, 𝑥, and to
its domain X.

First, from now on, as in most economic applications, 𝑥 is a non-negative real number referring
to time , i.e. 𝑥 = 𝑡 and X = T ⊆ ℝ+. However in some microeconomic problems or static macroe-
conomic problems with heterogeneity among agents, and, for example, information or searching
frictions we are lead to solve optimal control problems in which the independent variable is not
time and has a support belonging to a continuum, for instance X = [𝑥0, 𝑥1]. In time-dependent
problems we call 𝑥0 = 𝑡0 the initial time and 𝑥1 = 𝑡1 the terminal time, or horizon, while for
non-time-dependent models the designation depends on the context. For example in models in
which 𝑥 refers to the skill level 𝑥0 refers to the lowest skill in the distribution and 𝑥1 to the highest
skill. Therefore, from now on we call 𝑥0 the lower bound and 𝑥1 the upper bound of X.

Second, in time-dependent problems we usually assume that 𝑥0 = 𝑡0 and 𝑥1 = 𝑡1 may be fixed
(v.g., in macroeconomic models) or free (v.g., in microeconomic problems). If 𝑥 refers to other type
of variables 𝑥0 and 𝑥1 may refer to cutoff points which can be free and optimally determined.

At last, another important point to be made, which is particularly important in macroeconomics
is related to the boundedness of X. We can consider 𝑥1 to be bounded or unbounded 𝑥1 = ∞. In
the case in which 𝑥 refers to time we have to distinguish between finite or infinite horizon cases.

In this section, we start with the simplest case, in subsection 6.2.1 the case in which the boundary
of X and the values of the state variables at that boundary are also known, i.e, 𝑥0, 𝑥1, 𝑦(𝑥0) and
𝑦(𝑥1) are known. Next we consider the cases in which 𝑥0 are 𝑥1 known but 𝑦(𝑥0) and 𝑦(𝑥1) are
free, the cases in which known 𝑦(𝑥0) and 𝑦(𝑥1) are known but 𝑥0 are 𝑥1 are free and the cases
in which 𝑥0, 𝑥1, 𝑦(𝑥0) and 𝑦(𝑥1) are all free. Then we deal with two cases which are common to
time-dependent models: the existence of terminal constraints and the infinite horizon problem.

6.2 Bounded domains and equality constraints

 

6.2.1 The simplest CV problem

The simplest CV problem is the following: (i) let the set of independent variables be closed and
bounded X = [𝑥0, 𝑥1], where the limits 𝑥0 and 𝑥1 are known, (ii) let 𝑦(𝑥0) = 𝑦0 and 𝑦(𝑥1) = 𝑦1 be
also known; (iii) find a function 𝑦 ∶ X → ℝ, that maximizes the objective functional  (6.1).
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Formally, the simplest problem is:

max
𝑦(⋅)

∫
𝑥1

𝑥0

𝐹(𝑥, 𝑦(𝑥), 𝑦′(𝑥)) 𝑑𝑥

subject to
𝑥0 and 𝑥1 known
𝑦(𝑥0) = 𝑦0 and 𝑦(𝑥1) = 𝑦1 known

(P1)

We denote by 𝜑 = (𝑥0, 𝑥1, 𝑦0, 𝑦1, .) be vector of the data of the problem containing the lower
and upper values of the independent variable, the associated values of the state function, and other
parameters that might exist in function 𝐹(.).

The value function, 𝑉 (𝜑) = J[𝑦∗], depends on the data of the problem, that is

𝑉 (𝑥0, 𝑥1, 𝑦0, 𝑦1, .) = J[𝑦∗] ≡ max
𝑦∈Y

∫
𝑥1

𝑥0

𝐹(𝑥, 𝑦∗(𝑥), 𝑦∗′(𝑥)) 𝑑𝑥,

  where Y is the admissibility set, that is

Y ≡ {𝑦(𝑥) ∈ ℝ ∶ 𝑦(𝑥0) = 𝑦0, 𝑦(𝑥1) = 𝑦1} 

  the set of functions which satisfy the lower and upper boundary data and X = [𝑥0, 𝑥1]. Therefore,
the problem is to find a function 𝑦∗ ∶ X → Y, which maximizes the functional (6.1).

Proposition 1. First order necessary conditions for the simplest problem, (P1) : 𝑦∗ ∶
[𝑥0, 𝑥1]  → Y is a solution of the simplest CV problem only if it satisfies the Euler-Lagrange
equation 1:

𝐹𝑦(𝑥, 𝑦∗(𝑥), 𝑦∗′(𝑥)) = 𝑑
𝑑𝑥(𝐹𝑦′(𝑥, 𝑦∗(𝑥), 𝑦∗′(𝑥))), for 𝑥 ∈ (𝑥0, 𝑥1) (6.2)

together with the boundary conditions

𝑦∗(𝑥0) = 𝑦0, and 𝑦∗(𝑥1) = 𝑦1 (6.3)

Proof. (Heuristic) Assume we know 𝑦∗. Then the maximum value for the functional is

J[𝑦∗] = ∫
𝑥1

𝑥0

𝐹(𝑥, 𝑦∗(𝑥), 𝑦∗′(𝑥)) 𝑑𝑥.

  Function 𝑦∗ is an optimum only if J[𝑦∗] ≥ J[𝑦] for any other admissible function 𝑦 ∶ X → Y. Take
an admissible variation over 𝑦∗, 𝑦 = 𝑦∗ +𝛿𝑦 such that the variation is a parameterized perturbation 
of 𝑦∗, that is 𝛿𝑦 = 𝜀𝜂 where 𝜂X → Y and 𝜀 is a number. A variation to be admissible has to satisfy
𝑦(𝑥1) = 𝑦∗(𝑥1) = 𝑦1 and 𝑦(𝑥0) = 𝑦∗(𝑥0) = 𝑦0. Therefore, an admissible perturbation has to satisfy
𝜂(𝑥0) = 𝜂(𝑥1) = 0 and it can take arbitrary values 𝜂(𝑥) ∈ Y for 𝑥 in the interior of the domain X.

1We use the notation 𝐹𝑦 (𝑥, 𝑦, 𝑦′) = 𝜕𝐹(𝑥, 𝑦, 𝑦′)
𝜕𝑦 and 𝐹𝑦′ (𝑥, 𝑦, 𝑦′) = 𝜕𝐹(𝑥, 𝑦, 𝑦′)

𝜕𝑦′ .
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The value functional for the perturbed function 𝑦 is

J[𝑦] = J[𝑦∗ + 𝜀𝜂]  = ∫
𝑥1

𝑥0

𝐹(𝑥, 𝑦∗(𝑥) + 𝜀𝜂(𝑥), 𝑦∗′(𝑥) + 𝜀𝜂′(𝑥))𝑑𝑥.

  A first-order expansion of the functional J[𝑦] in a neighbourhood of 𝑦∗,

J[𝑦]  = J[𝑦∗] + 𝛿J[𝑦∗](𝜂)𝜀 + 𝑜(𝜀)

  Then J[𝑦∗] ≥ J[𝑦] only if the first integral derivative of 𝐽 is zero: 𝛿J[𝑦∗](𝜂) = 0.
Because the Gâteaux derivative of a functional evaluated at 𝑦∗ for the perturbation 𝜂 is

𝛿J[𝑦∗](𝜂) = 𝑑
𝑑𝜀∣

𝜀=0
J[𝑦∗ + 𝜀𝜂]

  we have

𝛿J[𝑦∗](𝜂) = ∫
𝑥1

𝑥0

(𝐹𝑦(𝑥, 𝑦∗(𝑥), 𝑦∗′(𝑥)) 𝜂(𝑥) + 𝐹𝑦′(𝑥, 𝑦∗(𝑥), 𝑦∗′(𝑥)) 𝜂′(𝑥)) 𝑑𝑥.

  Intregrating by parts the second integral yields

∫
𝑥1

𝑥0

𝐹𝑦′(𝑥, 𝑦∗(𝑥), 𝑦∗′(𝑥)) 𝜂′(𝑥)𝑑𝑥 = ∫
𝑥1

𝑥0

𝐹𝑦′(𝑥, 𝑦∗(𝑥), 𝑦∗′(𝑥)) 𝜂(𝑥) − ∫
𝑥1

𝑥0

𝑑𝐹𝑦′(𝑥, 𝑦∗(𝑥), 𝑦∗′(𝑥)) 𝜂(𝑥),

  which implies

𝛿J[𝑦∗](𝜂) = ∫
𝑥1

𝑥0

(𝐹𝑦(𝑥, 𝑦∗(𝑥), 𝑦∗′(𝑥)) − 𝑑
𝑑𝑥𝐹𝑦′(𝑥, 𝑦∗(𝑥), 𝑦∗′(𝑥))) 𝜂(𝑥) 𝑑𝑥+

+ 𝐹𝑦′(𝑥1, 𝑦∗(𝑥1), 𝑦∗′(𝑥1)) 𝜂(𝑥1) − 𝐹𝑦′(𝑥0, 𝑦∗(𝑥0), 𝑦∗′(𝑥0)) 𝜂(𝑥0).
(6.4)

As, in this case with fixed boundary values for the variable 𝑦, the admissible perturbation satisfies
𝜂(𝑥1) = 𝜂(𝑥0) = 0 equation (6.4) reduces to

𝛿J[𝑦∗](𝜂) = ∫
𝑥1

𝑥0

(𝐹𝑦(𝑥, 𝑦∗(𝑥), 𝑦∗′(𝑥)) − 𝑑
𝑑𝑥𝐹𝑦′(𝑥, 𝑦∗(𝑥), 𝑦∗′(𝑥))) 𝜂(𝑥) 𝑑𝑥

  If 𝐹(.) is a continuous function we can use the following result: if ℎ ∶= [𝑥0, 𝑥1] → ℝ is a continuous
function and ∫𝑥1

𝑥0
ℎ(𝑥)𝜂(𝑥)𝑑𝑥 for all 𝐶1 functions 𝜂 and if 𝜂(𝑥0) = 𝜂(𝑥1) = 0 then ∫𝑥1

𝑥0
ℎ(𝑥)𝜂(𝑥)𝑑𝑥 = 0

if and only if ℎ(𝑥) = 0 for all 𝑥 ∈ (𝑥0, 𝑥1).
Therefore 𝛿J[𝑦∗](𝜂) = 0 if an only if 𝐹𝑦(𝑥, 𝑦∗(𝑥), 𝑦∗′(𝑥)) − 𝑑

𝑑𝑥𝐹𝑦′(𝑥, 𝑦∗(𝑥), 𝑦∗′(𝑥)) = 0 for every
𝑥 ∈ X = [𝑥0, 𝑥1].

The Euler-Lagrange equation is a 2nd order ODE (ordinary differential equation) if 𝐹𝑦′𝑦′ ≠ 0:
if we expand the right-hand-side we find

𝐹 ∗
𝑦′𝑦′ 𝑦″ + 𝐹 ∗

𝑦′𝑦 𝑦′  + 𝐹 ∗
𝑦′𝑥 − 𝐹 ∗

𝑦 = 0, 𝑥0 ≤ 𝑥 ≤ 𝑥1,

where the derivatives of 𝐹(⋅) are evaluated at the optimum 𝑦∗(𝑥): for instance 𝐹 ∗
𝑦 = 𝐹𝑦(𝑥, 𝑦∗, 𝑦∗′).
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We can transform it into a system of first order ODE’s if we define 𝑦1 = 𝑦 and 𝑦2 = 𝑦′ then

𝑦′
1 = 𝑦2

𝐹𝑦2𝑦2
(𝑥, 𝑦1, 𝑦2) 𝑦′

2 = 𝐹𝑦1
(𝑥, 𝑦1, 𝑦2) − 𝐹𝑥(𝑥, 𝑦1, 𝑦2) − 𝐹𝑦2𝑦1

(𝑥, 𝑦1, 𝑦2)𝑦2.
 

The first order necessary condition only allows for the determination of an extremum. In order
to get the a necessary condition for a maximand we need a second order condition:

Proposition 2. Second order necessary conditions: the solution to the CV problem 𝑦∗ ∶ X → Y
is a maximand only if it satisfies the Legendre-Clebsch condition

𝐹𝑦′𝑦′(𝑥, 𝑦∗(𝑥), 𝑦∗′(𝑥)) ≤ 0 (6.5)

 

Proof. (Heuristic but more complicated). Performing a second -order expansion of the functional
J[𝑥] in a neighbourhood of 𝑦∗, we obtain

J[𝑦]  = J[𝑦∗] + 𝛿J[𝑦∗](𝜂)𝜀 + 1
2 𝛿2J[𝑦∗](𝜂)𝜀2 + 𝑜(𝜀2),

  where
𝛿2J[𝑦∗](𝜂) = 𝑑2

𝑑𝜀2 ∣
𝜀=0

J[𝑦∗  + 𝜀𝜂]. 

  Because at the optimum for any admissible perturbation 𝜂 we have 𝛿J[𝑦∗](𝜂) = 0, and at a have
a maximum J[𝑦]  ≤ J[𝑦∗], a necessary condition is 𝛿2J[𝑦∗](𝜂) ≤ 0.

The second-order functional derivative is

𝛿2J[𝑦∗](𝜂) = ∫
𝑥1

𝑥0

(𝐹𝑦𝑦(𝑥, 𝑦∗(𝑥), 𝑦∗′(𝑥)) 𝜂(𝑥)2+

+ 2𝐹𝑦𝑦′(𝑥, 𝑦∗(𝑥), 𝑦∗′(𝑥)) 𝜂(𝑥) 𝜂′(𝑥) + 𝐹𝑦′𝑦′(𝑥, 𝑦∗(𝑥), 𝑦∗′(𝑥)) (𝜂′(𝑥))2) 𝑑𝑥.

As

∫
𝑥1

𝑥0

2𝐹 ∗
𝑦𝑦′(𝑥) 𝜂(𝑥) 𝜂′(𝑥)𝑑𝑥 = ∫

𝑥1

𝑥0

𝐹 ∗
𝑦𝑦′(𝑥) 𝑑

𝑑𝑥 (𝜂(𝑥)2)𝑑𝑥 =

= 𝐹 ∗
𝑦𝑦′(𝑥) 𝜂(𝑥)2∣

𝑥1

𝑥0
− ∫

𝑥1

𝑥0

𝑑
𝑑𝑥 (𝐹 ∗

𝑦𝑦′)(𝜂(𝑥)2)𝑑𝑥

= − ∫
𝑥1

𝑥0

𝑑
𝑑𝑥 (𝐹 ∗

𝑦𝑦′)(𝜂(𝑥)2)𝑑𝑥

 

  because of the admissibility conditions 𝜂(𝑥0) = 𝜂(𝑥1) = 0. Then

𝛿2J[𝑦∗](𝜂) = ∫
𝑥1

𝑥0

((𝐹 ∗
𝑦𝑦(𝑥) − 𝑑

𝑑𝑥𝐹 ∗
𝑦𝑦′(𝑥))𝜂(𝑥)2 + 𝐹 ∗

𝑦′𝑦′(𝑥)(𝜂′(𝑥))2)𝑑𝑥.

Following (Liberzon, 2012, p.59-60)), it can be shown that 𝛿2J[𝑦∗](𝜂) ≤ 0 only if condition (6.5)
holds.
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Proposition 3. Sufficient conditions: let 𝑦∗ ∈ Y verify

𝐹𝑦 (𝑡, 𝑦∗, 𝑦∗′) = 𝑑
𝑑𝑥 𝐹𝑦′(𝑡, 𝑦∗, 𝑦∗′) and 𝐹𝑦′𝑦′(𝑡, 𝑦∗, 𝑦∗′) ≤ 0

then (under some additional conditions on the trajectory of 𝑦) 𝑦∗ is an optimiser to J[𝑦].

Proof. See (Liberzon, 2012, p.62-68)

Proposition 4. Necessary and sufficient conditions: consider the simplest calculus of varia-
tions problem and assume that 𝐹𝑦′𝑦′(𝑥, 𝑦(𝑥), 𝑦′(𝑥)) ≤ 0 for every 𝑥 ∈ [𝑥0, 𝑥1] then equations (6.3.1)
and (6.3) are necessary and sufficient conditions.

6.2.2 Free boundary values for the state variable

Now we consider the problem: find function 𝑦∗ among admissible functions 𝑦 ∈ Y having the
following properties: 𝑦 ∶ X → 𝑌 ⊆ ℝ , where X = [𝑥0, 𝑥1] has known boundaries, 𝑥0 and 𝑥1, and
such that 𝑦(𝑥0) and/or 𝑦(𝑥1) are free. The objective functional is again (6.1).

Formally, the problem are:

max
𝑦(⋅)

∫
𝑥1

𝑥0

𝐹(𝑥, 𝑦(𝑥), 𝑦′(𝑥)) 𝑑𝑥

subject to
𝑥0 and 𝑥1 known
𝑦(𝑥0) = 𝑦0 and 𝑦(𝑥1) = 𝑦1 free (P2a)
𝑦(𝑥0) = 𝑦0 known, 𝑦(𝑥1) = 𝑦1 free (P2b)
𝑦(𝑥0) = 𝑦0 free 𝑦(𝑥1) = 𝑦1 known (P2c)

In this case the data of the problem P2a, for instance, is 𝜑 = (𝑥0, 𝑥1, .). and the value functional
is

𝑉 (𝑥0, 𝑥1, .) = max
𝑦∈Y

∫
𝑥1

𝑥0

𝐹(𝑥, 𝑦(𝑥), 𝑦′(𝑥))𝑑𝑥.
 

Proposition 5. First order necessary conditions for the free terminal state problem:
𝑦∗ ∈ Y is the solution to one of the CV problem with free boundary values for the state variable and
known terminal values for the independent variable, 𝑥0 and 𝑥1, problems P2a, P2b, or P2c, only if
it satisfies the Euler equation (6.3.1) and the boundary conditions:

1. if both boundary values are free (problem P2a)

𝐹𝑦′(𝑥0, 𝑦∗(𝑥0), 𝑦∗′(𝑥0)) = 0, and  𝐹𝑦′(𝑥1, 𝑦∗(𝑥1), 𝑦∗′(𝑥1)) = 0 (6.7)

2. if the lower boundary value is given by 𝑦(𝑥0) = 𝑦0, and the upper boundary value is free
(problem P2b)

𝑦∗(𝑥0) = 𝑦0, and 𝐹𝑦′(𝑥1, 𝑦∗(𝑥1), 𝑦∗′(𝑥1)) = 0 (6.8)
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3. if the upper boundary value is given by 𝑦(𝑥1) = 𝑦1, and the lower boundary value is free
(problem P2c)

𝐹𝑦′(𝑥0, 𝑦∗(𝑥0), 𝑦∗′(𝑥0)) = 0, and 𝑦∗(𝑥1) = 𝑦1. (6.9)

Proof. (Heuristic) Now the boundary values for perturbation are 𝜂(𝑥0) and 𝜂(𝑥1) can take any
value, including zero if the associated boundary value 𝑦(𝑥), for 𝑥 ∈ {𝑥0, 𝑥1} is fixed. The proof
follows the same steps as in the proof pf Proposition 1. However, in equation (6.4), in order to get
𝛿J[𝑦∗](𝜂) = 0, and after introducing the Euler-Lagrange condition, we should have

𝐹𝑦′(𝑥𝑗, 𝑦∗(𝑥𝑗), 𝑦∗′(𝑥𝑗)) 𝜂(𝑥𝑗) = 0, for 𝑗 = 0, 1. (6.10)

Thus we have two cases, concerning the adjoint conditions at boundary 𝑥𝑗, for 𝑗 = 0, 1, for an
optimum. First, if the value of the state variable for the boundary 𝑥𝑗 is known, i.e., 𝑦(𝑥𝑗) = 𝑦𝑗, an
admissible perturbation should verify 𝜂(𝑥𝑗) = 0, implying that condition (6.10) holds automatically.
This is the case in Proposition 1. Second, if the value of the state variable for the boundary 𝑥𝑗
is free, then the related perturbation value is arbitrary and 𝜂(𝑥𝑗) ≠ 0 in general. The optimally
condition (6.10) holds if and only if 𝐹𝑦′(𝑥𝑗, 𝑦∗(𝑥𝑗), 𝑦∗′(𝑥𝑗)) = 0 which provides one adjoint condition
allowing for the determination of the optimal boundary value for the state variable 𝑦∗(𝑥𝑗). This is
how we adjoint (6.7) to (6.9) depending on which boundary value for the state variable is free.

In time-varying models in which the value of the state variable is known at time 𝑡 = 0 and the
terminal value of the state variable is endogenous we supplement the Euler-Lagrange with condition
(6.8).

However, there are models in which the initial value of the state variable is unknown. This is the
case, for instance, in optimal taxation models of the Mirrlees (1971) type in which the independent
variable are skill values and the initial condition is related to the cutoff level of skill bellow which
taxes should be zero. In this case condition (6.7) can be used.

Observation: as the Euler-Lagrange is a second-order differential equation, in order to fully
solve a model we need to have information on the value of 𝑦 at the two boundaries for 𝑥 = 𝑥0 and
𝑥 = 𝑥1.

6.2.3 Free boundary values for the independent variable

Now we consider the problem: find function 𝑦∗ ∈ Y which is the set of functions 𝑦 ∶ X∗ → ℝ , where
X∗ has at least one unknown boundary, 𝑥∗

0 and/or 𝑥∗
1, but such that the terminal values for the

state variable are known. That is X∗ = [𝑥∗
0, 𝑥1] or X∗ = [𝑥0, 𝑥∗

1] or X∗ = [𝑥∗
0, 𝑥∗

1] where 𝑥𝑗 is known
and 𝑥∗

𝑗 is free. If a boundary value for the independent variable is free the related boundary value
for the state variable is known, that is 𝑦(𝑥∗

𝑗) = 𝑦𝑗. The objective functional is again (6.1).
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Formally, the problem are :

max
𝑦(⋅)

∫
𝑥1

𝑥0

𝐹(𝑥, 𝑦(𝑥), 𝑦′(𝑥)) 𝑑𝑥

subject to
𝑦(𝑥0) = 𝑦0 and 𝑦(𝑥1) = 𝑦1 known
𝑥0 and 𝑥1 free (P3a)
𝑥0 known, 𝑥1 free (P3b)
𝑥0 free 𝑥1 known (P3c)

In this case the data of the problem is 𝜑 = (𝑦0, 𝑦1, .). and the value functional is

𝑉 (𝑦0, 𝑦1, .) = max
𝑦∈Y,𝑥0,𝑥1

∫
𝑥1

𝑥0

𝐹(𝑥, 𝑦(𝑥), 𝑦′(𝑥))𝑑𝑥 = ∫
𝑥∗

1

𝑥∗
0

𝐹(𝑥, 𝑦∗(𝑥), 𝑦∗′(𝑥))𝑑𝑥

  where we 𝑥∗
0 and/or 𝑥∗

1 are determined endogenously.

Proposition 6. First order necessary conditions for the free boundaries value problem:
𝑦∗ ∈ Y is the solution to the CV problem with known boundary values for the state variable, 𝑦0
and 𝑦1, and free terminal values for the independent variable, problems P3a, P3b, or P3c, only if
it satisfies the Euler equation (6.3.1) and the boundary conditions:

1. if both boundary values for the indepdendent variable are free (problem P3a)

𝐹(𝑥∗
0, 𝑦0, 𝑦∗′(𝑥∗

0)) − 𝐹𝑦′(𝑥∗
0, 𝑦0, 𝑦∗′(𝑥∗

0)) 𝑦∗′(𝑥∗
0) = 0

and  𝐹 (𝑥∗
1, 𝑦1, 𝑦∗′(𝑥∗

1)) − 𝐹𝑦′(𝑥∗
1, 𝑦1, 𝑦∗′(𝑥∗

1)) 𝑦∗′(𝑥∗
1) = 0 (6.12)

2. if the lower boundary value for the independent variable is known, 𝑥∗
0 = 𝑥0, and the upper

boundary for the independent variable is free (problem P3b)

𝑥∗
0 = 𝑥0, and 𝐹(𝑥∗

1, 𝑦1, 𝑦∗′(𝑥∗
1)) − 𝐹𝑦′(𝑥∗

1, 𝑦1, 𝑦∗′(𝑥∗
1))𝑦∗′(𝑥∗

1) = 0 (6.13)

3. if the upper boundary value for the independent variable is known, 𝑥∗
1 = 𝑥1, and the lower

boundary for the independent variable is free (problem P3c)

𝐹(𝑥∗
0, 𝑦0, 𝑦∗′(𝑥∗

0)) − 𝐹𝑦′(𝑥∗
0, 𝑦0, 𝑦∗′(𝑥∗

0))𝑦∗′(𝑥∗
0) = 0, and 𝑥∗

1 = 𝑥1. (6.14)

Proof. (Heuristic) Let us assume that we know the solution 𝑦∗(𝑥) for 𝑥 ∈ [𝑥∗
0, 𝑥∗

1], that is for all
values of the independent variable contained between the two optimally chosen boundary values.
In this case we have to introduce two types of perturbations: a perturbation to the state variable
𝑦(𝑥) = 𝑦∗(𝑥) + 𝜀𝜂(𝑥) and to the independent variable 𝑥 = 𝑥∗ + 𝜀𝜒(𝑥). If we denote 𝑦∗

𝑗 = 𝑦∗(𝑥∗
𝑗), for

𝑗 = 0, 1, the two boundary values for the independent and dependent variables are 𝑃 ∗
𝑗 ≡ (𝑥∗

𝑗, 𝑦∗
𝑗)

for 𝑗 = 0, 1 at the optimum. The related terminal points for the perturbed solution are written as
𝑃𝑗 = (𝑥∗

𝑗 + 𝜀𝜒𝑗, 𝑦∗
𝑗 + 𝜀𝜂𝑗) for 𝑗 = 0, 1.



Paulo Brito Advanced Mathematical Economics 2020/2021 11

At the optimum the objective functional is

J[𝑦∗; 𝑥∗] = ∫
𝑥∗

1

𝑥∗
0

𝐹(𝑥, 𝑦∗(𝑥), 𝑦∗′(𝑥))𝑑𝑥

  and

J[𝑦∗ + 𝜀𝜂; 𝑥∗ + 𝜀𝜒] = ∫
𝑥∗

1+𝜀𝜒1

𝑥∗
0+𝜀𝜒0

𝐹(𝑥, 𝑦∗(𝑥) + 𝜀𝜂(𝑥), 𝑦∗′(𝑥) + 𝜀𝜂′ (𝑥))𝑑𝑥.

  Then, denoting ΔJ(𝜀) = J[𝑦∗ + 𝜀𝜂; 𝑥∗ + 𝜀𝜒] − J[𝑦∗; 𝑥∗] we have

ΔJ(𝜀) = ∫
𝑥∗

1+𝜀𝜒1

𝑥∗
0+𝜀𝜒0

𝐹(𝑥, 𝑦∗(𝑥) + 𝜀𝜂(𝑥), 𝑦∗′(𝑥) + 𝜀 𝜂′(𝑥)) 𝑑𝑥 − ∫
𝑥∗

1

𝑥∗
0

𝐹(𝑥, 𝑦∗(𝑥), 𝑦∗′(𝑥)) 𝑑𝑥

= ∫
𝑥∗

1

𝑥∗
0

(𝐹(𝑥, 𝑦∗(𝑥) + 𝜀𝜂(𝑥), 𝑦∗′(𝑥) + 𝜀𝜂′ (𝑥)) − 𝐹(𝑥, 𝑦∗(𝑥), 𝑦∗′(𝑥)))𝑑𝑥+

+ ∫
𝑥∗

1+𝜀𝜒1

𝑥∗
1

𝐹(𝑥, 𝑦∗(𝑥) + 𝜀𝜂(𝑥), 𝑦∗′(𝑥) + 𝜀𝜂′ (𝑥))𝑑𝑥−

− ∫
𝑥∗

0

𝑥∗
0+𝜀𝜒0

𝐹(𝑥, 𝑦∗(𝑥) + 𝜀𝜂(𝑥), 𝑦∗′(𝑥) + 𝜀𝜂′ (𝑥))𝑑𝑥

  Denoting 𝐹 ∗(𝑥) = 𝐹(𝑡, 𝑦∗(𝑥), ̇𝑦∗(𝑥)) and using the mean-value theorem,

ΔJ(𝜀) = 𝜀 ∫
𝑥∗

1

𝑥∗
0

(𝐹 ∗
𝑦 (𝑥)𝜂(𝑥) + 𝐹 ∗

𝑦′(𝑥)𝜂′(𝑥)) 𝑑𝑥 + 𝐹( ̃𝑥1) 𝜀 𝜒1 − 𝐹( ̃𝑥0) 𝜀 𝜒0

  where ̃𝑥1 ∈ (𝑥∗
1, 𝑥∗

1 + 𝜀 𝜒1) and ̃𝑥0 ∈ (𝑥∗
0, 𝑥∗

0 + 𝜀 𝜒0). Taking 𝛿J[𝑦∗; 𝑥∗] (𝜂, 𝜒) = lim𝜀→0
ΔJ(𝜀)

𝜀 , the
functional derivative becomes

𝛿J[𝑦∗; 𝑥∗] (𝜂, 𝜒) = ∫
𝑥∗

1

𝑥∗
0

(𝐹 ∗
𝑦 (𝑥)𝜂(𝑥) + 𝐹 ∗

𝑦′(𝑥) 𝜂′(𝑥))𝑑𝑥 + 𝐹 ∗(𝑥)∣
𝑥=𝑥∗

1
𝜒1 − 𝐹 ∗(𝑥)∣

𝑥=𝑥∗
0
𝜒0.

  Integration by parts yields

𝛿J[𝑦∗; 𝑥∗] (𝜂, 𝜒) = ∫
𝑥∗

1

𝑥∗
0

(𝐹 ∗
𝑦 (𝑥) − 𝑑

𝑑𝑥𝐹 ∗
𝑦′(𝑥)) 𝜂(𝑥)𝑑𝑥+

+ 𝐹 ∗
𝑦′(𝑥)𝜂(𝑥)∣

𝑥=𝑥∗
1

− 𝐹 ∗
𝑦′(𝑥)𝜂(𝑥)∣

𝑥=𝑥∗
0

+ 𝐹 ∗ (𝑥)|𝑥=𝑥∗
1

𝜒1 − 𝐹 ∗(𝑡)|𝑥=𝑥∗
0

𝜒0.

  We only know the perturbations for the state variables at the perturbed boundaries 𝑥0 and 𝑥1
and not at 𝑥∗

0 and 𝑥∗
1, which inhibits the computation of the integral in the last equation. In order

to find 𝜂(𝑥∗
𝑗) the following approximation is introduced

𝜂(𝑥∗
𝑗) ≈ 𝜂𝑗 − 𝑦′(𝑥∗

𝑗)𝜒𝑗, for 𝑗 = 0, 1.

  Therefore,

𝛿J[𝑦∗; 𝑥∗] (𝜂, 𝜒) = ∫
𝑥∗

1

𝑥∗
0

(𝐹 ∗
𝑦 (𝑥) − 𝑑

𝑑𝑥𝐹 ∗
𝑦′(𝑥)) 𝜂(𝑥)𝑑𝑥 + 𝐹 ∗

𝑦′(𝑥∗
1)𝜂1 − 𝐹 ∗

𝑦′(𝑥∗
0)𝜂0+

+ (𝐹 ∗(𝑥) − 𝐹 ∗
𝑦′(𝑥)𝑦′(𝑥))∣

𝑥=𝑥∗
1

𝜒1 − (𝐹 ∗(𝑥) − 𝐹 ∗
𝑦′(𝑥)𝑦′(𝑥))∣

𝑥=∗
0

𝜒0
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As the terminal values of the state variables, 𝑦(𝑥∗
0) = 𝑦0 and 𝑦(𝑥∗

1) = 𝑦1, are known then the terminal
perturbation for the independent variable should satisfy 𝜂0 = 𝜂1 = 0. Therefore, 𝛿J[𝑦∗; 𝑥∗] (𝜂, 𝜒) = 0
if and only if the Euler-Lagrange equation holds and (𝐹 ∗(𝑥) − 𝐹 ∗

𝑦′(𝑥)𝑦′(𝑥))∣
𝑥=𝑥∗

1
𝜒1 = 0 and/or

(𝐹 ∗(𝑥) − 𝐹 ∗
𝑦′(𝑥)𝑦′(𝑥))∣

𝑥=∗
0

𝜒0 = 0. This encompasses the three cases in equations (P5), (6.13) and
(6.14).

6.2.4 Free boundaries for both independent and dependent variables

The most general problem is: find function 𝑦∗ ∈ Y among functions 𝑦 ∶ X∗ → ℝ , where X∗ has at
least one unknown boundary, 𝑥∗

0 and/or 𝑥∗
1, as in the previous subsection, and the terminal values

for the state variables, 𝑦(𝑥∗
0) and/or 𝑦(𝑥∗

1) are also free. The objective functional is again (6.1).
Formally, the problem are :

max
𝑦(⋅)

∫
𝑥1

𝑥0

𝐹(𝑥, 𝑦(𝑥), 𝑦′(𝑥)) 𝑑𝑥

subject to
𝑦(𝑥0) = 𝑦0 and 𝑥0 free, 𝑦(𝑥1) = 𝑦1 and 𝑥1 known (P4a)
𝑦(𝑥0) = 𝑦0 and 𝑥0 known, 𝑦(𝑥1) = 𝑦1 and 𝑥1 free (P4b)
𝑦(𝑥0) = 𝑦0, 𝑥0, 𝑦(𝑥1) = 𝑦1 and 𝑥1 free (P4c)

In this case the data of the problem, 𝜑 = (.), only involves parameters that may be present in
function 𝐹(.). The value functional is

𝑉 (.) = max
𝑦∈Y,𝑥0,𝑥1

∫
𝑥1

𝑥0

𝐹(𝑥, 𝑦(𝑥), 𝑦′(𝑥))𝑑𝑥 = ∫
𝑥∗

1

𝑥∗
0

𝐹(𝑥, 𝑦∗(𝑥), 𝑦∗′(𝑥))𝑑𝑥

  where we 𝑥∗
0 and/or 𝑥∗

1 and 𝑦∗(𝑥∗
0) and/or 𝑦∗(𝑥∗

1) are determined endogenously.

Proposition 7. First order necessary conditions for the free terminal boundary problem:
𝑦∗ ∈ Y is the solution to the CV problem with free boundary values for the state variable and for
the independent variable, only if it satisfies the Euler equation (6.3.1) and the boundary conditions:

1. if both values for lower boundary are free (problem P4a)

𝐹𝑦(𝑥∗
0, 𝑦∗(𝑥∗

0), 𝑦∗′(𝑥∗
0)) = 𝐹𝑦′(𝑥∗

0, 𝑦∗(𝑥∗
0), 𝑦∗′(𝑥∗

0)) = 0 (6.16)

2. if both values for upper boundary are free (problem P4b)

𝐹𝑦(𝑥∗
1, 𝑦∗(𝑥∗

1), 𝑦∗′(𝑥∗
1)) = 𝐹𝑦′(𝑥∗

1, 𝑦∗(𝑥∗
1), 𝑦∗′(𝑥∗

1)) = 0 (6.17)

3. if all terminal values for 𝑥 and 𝑦(𝑥) are free (problem P4c)

𝐹𝑦(𝑥∗
0, 𝑦∗(𝑥∗

0), 𝑦∗′(𝑥∗
0)) = 𝐹𝑦′(𝑥∗

0, 𝑦∗(𝑥∗
0), 𝑦∗′(𝑥∗

0)) = 0 (6.18a)
𝐹𝑦(𝑥∗

1, 𝑦∗(𝑥∗
1), 𝑦∗′(𝑥∗

1)) = 𝐹𝑦′(𝑥∗
1, 𝑦∗(𝑥∗

1), 𝑦∗′(𝑥∗
1)) = 0 (6.18b)
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Proof. We use the previous proof and, in equation (6.15), we consider 𝜂0 ≠ 0, 𝜂1 ≠ 0, 𝜒0 ≠ 0 and
𝜒1 ≠ 0.

Table 6.1 assembles all the previous results. Observe that if we consider all the possible com-
binations of the information on both boundaries we have 16 possible cases.

Table 6.1: Adjoint conditions for bounded domain CV problems

data optimum
𝑥𝑗 𝑦(𝑥𝑗) 𝑥∗

𝑗 𝑦∗(𝑥∗
𝑗)

fixed fixed 𝑥𝑗 𝑦𝑗
fixed free 𝑥𝑗 𝐹𝑦′(𝑥𝑗, 𝑦∗(𝑥𝑗), 𝑦∗′(𝑥𝑗)) = 0
free fixed 𝐹(𝑥∗

𝑗, 𝑦𝑗, 𝑦∗′(𝑥∗
𝑗)) − 𝑦∗′(𝑥∗

𝑗)𝐹�̇�(𝑥∗
𝑗, 𝑦𝑗, 𝑦∗′(𝑥∗

𝑗)) = 0 𝑦𝑗
free free 𝐹 (𝑥∗

𝑗, 𝑦∗(𝑥∗
𝑗), 𝑦∗′(𝑥∗

𝑗)) = 0 𝐹𝑦′(𝑥∗
𝑗, 𝑦∗(𝑥∗

𝑗), 𝑦∗′(𝑥∗
𝑗)) = 0

The index refers to the lower boundary when 𝑗 = 0 and to the upper boundary when 𝑗 = 1

6.2.5 Other constraints

As for the static optimization problem we can consider inequality constraints, for instance inequality
constraints on the value of the variable 𝑦 for some value of the independent variable.

We consider a problem in which the two limits for independent variable are known, i.e, 𝑥0 and
𝑥1 are known, 𝑦(𝑥0) = 𝑦0 is known, but we 𝑦(𝑥1) is constrained by the condition 𝑅(𝑥1, 𝑦(𝑥1)) ≥ 0.

Formally, the problem are :

max
𝑦(⋅)

∫
𝑥1

𝑥0

𝐹(𝑥, 𝑦(𝑥), 𝑦′(𝑥)) 𝑑𝑥

subject to
𝑥0 and 𝑥1 known
𝑦(𝑥0) = 𝑦0 known
𝑅(𝑥1, 𝑦(𝑥1)) ≥ 0.

  (P5)

Proposition 8. First order necessary conditions for the constrained terminal state
problem: 𝑦∗ ∈ Y is the solution to the CV problem (P5)   only if it satisfies the Euler-Lagrange
equation (6.3.1), the initial condition 𝑦∗(𝑥0) = 𝑦0 and the boundary condition

𝐹𝑦′(𝑥1, 𝑦∗(𝑥1), 𝑦∗′(𝑥1))𝑅(𝑥1, 𝑦∗(𝑥1)) = 0 (6.19)

Proof. In this case we consider the functional we introduce a Lagrange multiplier ( a real number)
associated to the terminal condition, yielding the Lagrange functional

𝐿[𝑦] = ∫
𝑥1

𝑥0

𝐹(𝑥, 𝑦(𝑥), 𝑦′(𝑥))𝑑𝑥 + 𝜇𝑅(𝑥1, 𝑦(𝑥1)).
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  We proceed as previously to get the optimality conditions for a perturbation 𝜂 ∈ Y over the
optimal function 𝑦∗. The first order necessary condition is

𝛿𝐿[𝑦∗](𝜂) = ∫
𝑥1

𝑥0

(𝐹 ∗
𝑦 (𝑥) − 𝑑

𝑑𝑥 𝐹 ∗
𝑦′(𝑥)) 𝜂(𝑥)𝑑𝑥 + (𝐹 ∗

𝑦′(𝑥1) + 𝜇𝑅∗
𝑦(𝑥1)) 𝜂(𝑥1) = 0

  where 𝐹 ∗(𝑥) = 𝐹(𝑥, 𝑦∗(𝑥), 𝑦∗′(𝑥)) and 𝑅∗
𝑦(𝑥1) = 𝜕𝑦𝑅(𝑥1, 𝑦∗(𝑥1). Because of the free terminal

state, admissible perturbations are such that 𝜂(𝑥1) ≠ 0. Therefore 𝛿𝐿[𝑦∗](𝜂) = 0 requires that the
adjoint condition 𝐹 ∗

𝑦′(𝑥1) + 𝜇𝑅∗
𝑦(𝑥1) = 0 holds.

Due to the existence of a static inequality constraint at the boundary 𝑥1, the Karush-Kuhn-
Tucker (KKT) complementarity slackness conditions are also necessary:

𝜇𝑅∗(𝑥1) = 0, 𝜇 ≥ 0 and  𝑅∗(𝑥1) ≥ 0

  where 𝑅∗(𝑥1) = 𝑅(𝑥1, 𝑦∗(𝑥1)). Multiplying the adjoint condition by 𝑅∗(𝑥1) we obtain an equiv-
alent condition

 𝑅∗(𝑥1) 𝐹 ∗
𝑦′(𝑥1) + 𝜇 𝑅∗(𝑥1) 𝑅∗

𝑦(𝑡𝑦) = 0,

  which is equivalent to 𝐹 ∗
𝑦′(𝑥1)𝑅∗(𝑥1) = 0, after considering the KKT condition. Therefore

𝛿𝐿[𝑦∗](𝜂) = 0 if the Euler-Lagrange equation (6.3.1) and adjoint boundary condition (6.19) hold.

6.3 Calculus of variations in time

We can directly apply the previous results for problems in which time is the independent variable.
When time is the independent variable the domain of the independent variable it T ⊆ ℝ+, if we
have a finite interval T = [𝑡0, 𝑡1], the dependent variable is 𝑦(𝑡), which is a mapping 𝑦 ∶ T  → Y ⊆ ℝ,

and we denote the time derivative by ̇𝑦 = 𝑑𝑦(𝑡)
𝑑𝑡 .

A particular important problem is the discounted infinite-horizon problem

6.3.1 Discounted infinite horizon

The most common problem in macroeconomics and growth theory has three main common features.
First, time is the independent variable, and assumes that the initial time and values are known,
usually 𝑥0 = 0 and 𝑦(0) = 𝑦0, and an unbounded value for the terminal time, 𝑥1 → ∞. Second,
the objective function is of type 𝐹(𝑡, 𝑦, ̇𝑦) = 𝑓(𝑦, ̇𝑦)𝑒−𝜌𝑡, where 𝑒−𝜌𝑡 is a discount factor with a
time-independent rate of discount 𝜌 ≥ 0, and the current value objective function 𝑓(𝑦, ̇𝑦) is time
-independent. Third, there are two main versions to the problem depending on the terminal value
of the state variable, that can be free or constrained.

Free asymptotic state
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Find function 𝑦∗ ∈ Y which is the set of functions 𝑦 ∶ [0, ∞) → ℝ such that 𝑦(0) = 𝑦0 where 𝑦0
are given that maximizes

J[𝑦] ≡ ∫
∞

0
𝑓(𝑦(𝑡), ̇𝑦(𝑡))𝑒−𝜌𝑡𝑑𝑡, 𝜌 ≥ 0. (6.20)

  This can be treated as a problem with a fixed initial time and value for the state variable, a fixed
terminal time but a free terminal value for the state variable.

Proposition 9. First order necessary conditions for the discounted infinite horizon
problem with free terminal state: 𝑦∗ ∈ Y is the solution to the discounted infinite horizon CV
problem with a known initial data, 𝜑 = (𝑦0, 𝜌, .), and with a free terminal state only if it satisfies
the Euler-Lagrange equation

𝑑
𝑑𝑡 (𝑓 ̇𝑦(𝑦∗(𝑡), ̇𝑦∗(𝑡))) = 𝑓𝑦(𝑦∗(𝑡), ̇𝑦∗(𝑡)) + 𝜌𝑓 ̇𝑦(𝑦∗(𝑡), ̇𝑦∗(𝑡)), for 𝑡 ∈ [0, ∞), (6.21)

the so-called transversality condition

lim
𝑡→∞

𝑓 ̇𝑦(𝑦∗(𝑡), ̇𝑦∗(𝑡))𝑒−𝜌𝑡 = 0 (6.22)

and the initial condition 𝑦∗(0) = 𝑦0

Proof. In the proof for the free boundaries value problem we extend 𝑥1 → ∞ and take it as fixed but
let lim𝑡→∞ 𝑦∗(𝑡) be free. In this discounted problem the Euler-Lagrange equation 𝐹 ∗

𝑦 (𝑡) = 𝑑
𝑑𝑡𝐹 ∗

̇𝑦 (𝑡)
is equivalent to

𝑒−𝜌𝑡𝑓𝑦(𝑦∗, ̇𝑦∗) = 𝑑
𝑑𝑡 (𝑒−𝜌𝑡𝑓 ̇𝑦(𝑦∗, ̇𝑦∗)) ,

  and the terminal condition (6.22) is obtained fro the boundary condition lim𝑡→∞ 𝐹 ∗
̇𝑦 (𝑡) = 0.

Observe that the Euler-Lagrange is again a 2nd order non-linear autonomous ODE

𝑓𝑦(𝑦∗, ̇𝑦∗) + 𝜌𝑓 ̇𝑦(𝑦∗, ̇𝑦∗) − 𝑓 ̇𝑦𝑦(𝑦∗, ̇𝑦∗) ̇𝑦 − 𝑓 ̇𝑦 ̇𝑦(𝑦∗, ̇𝑦∗) ̈𝑦 = 0.

 

The constrained terminal state problem

In several problems in economics the former condition can lead to an asymptotic state which does
not make economic sense (v.g, a negative level for a capital stock).

The most common discounted infinite horizon model is usually the following: find function
𝑦∗ ∈ Y which is the set of functions 𝑦 ∶ [0, ∞) → ℝ such that 𝑦(0) = 𝑦0 and lim𝑡→∞ 𝑅(𝑡, 𝑦(𝑡)) ≥ 0,
where 𝑥0 = 0 and 𝑦(𝑥0) = 𝑦0 are given, that maximizes the objective functional (6.20)

Proposition 10. First order necessary conditions for the discounted infinite horizon
problem with constrained terminal state: 𝑦∗ ∈ Y is the solution to the discounted infinite
horizon CV problem with a known initial data, (𝑥0, 𝑦(𝑥0)) = (0, 𝑦0), and with a terminal state
constrained by lim𝑡→∞ 𝑅(𝑡, 𝑦(𝑡)) ≥ 0 only if it satisfies the Euler-Lagrange equation (6.21), the
initial condition 𝑦∗(0) = 𝑦0, and the (so-called) transversality condition

lim
𝑡→∞

𝑓 ̇𝑦(𝑦∗(𝑡), ̇𝑦∗(𝑡))𝑅(𝑡, 𝑦∗(𝑡))𝑒−𝜌𝑡 = 0 (6.23)
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Exercise: prove this. Observe that as the terminal constraint is lim𝑡→∞ 𝑦(𝑡) ≥ 0 we have to
introduce a Lagrange multiplier associated to the terminal time.

6.3.2 Applications

The resource depletion problem

Assume we have a resource 𝑊 (v.g., a cake) with initial size 𝑊0 and we want to consume it
along period [0, ̄𝑡]. If 𝐶(𝑡) denotes the consumption at time 𝑥 we evaluate the consumption of the
resource by the functional ∫ ̄𝑡

0   ln (𝐶(𝑡))𝑒−𝜌𝑡𝑑𝑡. Several properties: (1) we are impatient (we discount
time at a rate 𝜌 > 0); (2) the felicity at every point in time is only a function of the instantaneous
consumption (preferences are inter temporally additive); (3) more consumption means more felicity
but at a decreasing rate (the increase in utility for big bites is smaller than for small bites); and
(4) there is no satiation (there is not a bite with a zero or negative marginal utility): consumption
is always good.

Cake eating problem with the terminal state given CE problem: find 𝐶∗ = (𝐶∗(𝑡))0≤𝑡≤ ̄𝑡
that

max
𝐶

∫
̄𝑡

0
  ln (𝐶(𝑡))𝑒−𝜌𝑡𝑑𝑡

  subject to
�̇� (𝑡) = −𝐶(𝑡), for 𝑡 ∈ [0, 𝑇 ]

  given 𝑊(0) = 𝑊0 and 𝑊( ̄𝑡) = 0.
Formulated as a CV problem: find 𝑊 ∗ = (𝑊 ∗(𝑡))0≤𝑡≤ ̄𝑡 such that

𝑉 (𝑊0, ̄𝑡, 𝜌) = max
𝑊

J[𝑊]  = max
𝑊

∫
̄𝑡

0
  ln (−�̇�(𝑡))𝑒−𝜌𝑡𝑑𝑡

  given 𝑊(0) = 𝑊0 and 𝑊( ̄𝑡) = 0. The data of the problem is the vector of constants 𝜑 =
(0, ̄𝑡, 𝑊0, 0, 𝜌)

The solution of the problem, (𝑊 ∗(𝑡)) ̄𝑡
𝑡=0, is obtained from

⎧{{
⎨{{⎩

�̈� ∗ + 𝜌�̇� ∗ = 0, 0 < 𝑡 < ̄𝑡
𝑊 ∗(0) = 𝑊0, 𝑡 = 0
𝑊 ∗(𝑇 ) = 0, 𝑡 = 𝑇

  The solution of the Euler equation is 2

𝑊(𝑡) = 𝑊(0) − 𝑘
𝜌 (1 − 𝑒−𝜌𝑡)  

2Hint: setting 𝑧 = �̇� we get a first-order ODE ̇𝑧 = −𝜌𝑧 with solution ̇𝑧 = 𝑘𝑒−𝜌𝑡. As 𝑑𝑊(𝑡) = 𝑧(𝑡)𝑑𝑡, if we
integrate we have ∫𝑊(𝑡)

𝑊(0) 𝑑𝑊 = ∫𝑡
0 𝑧(𝑠)𝑑𝑠 = ∫𝑡

0 𝑘𝑒−𝜌𝑠𝑑𝑠.



Paulo Brito Advanced Mathematical Economics 2020/2021 17

  where 𝑘 is an arbitrary constant. Using the adjoint conditions 𝑊 ∗( ̄𝑡) = 0 and 𝑊 ∗(0) = 𝑊0 we
find the solution

𝑊 ∗(𝑡) = 𝑒−𝜌𝑡 − 𝑒−𝜌 ̄𝑡

1 − 𝑒−𝜌 ̄𝑡  𝑊0, for 𝑡 ∈ [0, ̄𝑡].

  The value of the cake is

𝑉 (𝜑) = ∫
̄𝑡

0
  ln (−�̇� ∗(𝑡))𝑒−𝜌𝑡𝑑𝑡 =

= 1
𝜌 [(1 + ln (1 − 𝑒−𝜌 ̄𝑡

𝜌𝑊0
(𝑒−𝜌 ̄𝑡 − 1)))] + ̄𝑡𝑒−𝜌 ̄𝑡

  if the consumer is rational this should be equal its reservation price for the cake. If 𝜌 = 0.01
and the cake lasts for one week and the calorie content is 𝑊0 = 1000 then the reservation price for
should be 𝑉 (10, 0.01, 1/52) ≈ 0.12 per 100 calories.

Cake eating problem: infinite horizon If we assume an infinite horizon and the terminal con-
dition lim𝑡→∞ 𝑊(𝑡) ≥ 0, meaning that we cannot have a negative level of resource asymptotically.
The first order conditions are:

⎧{{
⎨{{⎩

𝜌�̇� ∗(𝑡) + �̈� ∗(𝑡) = 0
𝑊 ∗(0) = 𝑊0

− lim𝑡→∞ 𝑒−𝜌𝑡 𝑊 ∗(𝑡)
�̇� ∗(𝑡)   = 0

  We already found
𝑊(𝑡) = 𝑊0 − 𝑘

𝜌 (1 − 𝑒−𝜌𝑡)  

  then
�̇� (𝑡) = −𝑘𝑒−𝜌𝑡

  Solution (as 𝑘 = 𝜌𝑊0)
𝑊 ∗(𝑡) = 𝑊0𝑒−𝜌𝑡, 𝑡 ∈ ℝ+

  Again lim𝑡→∞ 𝑊 ∗(𝑡) = 0.

The benchmark representative problem

The benchmark representative consumer problem in macroeconomics is to find optimal consumption
and asset holdings (𝐶, 𝐴) such that 𝐶 ∶ ℝ+ → ℝ+ and 𝐴 ∶ ℝ+ → ℝ that maximize the value
functional

𝑈[𝐶] = ∫
∞

0
𝑢(𝐶(𝑡))𝑒−𝜌𝑡𝑑𝑡

  subject to the instantaneous budget constraint

̇𝐴 = 𝑌 − 𝐶 + 𝑟𝐴
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  given 𝐴(0) = 𝐴0 and the non-Ponzi game condition lim𝑡→ 𝐴(𝑡)𝑒−𝑟𝑡 ≥ 0. In the above equations
𝑌 and 𝑟 denote, respectively the non-financial income and the interest rate, and are both positive.
The following assumptions on utility are standard: 𝑢(0) = 0, 𝑢′(𝐶) > 0 and 𝑢″(𝐶) < 0.

The inverse of the elasticity of intertemporal substitution can be proved to be

𝜃(𝐶) = −𝑢″(𝐶)𝐶
𝑢′(𝐶) > 0.

Assumption: the elasticity of intertemporal substitution 𝜃(𝐶) = 𝜃 is constant and

𝜃 > 𝑟 − 𝜌
𝑟 > 0.

  We can transform it into a CV problem by observing that consumption is a function of the both
wealth and savings, ̇𝐴,

𝐶 = 𝐶(𝐴, ̇𝐴) ≡ 𝑌 + 𝑟𝐴 − ̇𝐴.

  Therefore, the problem becomes a CV problem with value functional

J[𝐴] = ∫
∞

0
𝑢 (𝑌 + 𝑟𝐴(𝑡) − ̇𝐴(𝑡)) 𝑒−𝜌𝑡𝑑𝑡

  where 𝑓(𝐴(𝑡), ̇𝐴(𝑡)) = 𝑢 (𝑌 + 𝑟𝐴(𝑡) − ̇𝐴(𝑡)). The optimality conditions (which are necessary and
sufficient in this case) are

⎧{{
⎨{{⎩

(𝑟 − 𝜌)𝑢′(𝐶(𝐴, ̇𝐴)) + (𝑟 ̇𝐴 − ̈𝐴)𝑢″(𝐶(𝐴, ̇𝐴)) = 0
𝐴(0) = 𝐴0

− lim𝑡→∞ 𝑒−𝜌𝑡𝑢′(𝐶(𝐴, ̇𝐴))𝐴(𝑡)  = 0

  Observing that ̇𝐶 = 𝑟 ̇𝐴 − ̈𝐴 and using the definition of the inverse intertempopral elasticity of
substitution we can transform the Euler equation into

̇𝐶 = 𝛾𝐶, for 𝛾 ≡ 𝑟 − 𝜌
𝜃 > 0.

  This allows us to find a general solution for optimal consumption

𝐶(𝑡) = 𝐶(0) 𝑒𝛾𝑡,

  where 𝐶(0) is an arbitrary unknown admissible level for consumption, i.e., it should be non-
negative. In order to find that value we use the transversality condition. But for this we need to
determine admissible values for 𝐴. The asset dynamics is then governed by

̇𝐴 = 𝑌 + 𝑟𝐴 − 𝑘𝑒𝛾𝑡, for 𝑡 > 0, 𝐴(0) = 𝐴0, for 𝑡 = 0

  The solution to this initial value problem is

𝐴(𝑡) = −𝑌
𝑟 + (𝐴0 + 𝑌

𝑟 ) 𝑒𝑟𝑡 + 𝐶(0)
𝑟 − 𝛾 (𝑒𝑟𝑡 − 𝑒𝛾𝑡) .
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  With the previous assumption we have 𝑟 > 𝛾. As 𝑢′(𝐶) = 𝐶−𝜃 with an isoelastic utility function
we find

lim
𝑡→∞

𝑢′(𝐶(𝑡))𝐴(𝑡)𝑒−𝜌𝑡 = lim
𝑡→∞

(𝐶(0)𝑒𝛾𝑡)−𝜃 𝐴(𝑡)𝑒−𝜌𝑡 =

= lim
𝑡→∞

𝐶(0)−𝜃𝑒−𝑟𝑡 [−𝑌
𝑟 + (𝐴0 + 𝑌

𝑟 ) 𝑒𝑟𝑡 + 𝐶(0)
𝑟 − 𝛾 (𝑒𝑟𝑡 − 𝑒𝛾𝑡)] =

= lim
𝑡→∞

𝐶(0)−𝜃 [𝐴0 + 𝑌
𝑟 + 𝐶(0)

𝑟 − 𝛾 − 𝐶(0)
𝑟 − 𝛾 𝑒(𝛾−𝑟)𝑡] =

= 𝐶(0)−𝜃 [𝐴0 + 𝑌
𝑟 + 𝐶(0)

𝑟 − 𝛾 ] = 0

  if and only if 𝐶(0) = (𝑟 − 𝛾) (𝐴0 + 𝑌
𝑟 ). Therefore the optimal consumption and asset holdings

are

𝐶∗(𝑡) = (𝑟 − 𝛾) (𝐴0 + 𝑌
𝑟 ) 𝑒𝛾𝑡, 𝑡 ∈ [0, ∞) (6.24)

𝐴∗(𝑡) = −𝑌
𝑟 + (𝐴0 + 𝑌

𝑟 ) 𝑒𝛾𝑡, 𝑡 ∈ [0, ∞). (6.25)

Observations: First, if we define human capital as the present value, at rate 𝑟, of the non-
financial income

𝐻(𝑡) = ∫
∞

𝑡
𝑌 𝑒𝑟(𝑡−𝑠)𝑑𝑠

  we find 𝐻(0) = 𝑌
𝑟 . Therefore the solution is a linear function of the total capital, financial and

non-financial

 𝐶∗(𝑡) = (𝑟 − 𝛾)(𝐴0 + 𝐻(0))𝑒𝛾𝑡, 𝐴∗(𝑡) = −𝐻(0) + (𝐴0 + 𝐻(0))𝑒𝛾𝑡

 
Second, because 𝛾 > 0 then the asymptotic value of the optimal 𝐴 becomes unbounded. How-

ever, it still satisfies that boundary condition lim𝑡→∞ 𝐴∗(𝑡)𝑒−𝑟𝑡 = 0 because, by assumption, 𝑟 > 𝛾.
What matters is not the absolute level of 𝐴 but its level in present-value terms.
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Chapter 7

Optimal control: the Pontriyagin’s
maximum principle

 

7.1 Introduction

The Pontriagin’s maximum principle provides first order necessary conditions for the optimal control
problem. We consider the same cases as we did for the calculus of variations problem

We denote again the independent variable by 𝑥 and assume it has the domain 𝑋 ⊆ ℝ. We can
write 𝑋 = [𝑥0, 𝑥1] if it is a closed set, or 𝑋 = (𝑥0, 𝑥1) if it is open, where 𝑥0 < 𝑥1 are not necessarily
known, and 𝑥1 can be bounded or unbounded.

The optimal control problem contains two variables: the state variable, denoted by 𝑦(𝑥) (or
𝑦(𝑡)) and the control variable, denoted by 𝑢(𝑥) (or 𝑢(𝑡)). As we consider only problems in which
the state variable is of dimension one, the state variable is a mapping 𝑦 ∶ 𝑋 → 𝑌 ⊆ 𝑅 and the
control variable is a mapping   𝑢 ∶ X → U ⊆ 𝑅𝑚. That is, we may have more 𝑚 control variables.

The optimal control problem consists in finding functions 𝑦 ∈ Y and 𝑢 ∈ U, where Y ∈ 𝐶1(ℝ),
the set of continous and continuously differentiable functions 𝑦 ∶ 𝑋 →⊆ ℝ, and U ∈ 𝑃𝐶1(ℝ), the
set of piecewise continuous functions 𝑢 ∶ 𝑋 → 𝑈 ⊆ ℝ𝑚 such that

𝑦′ = 𝐺(𝑦(𝑥), 𝑢(𝑥), 𝑥), for 𝑥 ∈ [𝑥0, 𝑥1] (7.1)

  that maximize the functional

J[𝑦, 𝑢] ≡ ∫
𝑥1

𝑥0

𝐹(𝑥, 𝑦(𝑥), 𝑢(𝑥)) 𝑑𝑥 (7.2)

  with additional data is given. The additional data is related to the information concerning the
boundary values of the independent variable 𝑥0 and 𝑥1 and the boundary values for the state
variable 𝑦(𝑥0) and 𝑦(𝑥1).

In most apoplications in macroeconomics and growth theory the independent variable is time.
In this case 𝑥 = 𝑡 and 𝑡 ∈ T ⊆ ℝ+. In this case, the optimal control problem consists in finding

20
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functions 𝑦 ∈ Y and 𝑢 ∈ U, where Y ∈ 𝐶1(ℝ), the set of continous and continuously differentiable
functions 𝑦 ∶ 𝑇 → 𝑌 ⊆ ℝ, and U ∈ 𝑃𝐶1(ℝ), the set of piecewise continuous functions 𝑢 ∶ 𝑇 → 𝑈 ⊆
ℝ𝑚 such that

̇𝑦 = 𝐺(𝑦(𝑡), 𝑢(𝑡), 𝑡), for 𝑡 ∈ [𝑡0, 𝑡1] (7.3)

  that maximize the functional

J[𝑦, 𝑢] ≡ ∫
𝑡1

𝑡0

𝐹(𝑡, 𝑦(𝑡), 𝑢(𝑡))𝑑𝑡 (7.4)

  with additional data is given. The additional data is related to the information concerning the
boundary values of the independent variable 𝑡0 and 𝑡1 and the boundary values for the state variable
𝑦(𝑡0) and 𝑦(𝑡1).

The necessary conditions for an optimum according to the Pontriyagin’s maximum princi-
ple consider the Hamiltonian function, defined as

𝐻(𝑥, 𝑦, 𝑢, 𝜆) = 𝐹(𝑥, 𝑦, 𝑢) + 𝜆𝐺(𝑥, 𝑦, 𝑢).

  where 𝜆, called the co-state variable, is a piecewise continuous mapping 𝜆 ∶ 𝑋 → ℝ. When the
independent variable is time, i.e, 𝑋 = 𝑇 , we write

𝐻(𝑡, 𝑦, 𝑢, 𝜆) = 𝐹(𝑡, 𝑦, 𝑢) + 𝜆𝐺(𝑡, 𝑦, 𝑢).

  where 𝜆 is a piecewise continuous function 𝜆 ∶ 𝑇 → ℝ.
Next we present the optimality conditions for a bounded domain, not necessarily time, in section

7.2 and an example in section 7.3. Then we move to the time domain particular problems in section
7.4 and present several economic applications.

7.2 Bounded domain

In this subsection we assume that the data of the problem includes the boundary values for the
independent variable: i.e., 𝑥0 and 𝑥1 are known. The optimal control problem is to find an optimal
control (𝑢∗(𝑥))𝑥∈[𝑥0,𝑥1] that maximizes the functional (7.2) subject to ODE constraint (??) and,
possibly additional information for the state variables at the boundary values for the independent
variable.

Formally, the problem is

max
𝑢(⋅)

∫
𝑥1

𝑥0

𝐹(𝑥, 𝑦(𝑥), 𝑢(𝑥)) 𝑑𝑥

subject to
𝑦′ = 𝐺(𝑦(𝑥), 𝑢(𝑥), 𝑥), for 𝑥 ∈ [𝑥0, 𝑥1]
𝑥0 and 𝑥1 given
conditions on 𝑦(𝑥0) and 𝑦(𝑥1)

  (Px)

 
We can consider the following cases:
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(P1) both boundary values are known 𝑦(𝑥0) = 𝑦0 and 𝑦(𝑥1) = 𝑦1;

(P2) the lower boundary values is known 𝑦(𝑥0) = 𝑦0 but 𝑦(𝑥1) is free

(P3) the upper boundary values is known 𝑦(𝑥1) = 𝑦1 but 𝑦(𝑥0) is free

(P4) both boundary values 𝑦(𝑥0) and 𝑦(𝑥1) are free.

Proposition 1. [First order necessary conditions for fixed boundary values of the inde-
pendent variable] Let (𝑦∗, 𝑢∗) be a solution to the OC problem Px in which one of the conditions
(P1), or (P2), or (P3) or (P4) is introduced. Then there is a piecewise continuous function
𝜆 ∶ [𝑥0, 𝑥1] → ℝ , called co-state variable, such that (𝑦∗, 𝑢∗, 𝜆) satisfy the following conditions:

• the optimality condition:

𝐻𝑢(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥)) = 0, 𝑥 ∈ [𝑥0, 𝑥1] (7.5)

• the multiplier equation

𝜆′ = −𝐻𝑦(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥)), 𝑥 ∈ (𝑥0, 𝑥1) (7.6)

• the constraint of the problem:

𝑦∗′ = 𝐺(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥)), 𝑥 ∈ (𝑥0, 𝑥1) (7.7)

• and the adjoint conditions associated to the boundary conditions (P1) to (P4)

– for problem (P1)

𝑦∗(𝑥0) = 𝑦0 for 𝑥 = 𝑥0, and  𝑦∗(𝑥1) = 𝑦1 for 𝑥 = 𝑥1, (7.8)

– for problem (P2)

𝑦∗(𝑥0) = 𝑦0 for 𝑥 = 𝑥0, and  𝜆(𝑥1) = 0 for 𝑥 = 𝑥1, (7.9)

– for problem (P3)

𝜆(𝑥0) = 0 for 𝑥 = 𝑥0, and  𝑦∗(𝑥1) = 𝑦1 for 𝑥 = 𝑥1, (7.10)

– for problem (P4)

𝜆(𝑥0) = 0 for 𝑥 = 𝑥0, and  𝜆(𝑥1) = 0 for 𝑥 = 𝑥1. (7.11)

Proof. (Heuristic) Let 𝑢∗ be an optimal control and let 𝑦∗ be the associated state. The value of the
problem.

J[𝑦∗, 𝑢∗] = ∫
𝑥1

𝑥0

𝐹(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥)) 𝑑𝑥.
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  it is an optimiser if J[𝑦∗, 𝑢∗] ≥ J[𝑦, 𝑢] for any other admissible pair of functions (𝑢, 𝑦).
It is convenient to write

J[𝑦∗, 𝑢∗] = ∫
𝑥1

𝑥0

𝐹(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥))𝑑𝑥 =

= ∫
𝑥1

𝑥0

[𝐹(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥)) + 𝜆(𝑥)(𝐺(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥)) − 𝑦∗′(𝑥))] 𝑑𝑥 =

= ∫
𝑥1

𝑥0

(𝐻(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥)) − 𝑦∗′(𝑥)𝜆(𝑥))   𝑑𝑥

Again we introduce a perturbation on the optimal state-control pair (𝑦, 𝑢) = (𝑦∗, 𝑢∗)+𝜀�, where
𝜀 is a constant and � = (𝜂𝑦, 𝜂𝑢). The admissible perturbations differ for the different versions of
the problem: for (P1) we should have 𝜂𝑦(𝑥0) = 𝜂𝑦(𝑥1) = 0, for (P2) we should have 𝜂𝑦(𝑥0) = 0
and 𝜂𝑦(𝑥1) ≠ 0, for (P3) we should have 𝜂𝑦(𝑥0) ≠ 0 and 𝜂𝑦(𝑥1) = 0, and for (P4) we should have
𝜂𝑦(𝑥0) ≠ 0 and 𝜂𝑦(𝑥1) ≠ 0.

The first-order Taylor approximation of the functional is

J[𝑦, 𝑢] = J[𝑦∗, 𝑢∗] + 𝛿J[𝑦∗, 𝑢∗](�)𝜖 + 𝑜(𝜖)

  where

𝛿J[𝑦∗, 𝑢∗](�) = ∫
𝑥1

𝑥0

(𝐻𝑢(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥))𝜂𝑢(𝑥) + 𝐻𝑦(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥)) 𝜂𝑦(𝑥) − 𝜆(𝑥)𝜂′
𝑦(𝑥)) 𝑑𝑥 =

= ∫
𝑥1

𝑥0

(𝐻𝑢(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥)) 𝜂𝑢(𝑥) + (𝐻𝑦(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥)) + 𝜆′(𝑥))𝜂𝑦(𝑥)) 𝑑𝑡+

+ 𝜆(𝑥0)𝜂𝑦(𝑥0) − 𝜆(𝑥1)𝜂𝑦(𝑥1).

  Then J[𝑦, 𝑢] ≤ J[𝑦∗, 𝑢∗] only if 𝛿J[𝑦∗, 𝑢∗](�) = 0, which, using similar arguments as to the case of the
calculus of variations problem, is equivalent to the Pontriyagin’s conditions: 𝐻𝑢(.) = 𝜆′ − 𝐻𝑦(.) =
0. The adjoint constraints should verify 𝜆(𝑥0)𝜂𝑦(𝑥0) = 𝜆(𝑥1)𝜂𝑦(𝑥1) = 0. From this and the
admissibility values for 𝜂𝑦(𝑥0) and 𝜂𝑦(𝑥1) then the adjoint constraints are as in equations (7.8) to
(7.11)

7.2.1 Free domain and fixed boundary state variable optimal control problems

In this subsection we consider the case in which one or both bounds of the space of independent
variables can be optimally choses, i.e 𝑥 ∈ 𝑋∗ = [𝑥∗

0, 𝑥∗
1], where one or both 𝑥∗

𝑗, for 𝑗 = 0, 1 are
free, but the boundary values for the state variable are fixed: i.e. 𝑦(𝑥∗

0) = 𝑦0 and/or 𝑦(𝑥∗
1) = 𝑦1

are fixed. The optimal control problem is to find the optimal cut-off values for the indepdendent
variable, 𝑥∗

0 and/or 𝑥∗
1 and an optimal control (𝑢∗(𝑥))𝑥∈[𝑥∗

0,𝑥∗
1] that maximizes the functional (7.2)

subject to ODE constraint (??).
We can consider the following cases:

(P5) the lower boundary cut-off 𝑥0 is known but the upper boundary 𝑥1 is free
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(P6) the upper boundary cut-off 𝑥1 is known but the lower boundary 𝑥0 is free

(P7) both boundary cut-off values 𝑥0 and 𝑥1 are free.

Proposition 2 (First order necessary conditions for free domain and fixed boundary
state variable optimal control problems). Let (𝑦∗, 𝑢∗) be a solution to the OC problem where
𝑦(𝑥0) = 𝑦0 and 𝑦(𝑥1) = 𝑦1 are fixed. Then there is an optimal domain for the independent variable
𝑥∗ = [𝑥∗

0, 𝑥∗
1] ⊂ ℝ, a piecewise continuous function 𝜆 ∶ 𝑥∗ → ℝ , called co-state variable, such

that (𝑦∗, 𝑢∗, 𝜆) satisfy the optimality condition (7.5), the multiplier equation (7.6) and the ODE
constraint of the problem (7.7), all for 𝑥 ∈ int(𝑥∗) and the adjoint conditions associated to the
boundary conditions (P5) to (P7)

• for problem (P5): 𝑦∗(𝑥0) = 𝑦0 and 𝑦∗(𝑥∗
1) = 𝑦1 and

𝑥∗
0 = 𝑥0 and  𝐻(𝑥∗

1, 𝑦1, 𝑢∗(𝑥∗
1)) − 𝑦∗′(𝑥∗

1)𝜆(𝑥∗
1) = 0, (7.12)

• for problem (P6): 𝑦∗(𝑥∗
0) = 𝑦0 and 𝑦∗(𝑥1) = 𝑦1 and

𝐻(𝑥∗
0, 𝑦0, 𝑢∗(𝑥∗

0)) − 𝑦∗′(𝑥∗
0)𝜆(𝑥∗

0) = 0 and  𝑥∗
1 = 𝑥1, (7.13)

• for problem (P7): 𝑦∗(𝑥∗
0) = 𝑦0 and 𝑦∗(𝑥∗

1) = 𝑦1 and

𝐻(𝑥∗
0, 𝑦0, 𝑢∗(𝑥∗

0)) − 𝑦∗′(𝑥∗
0)𝜆(𝑥∗

0) = 0 and  𝐻(𝑥∗
1, 𝑦1, 𝑢∗(𝑥∗

1)) − 𝑦∗′(𝑥∗
1)𝜆(𝑥∗

1) = 0. (7.14)

Proof. Using the same method for finding perturbations we used in the proof of propositions 6 and
1, the obtain the Gâteaux derivative

𝛿J[𝑦∗, 𝑢∗; 𝑥∗] (𝜂, 𝜒) = ∫
𝑥∗

1

𝑥∗
0

(𝐻𝑢(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥))𝜂𝑢(𝑥) + 𝐻𝑦(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥))𝜂𝑦(𝑥) − 𝜆(𝑥)𝜂′
𝑦(𝑥)) 𝑑𝑥+

+ 𝐻(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥))|𝑥=𝑥∗
1

𝜒1 − 𝐻(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥))|𝑥=𝑥∗
0

𝜒0 

  Setting 𝐻∗(𝑥) = 𝐻(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥)), integrating by parts,

𝛿J[𝑦∗, 𝑢∗; 𝑥∗] (𝜂, 𝜒) = ∫
𝑥∗

1

𝑥∗
0

(𝐻∗
𝑢(𝑥)𝜂𝑢(𝑥) + (𝐻∗

𝑦(𝑥) + 𝜆′(𝑥)) 𝜂𝑦(𝑥)) 𝑑𝑡 + 𝜆(𝑥∗
0)𝜂𝑦(𝑥∗

0) − 𝜆(𝑥∗
1)𝜂𝑦(𝑥∗

1)+

+ 𝐻∗(𝑥∗
1)𝜒1 − 𝐻∗(𝑥∗

0)𝜒0.

  Using the same approximation as in the proof of Proposition 6 yields the analogue to equation
(6.15)

𝛿J[𝑦∗, 𝑢∗; 𝑥∗] (𝜂, 𝜒) = ∫
𝑥∗

1

𝑥∗
0

(𝐻∗
𝑢(𝑥)𝜂𝑢(𝑥) + (𝐻∗

𝑦(𝑥) + 𝜆′(𝑥)) 𝜂𝑦(𝑥)) 𝑑𝑡 + 𝜆(𝑥∗
0)𝜂0 − 𝜆(𝑥∗

1)𝜂1+

+ (𝐻∗(𝑥∗
1) − 𝑦∗′(𝑥∗

1)𝜆(𝑥∗
1)) 𝜒1 − (𝐻∗(𝑥∗

0) − 𝑦∗′(𝑥∗
0)𝜆(𝑥∗

0)) 𝜒0

(7.15)

  The adjoint necessary conditions for the optimum, because 𝜂1 = 𝜂0 = 0, are presented, for the
different versions of the problem, in equations (7.12) to (7.14).
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7.2.2 Free domain and boundary state variable optimal control problems

This is a general case that encompasses combinations of all the previous cases: we assume both the
domains of the independent variables and the boundary values of the state variables are free. That
is 𝑥0 and/or 𝑥1 are unknown and 𝑦(𝑥0) and/or 𝑦(𝑥1) are also unknown and should be optimized.
The optimal control problem is to find the optimal cut-off values for the indepdendent variable,
𝑥∗

0 and/or 𝑥∗
1 and an optimal control (𝑢∗(𝑥))𝑡∈[𝑥∗

0,𝑥∗
1] that maximizes the functional (7.2) subject to

ODE constraint (??) and having free boundary values for the state variable.
The necessary conditions include the optimality condition (7.5), the multiplier equation (7.6)

and the ODE constraint of the problem (7.7), all for 𝑥 ∈ int(𝑥∗). To get the adjoint condition
associated to the terminal values of the state variable, when they need to be optimized, are obtained
by setting in equation (7.15), 𝜂0 ≠ 0 and 𝜂1 ≠ 0. Therefore, the adjoint condition associated to
𝑦∗(𝑥∗

𝑗) and 𝜆(𝑥∗
𝑗) = 0, implying that the adjoint condition associated to the optimal boundary value

of the independent variable, 𝑥∗
𝑗 is 𝐻∗(𝑥∗

𝑗) = 0, for 𝑗 = 0, 1.
The adjoint conditions presented in Table 7.1 cover the same cases as the ones in Table 6.1 for

the calculus of variations problem.

Table 7.1: Adjoint conditions for bounded domain OC problems

data optimum
𝑥𝑗 𝑦(𝑥𝑗) 𝑥∗

𝑗 𝑦∗(𝑥∗
𝑗)

fixed fixed 𝑥𝑗 𝑦𝑗
fixed free 𝑥𝑗 𝜆(𝑥𝑗) = 0
free fixed 𝐻(𝑥∗

𝑗, 𝑦𝑗, 𝑢∗(𝑥∗
𝑗)) − 𝑦∗′(𝑥∗

𝑗)𝜆(𝑥∗
𝑗) = 0 𝑦𝑗

free free 𝐻(𝑥∗
𝑗, 𝑦∗(𝑥∗

𝑗), 𝑢∗(𝑥∗
𝑗)) = 0 𝜆(𝑥∗

𝑗) = 0
The index refers to the lower boundary when 𝑗 = 0 and to the upper boundary when 𝑗 = 1

7.3 Economic application: the Mirrlees (1971) model

 
In Mirrlees (1971) the optimal tax policy problem is addressed when the tax authority has

imperfect information: it observes  again both the consumption and the income distributions,
𝑐(𝜃) and 𝑦(𝜃), but it does not observe  the individual productivity, 𝜃, and the effort level of
agents ℓ(𝜃). This creates a problem for policy: a more productive agent may have an interest in
reducing the income it reports by reducing its effort. If this is the case, the social welfare will be
reduced because the total resources of the economy will be reduced, because, again the resource
constraint

∫
Θ

𝜃 ̃ℓ (𝜃)𝑑𝜃 = ∫
Θ

𝑐(𝜃)𝑑𝜃 + 𝐺

  should be satisfied, where ̃ℓ(𝜃) has a distortion generated by the tax policy relative to the perfect
information case. This problem creates an information friction in the derivation of the optimal



Paulo Brito Advanced Mathematical Economics 2020/2021 26

tax policy.
The Mirrlees (1971) paper was one of the first papers in the mechanism design literature that

adresses principal-agent problems in contexts of imperfect information.
The policy problem is to find

max
𝑙(𝜃)∈(0,1)

∫
̄𝜃

𝜃
𝑊[𝑢(𝜃)] 𝑓(𝜃)𝑑𝜃 (7.16)

where the skill domain is Θ = [𝜃, ̄𝜃], subject to the following constraints

∫
̄𝜃

𝜃
[ 𝜃ℓ(𝜃) − 𝐶(𝑢(𝜃), ℓ(𝜃)] 𝑓(𝜃)𝑑𝜃 ≥ 𝐺 (7.17a)

𝑑𝑢
𝑑𝜃 = −ℓ(𝜃)𝑢ℓ(𝜃)

𝜃 (7.17b)

𝜃, ̄𝜃 free (7.17c)
𝑢(𝜃), 𝑢( ̄𝜃) free. (7.17d)

Equation (7.17a) is the resource constraint, equation (7.17b) is the incentive compatibility
constraint. The constraints (7.17c) and (7.17d) are introduced to account for the fact that the
tax authority limits and levels of taxes at both ends of the skill distribution should be optimally
derived. This means that there can be upper or lower extremes of the skill distribution that are
not taxed.

This is a control problem with state variable 𝑢(𝜃) and control variable ℓ(𝜃), and with free
boundary values for both the independent and the dependent state variable (see Table 7.1). We have
to introduce two types of adjoint variables: 𝜆 is skill-independent and is associated to constraint
(7.17a), and ℎ(𝜃) is skill-dependent and is associated to state variable 𝑢(𝜃). The Hamiltonian is

𝐻(𝜃) = 𝐻(𝜃, 𝜆, 𝑦(𝜃), 𝑢(𝜃), ℎ(𝜃)) ≡

≡ {𝑊[𝑢(𝜃)] − 𝜆 (𝐶 (𝑢(𝜃), ℓ(𝜃)) − 𝜃 ℓ(𝜃))}  𝑓(𝜃) − ℎ(𝜃)ℓ(𝜃)
𝜃 𝑢ℓ (𝐶 (𝑢(𝜃), ℓ(𝜃)) , ℓ(𝜃))

  Next we present the conditions for an interior solution, i.e., for 0 < ℓ∗(𝜃) < 1. The static
optimality condition 𝐻∗

ℓ  (𝜃) = 0 (see equation (??)) yields the optimal distribution of income

𝜆 (𝐶∗
ℓ (𝜃) − 𝜃) 𝑓(𝜃) = ℎ(𝜃)

𝜃 [𝑢∗
ℓ(𝜃) + ℓ(𝜃) (𝑢∗

𝑐ℓ(𝜃) + 𝑢∗
ℓℓ(𝜃))] ,  𝜃 ∈ [𝜃∗, ̄𝜃∗]. (7.18)

Again, we denote 𝐶∗
𝑗 (𝜃) ≡ 𝐶𝑗 (𝑢∗(𝜃), ℓ∗(𝜃)), for 𝑗 = 𝑢, ℓ, 𝑢∗

ℓ(𝜃) ≡ 𝑢ℓ (𝐶 (𝑢∗(𝜃), ℓ∗(𝜃)) , ℓ∗(𝜃)) and
analogously for the higher order derivatives of the utility function 𝑢(.).

The Euler equation ℎ′(𝜃) + 𝐻∗
𝑢(𝜃) = 0 yields the change in the value of the utility along the

skill distribution

𝑑ℎ(𝜃)
𝑑𝜃 = (𝜆𝐶∗

𝑢(𝜃) − 𝑊 ′ [𝑢∗(𝜃)]) 𝑓(𝜃) + (ℓ∗(𝜃)
𝜃 𝑢∗

ℓ𝑐(𝜃)𝐶∗
𝑢(𝜃)) ℎ(𝜃), 𝜃 ∈ [𝜃∗, ̄𝜃∗].   (7.19)
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The optimal conditions associated to the limit values for households’ utility in the two limits of the
skill distribution, 𝑢∗(𝜃) and 𝑢∗( ̄𝜃) satisfy

ℎ( ̄𝜃) = ℎ(𝜃) = 0 (7.20)

  and the optimal cutoff-values for skill distribution which is taxable, 𝜃∗ and ̄𝜃∗, are

𝐻∗(𝜃∗) = ℎ(𝜃∗)𝑢′(𝜃∗), for 𝜃∗ = 𝜃∗, ̄𝜃∗ (7.21)

  The admissibility conditions (7.17a) and (7.17b) should also hold for ℓ(𝜃) = ℓ∗(𝜃) and 𝑢(𝜃) = 𝑢∗(𝜃).
We see that the information friction introduces a skill-varying change when we compare to the

analogous first-order conditions for the perfect information problem :

𝐶∗
ℓ (𝜃) − 𝜃 = ℎ(𝜃)

𝜆𝜃𝑓(𝜃) [𝑢∗
ℓ(𝜃) + ℓ(𝜃) (𝑢∗

𝑐ℓ(𝜃) + 𝑢∗
ℓℓ(𝜃))]

𝜆𝐶∗
𝑢(𝜃) − 𝑊 ′ [𝑢∗(𝜃)] = 1

𝑓(𝜃)  (ℎ(𝜃)
𝑑𝜃 − (ℓ∗(𝜃)

𝜃 𝑢∗
ℓ𝑐(𝜃)𝐶∗

𝑢(𝜃)) ℎ(𝜃))

  In addition, optimality conditions (7.20) and (7.21) constrain the range of taxable income and
the level of taxes at the two extremes of the skill distribution.

A little more intuition on the characterization of the optimal redistribution problem is gained
by using the utility function assumed by Diamond (1998): 𝑢(𝑐, ℓ) = 𝑐 + 𝑣(1 − ℓ) where 𝑣′(.) > 0
and 𝑣″ < 0. This utility function simplifies calculations by assuming there are no income effects
associated to changes in taxes 1. With this utility function the elasticity of labor supply, for
skill-level 𝜃 is

𝜖(𝜃) = −𝑣″(1 − ℓ(𝜃)) ℓ(𝜃)
𝑣′(1 − ℓ(𝜃)) .

  With this utility function, the first order condition (7.18) becomes

𝜆 (𝑣′(1 − ℓ∗(𝜃)) − 𝜃) 𝑓(𝜃) = ℎ(𝜃)
𝜃 (𝑣′(1 − ℓ∗(𝜃))  − ℓ∗(𝜃)𝑣″(1 − ℓ∗(𝜃)) ) , for 𝜃 ∈ [𝜃∗, ̄𝜃∗],   (7.22)

  and condition (7.19) becomes

ℎ′(𝜃) ≡ 𝑑ℎ(𝜃)
𝑑𝜃 = − (𝑊 ′ [𝑢∗(𝜃)] − 𝜆) 𝑓(𝜃), for 𝜃 ∈ [𝜃∗, ̄𝜃∗].   (7.23)

This is an ordinary differential equation, which can be solved together with the terminal opti-
mality conditions (7.20). Then, 2, (7.20),

ℎ(𝜃) = ∫
̄𝜃

𝜃
(𝑊 ′ [𝑢∗(𝑠)] − 𝜆) 𝑓(𝑠)𝑑𝑠 = ∫

̄𝜃

𝜃
(𝑊 ′ [𝑢∗(𝑠)] − 𝜆) 𝑑𝐹(𝑠),

  is a balance equation between the utility of agents of type 𝜃 and the net benefit of reducing utility
for agents with skill higher than 𝜃.

1Saez (2001) proves that introducing income effects do not change qualitatively the results.
2From now on we delete the ∗ symbol in functions ℓ∗(𝜃) and 𝑢∗(𝜃) and in numbers 𝜃∗ and ̄𝜃∗.
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Substituting in equation (7.22) yields

𝜆 (𝜃 − 𝑣′(1 − ℓ(𝜃))) 𝑓(𝜃) = (𝑣′(1 − ℓ(𝜃)) − ℓ(𝜃)𝑣″(1 − ℓ(𝜃))
𝜃 ) ∫

̄𝜃

𝜃
(𝜆 − 𝑊 ′(𝑠))𝑑𝐹(𝑠).

  Using the definition of the elasticity of labor supply, and rearranging terms we get the well known
expression (see Diamond (1998) and (Tuomala, 2016, ch. 4) )

𝜃 − 𝑣′(1 − ℓ(𝜃))
𝑣′(1 − ℓ(𝜃)) = 𝐴(𝜃) 𝐵(𝜃) 𝐶(𝜃) (7.24)

where
𝐴(𝜃) ≡ 1 + 1

𝜖(𝜃)
 

𝐵(𝜃) ≡
∫

̄𝜃
𝜃 (𝜆 − 𝑊 ′ [𝑢(𝑠)]) 𝑑𝐹(𝑠)

𝜆 (1 − 𝐹(𝜃))
 

𝐶(𝜃) ≡ 1 − 𝐹(𝜃)
𝜃𝑓(𝜃)

  Equation (7.24) basically says that the ratio of the optimal tax policy should equate the marginal
rate of substitution between consumption and labor supply, for an agent of skill 𝜃 to the product
of three terms: the deadweight burden generated by the income tax to people of skill 𝜃 (𝐴(𝜃)), the
relative transfer of income from people with higher skills than 𝜃 (𝐵(𝜃)), and the weight of people
with higher skills relative to the average skills of people with skill 𝜃 (𝐶(𝜃)).

7.4 Time domain problems

Next we present two problems, usually cast in the time domain, the constrained terminal state
problem and the discounted infinite horizon problem.

In this case the objective functional is (7.4) and the constraint is the ordinary differential
equation (7.4.1)  

7.4.1 Constrained terminal state problem

A common problem in macroeconomics is the following: the set of independent variables is known
such as 𝑡0 = 0 and 𝑡1 = ̄𝑡, the initial value of the state value is fixed, 𝑦(0) = 𝑦0, the structure of the
economy given by the ODE (7.4), and value functional , and we assume that the terminal value for
the state variable is constrained by 𝑅( ̄𝑡, 𝑦( ̄𝑡)) ≥ 0 where 𝑦( ̄𝑡) is free.
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Formally the problem is

max
𝑢(⋅)

∫
̄𝑡

0
𝐹(𝑡, 𝑢(𝑡), 𝑦(𝑡)) 𝑑𝑡

subject to
̇𝑦 = 𝐺(𝑡, 𝑢(𝑡), 𝑦)
̄𝑡 given

𝑦(0) = 𝑦0 given
𝑅( ̄𝑡, 𝑦( ̄𝑡)) ≥ 0

  (Pt1)

The Hamiltonian function is

𝐻(𝑡, 𝑢, 𝑦, 𝜆) = 𝐹(𝑡, 𝑢, 𝑦) + 𝜆 𝐺(𝑡, 𝑢, 𝑦).

 

Proposition 3. 1st order necessary conditions for the constrained terminal value prob-
lem Let (𝑦∗, 𝑢∗) be the solution for problem Pt1. Then it satisfies

• the optimality condition

𝐻𝑢(𝑡, 𝑢∗, 𝑦∗(𝑡), 𝜆(𝑡)) = 0, for every  𝑡 ∈ [0, ̄𝑦];

  

• the multiplier equation

�̇� =   − 𝐻𝑦(𝑡, 𝑢∗, 𝑦∗(𝑡), 𝜆(𝑡)) = 0, for every  𝑡 ∈ (0, ̄𝑦)

 

• the transversality condition
𝜆( ̄𝑡)𝑅( ̄𝑡, 𝑦∗( ̄𝑡)) = 0,

 

and 𝑦∗(0) = 𝑦0.

Proof. In this case the value at the optimum is

J[𝑦∗, 𝑢∗] = ∫
̄𝑡

0
(𝐻(𝑡, 𝑢∗(𝑡), 𝑦∗(𝑡), 𝜆(𝑡)) − ̇𝑦∗(𝑡)𝜆(𝑡))  𝑑𝑡 + 𝜓𝑅( ̄𝑡, 𝑦( ̄𝑡))

  where 𝜓 is a Lagrange multiplier. The functional derivative, for an arbitrary perturbation
(𝛿𝑦, 𝛿𝑢) = 𝜀(𝜂𝑦, 𝜂𝑢) around (𝑦∗, 𝑢∗), is now

𝛿J[𝑦∗, 𝑢∗](𝜂𝑦, 𝜂𝑢) = ∫
̄𝑡

0
[𝐻𝑢(𝑡, 𝑦∗(𝑡), 𝑢∗(𝑡), 𝜆(𝑡))𝜂𝑢(𝑡) + (𝐻𝑦(𝑡, 𝑦∗(𝑡), 𝑢∗(𝑡), 𝜆(𝑡)) + �̇�(𝑡))𝜂𝑦(𝑡)] 𝑑𝑡+

+ 𝜆(0)𝜂𝑦(0) + (𝜓𝑅𝑦( ̄𝑡, 𝑦∗( ̄𝑡)) − 𝜆( ̄𝑡)) 𝜂𝑦( ̄𝑡),
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  where admissible perturbations satisfy 𝜂𝑦(0) = 0 and 𝜂𝑦( ̄𝑡) ≠ 0. Given the inequality constraint,
the KKT conditions

𝑅( ̄𝑡, 𝑦∗( ̄𝑡)) ≥ 0, 𝜓 ≥ 0, 𝜓𝑅( ̄𝑡, 𝑦∗( ̄𝑡)) = 0,

  are also necessary for an optimum. Setting 𝐻∗
𝑢(𝑡) = �̇� (𝑡) − 𝐻∗

𝑦(𝑡) = 𝜂𝑦(0) = 0, and because
𝜂𝑦( ̄𝑡) ≠ 0, the remaining necessary condition for an optimum is

𝜓𝑅𝑦( ̄𝑡, 𝑦∗( ̄𝑡)) − 𝜆( ̄𝑡) = 0,

which, multiplying both terms by 𝑅( ̄𝑡, 𝑦∗( ̄𝑡)) and using the KKT condition yields the remaining
adjoint condition 𝜆( ̄𝑡)𝑅( ̄𝑡, 𝑦∗( ̄𝑡)) = 0.

7.4.2 Infinite horizon problems

The benchmark problem in macroeconomics and growth theory is the (autonomous ) discounted
infinite horizon problem has the constraint

̇𝑦 = 𝑔(𝑦(𝑡), 𝑢(𝑡)), for 𝑡 ∈ [0, ∞) (7.25)

  instead of (7.2), and 𝑦(0) = 𝑦0 and alternative boundary conditions

lim
𝑡→∞

𝑦(𝑡) is free or lim
𝑡→∞

𝑦(𝑡) ≥ 0

The value functional is
J[𝑦, 𝑢] ≡ ∫

∞

0
𝑒−𝜌𝑡𝑓(𝑦(𝑡), 𝑢(𝑡))𝑑𝑡.

  Now, we define the current-value Hamiltonian function

ℎ(𝑦(𝑡), 𝑢(𝑡), 𝑞(𝑡)) = 𝑓(𝑦(𝑡), 𝑢(𝑡)) + 𝑞(𝑡)𝑔(𝑦(𝑡), 𝑢(𝑡)) =
= 𝑒−𝜌𝑡𝐻(𝑡, 𝑦(𝑡), 𝑢(𝑡), 𝜆(𝑡)).

where 𝑞(𝑡) = 𝑒𝜌𝑡𝜆(𝑡) is the current-value co-state variable. Consistently with the previous definitions
we call discounted Hamiltonian and discounted co-state variable to 𝐻(𝑡, 𝑦, 𝑢, 𝜆) and 𝜆.

Observe that the current-value Hamiltonian is time-independent.

Proposition 4 (First order necessary conditions: Pontriyagin maximum principle). Let
(𝑦∗, 𝑢∗) be the optimal state and control pair. Then there is a 𝑃𝐶1 continuous co-state variable 𝑞
such that the following conditions hold:

• the optimality condition  

ℎ𝑢(𝑦∗(𝑡), 𝑢∗(𝑡), 𝑞(𝑡)) = 0, 𝑡 ∈ [0, ∞)
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• the multipliers equation for the current co-state variable (also called canonical equation)

  ̇𝑞 = 𝜌𝑞 − ℎ𝑦(𝑦∗(𝑡), 𝑢∗(𝑡), 𝑞(𝑡)), 𝑡 ∈ [0, ∞)

 

• the transversality condition for the free or the constrained terminal state

lim
𝑡→∞

𝑒−𝜌𝑡𝑞(𝑡) = 0, or lim
𝑡→∞

𝑒−𝜌𝑡𝑞(𝑡)𝑦∗(𝑡) = 0

 

• and the admissibility conditions

⎧{
⎨{⎩

  ̇𝑦∗ = 𝑔(𝑦∗(𝑡), 𝑢∗(𝑡)), 𝑡 ∈ [0, ∞)
𝑦∗(0) = 𝑦0 𝑡 = 0

7.4.3 The Modified Hamiltonian Dynamic System

In regular cases we can have a geometric interpretation for the solution of an optimal control
problem. The necessary conditions for the infinite-horizon discounted optimal control problem,
feature a differential-algebraic system:

̇𝑦 = 𝑔(𝑦, 𝑢)
̇𝑞 = 𝜌𝑞 − ℎ𝑦(𝑢, 𝑦, 𝑞)

0 = ℎ𝑢(𝑢, 𝑦, 𝑞)
. (7.26)

where ℎ(𝑢, 𝑦, 𝑞) = 𝑓(𝑢, 𝑦) + 𝑞 𝑔(𝑢, 𝑦). Therefore, ℎ𝑞(𝑢, 𝑦, 𝑞) = 𝑔(𝑢, 𝑦).
If functions 𝑓(.) and 𝑔(.) are sufficiently smooth we may qualitative characterize the optimal

path for (𝑦, 𝑞) (or for (𝑢, 𝑦)).
If 𝜕2ℎ/𝜕𝑢2 ≠ 0, the implicit function theorem allows for obtaining from the optimality condition

for 𝑢, ℎ𝑢(𝑢, 𝑦, 𝑞) = 0, an implicit representation of the control as a function of the state and co-state
variables 𝑢 = 𝑢(𝑦, 𝑞). If we substitute this control representation in the differential equations of
(7.26) we obtain the modified Hamiltonian dynamic system (MHDS) as a non-linear planar
ODE,

( ̇𝑦
̇𝑞) = M (𝑦, 𝑞) ≡ ( 𝑔(𝑢(𝑦, 𝑞), 𝑦)

𝜌𝑞 − ℎ𝑦(𝑢(𝑦, 𝑞), 𝑦, 𝑞).) (7.27)

Assume there is one steady state for the MHDS, ( ̄𝑦, ̄𝑞) = {(𝑦, 𝑞) ∶ ̇𝑦 = ̇𝑞 = 0}. In the neighbourhood
of ( ̄𝑦, ̄𝑞) we can approximate the non-linear MHDS (7.27) by the linear system

( ̇𝑦(𝑡)
̇𝑞(𝑡)) = 𝐷(𝑦,𝑞)M( ̄𝑦, ̄𝑞) (𝑦(𝑡) − ̄𝑦

𝑞(𝑡) − ̄𝑞)
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  where the Jacobian, evaluated at the steady state ( ̄𝑦, ̄𝑞) is the matrix of constants

𝐷(𝑞,𝑦)M( ̄𝑦, ̄𝑞) =  
⎛⎜⎜⎜
⎝

𝜕 ̇𝑦( ̄𝑦, ̄𝑞)
𝜕𝑦

𝜕 ̇𝑦( ̄𝑦, ̄𝑞)
𝜕𝑞

𝜕 ̇𝑞( ̄𝑦, ̄𝑞)
𝜕𝑦

𝜕 ̇𝑞( ̄𝑦, ̄𝑞)
𝜕𝑞

⎞⎟⎟⎟
⎠

.

  If functions 𝑓(.) and 𝑔(.) have no singularities we can obtain a generic characterization of the
dynamics of the MHDS, and, therefore, of the solution to the optimal control problem.

Proposition 5. Let there be a steady state for the MHDS system. It can never be locally a stable
node or focus, and if there is transitional dynamics it can only be a saddle-point.

Proof. The differential of the current value Hamiltonian, ℎ = 𝑓(𝑢, 𝑦) + 𝑞𝑔(𝑢, 𝑦), is

𝑑ℎ = (𝑓𝑢 + 𝑞𝑔𝑢)𝑑𝑢 + (𝑓𝑦 + 𝑞𝑔𝑦)𝑑𝑦 + 𝑔𝑑𝑞.

  At the optimum ℎ𝑢(𝑢, 𝑦, 𝑞) = 𝑓𝑢(𝑢, 𝑦) + 𝑞𝑔𝑢(𝑢, 𝑦) = 0. Taking the differential to this static
optimality condition, we have

ℎ𝑢𝑢𝑑𝑢 + ℎ𝑢𝑦𝑑𝑦 + 𝑔𝑢𝑑𝑞 = 0

  and if ℎ𝑢𝑢 ≠ 0, by the implicit function theorem, function 𝑢 = 𝑢(𝑦, 𝑞) has derivatives

𝑢𝑦 = − ℎ𝑢𝑦
ℎ𝑢𝑢

 , 𝑢𝑞 = − 𝑔𝑢
ℎ𝑢𝑢

.

  Now, we can determine the Jacobian for matrix M, evaluated at any optimum pair (𝑦, 𝑞). The
differential of the first row of M is

𝑑𝑔(𝑦, 𝑢(𝑦, 𝑞)) = (𝑔𝑦 − 𝑔𝑢
ℎ𝑢𝑦
ℎ𝑢𝑢

) 𝑑𝑦 − 𝑔𝑢
𝑔𝑢

ℎ𝑢𝑢
𝑑𝑞

and the differential of the second row is

𝜌𝑑𝑞 − 𝑑ℎ𝑦(𝑦, 𝑢(𝑦, 𝑞)) = − (ℎ𝑦𝑦 − ℎ𝑦𝑢
ℎ𝑢𝑦
ℎ𝑢𝑢

) 𝑑𝑦 + (𝜌 − 𝑔𝑦 + ℎ𝑦𝑢
𝑔𝑢

ℎ𝑢𝑢
+) 𝑑𝑞.

Evaluating the derivatives at the steady state ( ̄𝑦, ̄𝑞), with �̄� = 𝑢( ̄𝑦, ̄𝑞), we find that the Jacobian
matrix has the following structure

𝐷(𝑦,𝑞)M ( ̄𝑦, ̄𝑞) =
⎛⎜⎜⎜⎜⎜
⎝

̄𝑔𝑦 − ̄𝑔𝑢ℎ̄𝑢𝑦
ℎ̄𝑢𝑢

  −( ̄𝑔𝑢)2

ℎ̄𝑢𝑢
 

−ℎ̄𝑦𝑦 + (ℎ̄𝑢𝑦)2

ℎ̄𝑢𝑢
𝜌 − ̄𝑔𝑦 + ̄𝑔𝑢ℎ̄𝑢𝑦

ℎ̄𝑢𝑢

⎞⎟⎟⎟⎟⎟
⎠

  where ̄𝑔𝑦 = 𝑔(𝑢( ̄𝑦, ̄𝑞), ̄𝑦), etc3. Observe that the Jacobian matrix has a particular structure

𝐷(𝑦,𝑞)M( ̄𝑦, ̄𝑞) = (𝑎 𝑏
𝑐 𝜌 − 𝑎) .

3because if ℎ(.) is continuous then ℎ𝑢𝑦(.) = ℎ𝑦𝑢(.).
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  impiying that the trace is equal to the rate of time preference,

trace (𝐷(𝑞,𝑦)M( ̄𝑦, ̄𝑞)) = 𝜌 > 0

  and is always positive and

det (𝐷(𝑞,𝑦)M( ̄𝑦, ̄𝑞)) = 𝑎(𝜌 − 𝑎) − 𝑏𝑐.

  This implies that, if there is a steady state, it can never a stable node or focus. Therefore, it can
be an unstable node or focus if det (𝐷(𝑞,𝑦)M( ̄𝑦, ̄𝑞)) > 0, a saddle-point if det (𝐷(𝑞,𝑦)M( ̄𝑦, ̄𝑞)) < 0 or
a degenerate saddle node if det (𝐷(𝑞,𝑦)M( ̄𝑦, ̄𝑞)) = 0. There can only be transitional dynamics if it
is a saddle-point.

Then we can conclude the following:

1. in generic cases the equilibrium point ( ̄𝑦, ̄𝑞) is a saddle point. The stable manifold associated
with ( ̄𝑦, ̄𝑞)

𝑊 𝑠 = { (𝑦, 𝑞) ∶ lim
𝑡→

(𝑦(𝑡), 𝑞(𝑡)) = ( ̄𝑦, ̄𝑞)}

  passing through point 𝑦(0) = 𝑦0 is the solution set of the OC problem;

2. this means that the solution to the OC problem is (at least locally) unique;

3. the optimal trajectory is asymptotically tangent to the stable eigenspace 𝐸𝑠 associated to
Jacobian 𝐷(𝑞,𝑦)M( ̄𝑦, ̄𝑞)

7.5 Economic applications

We consider the same problems as in the calculus of variations section.

7.5.1 Two simple problems

Example 1: Resource depletion problem

The (non-renewable) resource depletion problem can now be solved by using the Pontriyagin’s
principle. Recall that the problem is

max
𝐶

∫
∞

0
𝑒−𝜌𝑡 ln (𝐶(𝑡))𝑑𝑡, 𝜌 > 0

  subject to
⎧{{
⎨{{⎩

�̇�(𝑡) = −𝐶(𝑡), 𝑡 ∈ [0, ∞)
𝑊(0) = 𝑊0, given

lim𝑡→∞ 𝑊(𝑡) ≥ 0.
  In this problem, the control variable is consumption, 𝐶, and the state variable is the remaining
level of the resource, 𝑊 . What is the best path for consumption-depletion ?
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For applying the Pontryiagin maximum principle we write the current-value Hamiltonian

ℎ = 𝑙𝑛(𝐶) − 𝑞𝐶.

  The first order conditions are

𝐶(𝑡) = 1/𝑞(𝑡)
̇𝑞 = 𝜌𝑞(𝑡)

lim
𝑡→∞

𝑒−𝜌𝑡𝑞(𝑡)𝑊(𝑡) = 0
�̇� = −𝐶(𝑡)

𝑊(0) = 𝑊0 ∶

and can be written as a planar differential equation in (𝑊, 𝐶), together with the initial and the
transversality condition is

�̇� = −𝐶(𝑡)
̇𝐶 = −𝜌𝐶(𝑡)

𝑊(0) = 𝑊0

lim
𝑡→∞

𝑒−𝜌𝑡 𝑊(𝑡)
𝐶(𝑡) = 0

If we want to find the solution we must solve the system, together with the conditions on time.
There are several ways to solve it. Here is a simple one. First, define 𝑧(𝑡) ≡ 𝑊(𝑡)/𝐶(𝑡).

Time-differenting and substituting, we get the scalar terminal-value problem

⎧{
⎨{⎩

̇𝑧 = −1 + 𝜌𝑧
lim𝑡→∞ 𝑒−𝜌𝑡𝑧(𝑡) = 0

  which has a constant solution 𝑧(𝑡) = 1
𝜌 for every 𝑡 ∈ [0, ∞). Second, substitute 𝐶(𝑡) =

𝑊(𝑡)/𝑧(𝑡) = 𝜌𝑊(𝑡). therefore,
⎧{
⎨{⎩

�̇� = −𝐶(𝑡) = −𝜌𝑊(𝑡)
𝑊(0) = 𝑊0

  Then 𝑊 ∗(𝑡) = 𝑊0𝑒−𝜌𝑡 for 𝑡 ∈ [0, ∞) and 𝐶∗(𝑡) = 𝜌𝑊 ∗(𝑡).
Characterization of the solution: there is asymptotic extinction

lim
𝑡→∞

𝑊 ∗(𝑡) = 0,

  at a speed given by the half-life of the process

𝜏 ≡ { 𝑡 ∶ 𝑊 ∗(𝑡) = 𝑊(0) − 𝑊 ∗(∞)
2 } = − ln (1/2)

𝜌  

  if 𝜌 = 0.02 then 𝜏 ≈ 34.6574 years.
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Example 2: the consumption-savings problem

Problem: find the (𝐴, 𝐶) pair that maximizes the functional

max
𝐶

∫
∞

0
𝑒−𝜌𝑡 𝐶(𝑡)1−𝜃 − 1

1 − 𝜃 𝑑𝑡, 𝜌 > 0

  subject to
⎧{{
⎨{{⎩

̇𝐴(𝑡) = 𝑌 − 𝐶(𝑡) + 𝑟𝐴, 𝑡 ∈ [0, ∞)
𝐴(0) = 𝐴0, given

lim𝑡→∞ 𝐴(𝑡)−𝑟𝑡 ≥ 0.
  In this problem, the control variable is consumption, 𝐶, and the state variable is the level of net
wealth, 𝐴. The current value Hamiltonian is

ℎ(𝐴, 𝐶, 𝑄) = 𝐶1−𝜃

1 − 𝜃 + 𝑄(𝑌 − 𝐶 + 𝑟𝐴)

  and the first order conditions according to the Pontiyagin’s principle are

⎧{{{{
⎨{{{{⎩

𝐶(𝑡)−𝜃 = 𝑄(𝑡)
�̇� = 𝑄(𝜌 − 𝑟)

̇𝐴 = 𝑌 − 𝐶 + 𝑟𝐴
𝐴(0) = 𝐴0

lim𝑡→∞ 𝑄(𝑡)𝐴(𝑡)𝑒−𝜌𝑡 = 0

  As
�̇�
𝑄 = −𝜃

̇𝐶
𝐶

  we can obtain the solution by solving the mixed initial-terminal value problem for ODE’s

⎧{{{
⎨{{{⎩

̇𝐴 = 𝑌 − 𝐶 + 𝑟𝐴
̇𝐶 = 𝛾 𝐶

𝐴(0) = 𝐴0

lim𝑡→∞ 𝐶(𝑡)−𝜃𝐴(𝑡)𝑒−𝜌𝑡 = 0

  where again 𝛾 ≡ 𝑟 − 𝜌
𝜃 . We present and discuss next the solution to this problem.

7.5.2 Qualitatively specified problems

Next we present a general Ramsey (1928) model in which the behavioral functions are qualitatively
specified. This allows us to study the qualitative solution to the optimal control problem.

The Ramsey problem is:

max
𝐶

∫
∞

0
𝑒−𝜌𝑡𝑈(𝐶(𝑡))𝑑𝑡, 𝜌 > 0,
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  subject to
�̇�(𝑡) = 𝐹(𝐾(𝑡)) − 𝐶(𝑡), 𝑡 ∈ [0, ∞)

  𝐾(0) = 𝐾0 given and lim𝑡→∞ 𝑒−𝜌𝑡𝐾(𝑡) ≥ 0. We also assume that (𝐾, 𝐶) ∶ ℝ+ → ℝ2
+. In this

problem the control variable is 𝐶 and the state variable is the stock of capital 𝐾.
The utility and the production functions, 𝑢(𝐶) and 𝐹(𝐾), are usually assumed to have the

following properties: Increasing, concave and Inada :

𝑈 ′(.) > 0, 𝑈″(.) < 0, 𝐹 ′(.) > 0, 𝐹 ″(.) < 0

𝑈 ′(0) = ∞, 𝑈 ′(∞) = 0, 𝐹 ′(0) = ∞, 𝐹 ′(∞) = 0.

Although we do not have explicit utility and production functions we can still characterize the
optimal consumption-accumulation process (we are using the Grobman-Hartmann theorem).

The current-value Hamiltonian is

ℎ(𝐶, 𝐾, 𝑄) = 𝑈(𝐶) + 𝑄(𝐹(𝐾) − 𝐶)

  The necessary (and sufficient) conditions according to Pontriyagin’s maximum principle are

𝑈 ′(𝐶(𝑡)) = 𝑄(𝑡)
�̇� = 𝑄(𝑡) (𝜌 − 𝐹 ′(𝐾(𝑡)))

lim
𝑡→∞

𝑒−𝜌𝑡𝑄(𝑡)𝐾(𝑡) = 0
�̇� = 𝐹(𝐾(𝑡)) − 𝐶(𝑡)

𝐾(0) = 𝐾0

The MHDS and the initial and transversality conditions become

�̇� = 𝐹(𝐾(𝑡)) − 𝐶(𝑡)
̇𝐶 = 𝐶(𝑡)

𝜃(𝐶(𝑡))   (𝐹 ′(𝐾(𝑡)) − 𝜌)

𝐾(0) = 𝐾0 > 0
0 = lim

𝑡→∞
𝑒−𝜌𝑡𝑈 ′(𝐶(𝑡))𝐾(𝑡)

where 𝜃(𝐶) = −𝑈″ (𝐶)𝐶
𝑈′ (𝐶) > 0 is the inverse of the elasticity of intertemporal substitution.

The MHDS has no explicit solution (it is not even explicitly defined) : we can only use quali-
tative methods. They consist in:

• determining the steady state(s): ( ̄𝐶, �̄�)

• characterizing the linearised dynamics (it is useful to build a phase diagram).
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The steady state (if 𝐾 > 0) is

𝐹 ′(�̄�) = 𝜌 ⇒ �̄� = (𝐹 ′)−1(𝜌)
̄𝐶 = 𝐹(�̄�)

The linearized MHDS is

(�̇�
̇𝐶) = ( 𝜌 −1

̄𝐶
𝜃( ̄𝐶)𝐹

″(�̄�)  0 ) (𝐾(𝑡) − �̄�
𝐶(𝑡) − ̄𝐶 )

where we denote 𝐷M the Jacobian matrix. The jacobian 𝐽 has trace and determinant:

tr(𝐷M) = 𝜌, det (𝐷M) =
̄𝐶

𝜃( ̄𝐶)𝐹 ″(�̄�) < 0

  the steady state ( ̄𝐶, �̄�) is a saddle point. The eigenvalues of 𝐷M are

𝜆𝑠 = 𝜌
2 −

√
Δ  < 0,  𝜆𝑢 = 𝜌

2 +
√

𝛿  > 𝜌 > 0

  where the discriminant is

Δ =   (𝜌
2)

2
−

̄𝐶
𝜃( ̄𝐶)𝐹 ″(�̄�) > (𝜌

2)
2

.

and the eigenvector matrix of 𝐷M is

P  = (P𝑠P𝑢) = ( 1 1
𝜆𝑢 𝜆𝑠

)

  Then the approximate solution for the Ramsey problem, in the neighbourhood of the steady
state, is

(𝐾∗(𝑡)
𝐶∗(𝑡)) = ( �̄�

̄𝐶 ) + 𝐾0 ( 1
𝜆𝑢

) 𝑒𝜆𝑠𝑡, 𝑡 ∈ [0, ∞) (7.28)

  Then the local stable manifold has slope higher than the isocline �̇�(𝐶, 𝐾) = 0
𝑑𝐶
𝑑𝐾 ∣

𝑊 𝑠
= 𝜆𝑢 > 𝑑𝐶

𝑑𝐾 ∣
�̇�

= 𝐹 ′(�̄�) = 𝜌

  Geometrically (see figure 7.1) the approximate solution (7.28) belongs to the stable sub space
𝐸𝑠

𝐸𝑠 = { (𝐾, 𝐶) ∶ (𝐶 − ̄𝐶) = 𝜆𝑢(𝐾 − �̄�)} 
  while the exact solution belongs to the stable manifold 𝑊 𝑠 (which cannot be determined explic-
itly). Observe that while the slope of the isocline in the neighborhood of the steady is flatter then
the slope of the stable manifold

𝑑𝐶
𝑑𝐾 ∣

�̇�=0
= 𝐹 ′(�̄�) = 𝜌 < 𝑑𝐶

𝑑𝐾 ∣
𝑊 𝑠

= 𝜆𝑢

  meaning that the solution approaches the steady state by accumulating (reducing) capital is the
initial capital level is smaller (bigger) than the steady state level.
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Figure 7.1: The phase diagram for the Ramsey model: it depicts the isoclines ̇𝐶 = 0 and �̇� = 0,
the stable manifold 𝑊 𝑠 and the stable eigenspace, 𝐸𝑠, which is tangent asymptotically to the stable
manifold. The exact solution follows along the stable manifold, but we have determined just the
approximation along the stable eigenspace.

7.5.3 Unbounded solutions

In the previous section we saw that if the solution converges to a steady state we can have a
qualitative characterization of the solution appealing to the Grobman-Hartman theorem. However,
in some cases, in particular in endogenous growth theory models, solutions may not converge to a
steady state, or the solution which interests us can be unbounded in time.

In particular, the consumer-saver problem may have an unbounded solution. In the next chapter
we will study the 𝐴𝐾 model.

If we write the MHDS in the (𝐴, 𝑄) space, we have

⎧{
⎨{⎩

̇𝐴 = 𝑌 − 𝑄− 1
𝜃 + 𝑟𝐴

�̇� = 𝑄(𝜌 − 𝑟)

  the solution of the optimal control problem are the solutions of that MHDS together with the
inicial and transversality conditions

𝐴(0) = 𝑎0, lim
𝑡→∞

𝑄(𝑡)𝐴(𝑡)𝑒−𝜌𝑡 = 0.

  There are two interesting cases. First, if 𝑟 = 𝜌 then there is an infinity of stationary solutions
satisfying 𝑄− 1

𝜃 = 𝑌 + 𝑟𝐴. Second, if 𝑟 ≠ 𝜌 it has no steady state in ℝ. To see this note that, �̇� = 0
if and only if 𝑄 = 0 but then ̇𝐴 = 0 can only be reached asymptotically when 𝐴 → ∞.

We can have a clearer characterization if we recast the problem in the (𝐴, 𝐶) spac. Recall that
in this case we have the MHDS

⎧{
⎨{⎩

̇𝐴 = 𝑌 − 𝐶 + 𝑟𝐴
̇𝐶 = 𝛾𝐶,
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  where
𝛾 ≡ 𝑟 − 𝜌

𝜃 ,

  which, for the moment, we assume has an ambiguous sign.
The solution of the optimal control problem are the solutions of that MHDS together with the

inicial and transversality conditions

⎧{
⎨{⎩

𝐴(0) = 𝑎0,
lim𝑡→∞ 𝐶(𝑡)− 1

𝜃 𝐴(𝑡)𝑒−𝜌𝑡 = 0.

  The MHDS is linear planar ODE with coefficient matrix is

A = (𝑟 −1
0 𝛾 )

  that has eigenvalues
𝜆− = 𝛾, 𝜆+ = 𝑟 > 0.

  and has eigenvector matrix

P = ( 1 1
𝑟 − 𝛾 0)

  The solution to the MHDS is, for 𝛾 ≠ 0

(𝐴(𝑡)
𝐶(𝑡)) = ⎛⎜

⎝
−𝑌

𝑟
0

⎞⎟
⎠

+ ℎ− ( 1
𝑟 − 𝛾) 𝑒𝛾𝑡 + ℎ+ (1

0) 𝑒𝑟𝑡.

  For later use, observe that the trajectories starting from 𝐴(0) = 𝑎0 and travelling along the
eigenspace associated to eigenvalue 𝜆− are

(𝐴(𝑡)
𝐶(𝑡)) = ⎛⎜

⎝
−𝑌

𝑟
0

⎞⎟
⎠

+ (𝐴0 + 𝑌
𝑟 ) ( 1

𝑟 − 𝛾) 𝑒𝛾𝑡.

  that is
𝔼− = { (𝐴, 𝐶) ∈ ℝ × ℝ+ ∶ 𝐶 = (𝑟 − 𝛾) (𝐴 + 𝑌

𝑟 )} . 

 
We saw that the only requirement for the transversality condition to be me, and therefore for

the optimal control problem to have a solution was 𝑟 > 𝛾. Even if we keep this assumption, three
cases are possible

1. if 𝑟 < 𝜌 then 𝜆− = 𝛾 < 0 and and the steady state ( ̄𝐴, ̄𝐶) = (−𝑌 /𝑟, 0) is a saddle-point. The
solution of the optimal control problem, which lies along the stable manifold converges to
𝐶∗(∞) = 0 and 𝐴∗(∞) = −𝑌 /𝑟 < 0. The steady state is a saddle point. The intuition is: the
consumer is more impatient than the market and therefore will be asymptotically a debtor
to a point in which it can collateralize the debt by its human capital 𝐴(∞) + 𝐻(0) = 0;
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2. if 𝛾 < 𝑟 = 𝜌 then 𝜆− = 0 and the solution is constant 𝐶∗(𝑡) = 𝑌 + 𝑟𝐴0 and 𝐴∗(𝑡) = 𝐴0
for all 𝑡 ∈ [0, ∞). This was the case corresponding to the existence of an infinite number of
equilibria when the characterization is conducted in the (𝐴, 𝑄) space;

3. if 𝑟 > 𝜌 then 𝜆− = 𝛾 > 0 and the steady state ( ̄𝐴, ̄𝐶) = (−𝑌 /𝑟, 0) is an unstable node. In
this case, there are admissible solutions only if 𝐴0 ≥ −𝑌 /𝑟, otherwise consumption would
be negative. However, if 𝐴0 > −𝑌 /𝑟 there is an admissible solution to the optimal control
problem but it is unbounded.

The question the last case poses is the following. First, if we look at the MHDS as a dynamical
system we would say that it is unstable but most of the qualitative theory of ODE characterizes
the dynamics close to a steady state. But we already found that this case is indeed a solution to
the optimal control problem. How can we reconcile the two points ?

A way to deal with the last type of behavior is to consider convergence of the solution to a kind
of invariant structure and to consider convergence to that structure. An approach which is used in
the economic growth literature (see Acemoglu (2009)) is to consider convergence to an exponential
solution, called balanced growth path, such that the initial and the transversality conditions
hold.

The method proceeds along five steps.
First, define the variables using multiplicative deviations along an exponential trends with

proportional growth rates. In our case we try the case in which the rates of growth are equal

𝐴(𝑡) = 𝑎(𝑡)𝑒𝑔𝑡, 𝐶(𝑡) = 𝑐(𝑡)𝑒𝑔𝑡

  Second, obtain the dynamic system for the detrended variables (𝑎, 𝑐). If we observe that

̇𝑎
𝑎 =

̇𝐴
𝐴 − 𝑔, ̇𝑐

𝑐 =
̇𝐶

𝐶 − 𝑔,

  we get
⎧{
⎨{⎩

̇𝑎 = 𝑌 𝑒−𝑔𝑡 − 𝑐 + (𝑟 − 𝑔)𝑎
̇𝑐 = (𝛾 − 𝑔)𝑐

  Third, obtain 𝑔 from a stationary solution to the system in detrended variables. In our case
setting 𝑔 = 𝛾 transforms the previous system to

⎧{
⎨{⎩

̇𝑎 = 𝑌 𝑒−𝛾𝑡 − 𝑐 + (𝑟 − 𝛾)𝑎
̇𝑐 = 0

  which implies that 𝑐(𝑡) = ̄𝑐 which is an unknown constant. Setting 𝑎(0) = 𝐴0 and 𝑐(𝑡) = ̄𝑐 we
can solve the equation for the detrended asset holdings

𝑎(𝑡) = (𝐴0 − ̄𝑐
𝑟 − 𝛾 + 𝑌

𝑟 (1 − 𝑒−𝑟𝑡)) 𝑒(𝑟−𝛾)𝑡 + ̄𝑐
𝑟 − 𝛾 .
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  Fourth, we can determine ̄𝑐 from the transversality condition

lim
𝑡→∞

(𝐶(𝑡))−𝜃𝐴(𝑡)𝑒−𝜌𝑡 = lim
𝑡→∞

̄𝑐−𝜃𝑒(𝛾(1−𝜃)−𝜌)𝑡𝑎(𝑡) =

= lim
𝑡→∞

̄𝑐−𝜃𝑒(𝛾(𝜃−1)−𝜌+𝑟−𝛾)𝑡 (𝐴0 − ̄𝑐
𝑟 − 𝛾 + 𝑌

𝑟 (1 − 𝑒−𝑟𝑡) + ̄𝑐
𝑟 − 𝛾 𝑒−(𝑟−𝛾)𝑡) =

= lim
𝑡→∞

̄𝑐−𝜃 (𝐴0 − ̄𝑐
𝑟 − 𝛾 + 𝑌

𝑟 (1 − 𝑒−𝑟𝑡) + ̄𝑐
𝑟 − 𝛾 𝑒−(𝑟−𝛾)𝑡) =

= ̄𝑐−𝜃 (𝐴0 − ̄𝑐
𝑟 − 𝛾 + 𝑌

𝑟 ) = 0

  if and only if ̄𝑐 = 𝑐∗ = (𝑟 − 𝛾) (𝐴0 + 𝑌
𝑟 ).

At last we get the solution

𝐶∗(𝑡) = 𝑐∗𝑒𝛾𝑡, 𝐴∗(𝑡) = 𝑎∗(𝑡)𝑒𝛾𝑡

where
𝑐∗ = (𝑟 − 𝛾) (𝑎0 + 𝑌

𝑟 ) , 𝑎∗(𝑡) = 𝐴0 + 𝑌
𝑟 (1 − 𝑒−𝛾𝑡) .

  We see that
𝐶∗(𝑡) = (𝑟 − 𝛾) (𝐴∗(𝑡) + 𝑌

𝑟 ) , for 𝑡 ∈ [0, ∞)
  which means that the solution to the optimal control problem evolves along the eigenspace
associated to the eigenvalue 𝜆− (see figure 7.2).

Figure 7.2: Phase diagram for the benchmark consumer problem for the case 𝑟 > 𝛾.

If 𝑟 < 𝜌, and therefore 𝛾 < 0 , the solution evolves along the eigenspace associated to 𝜆− butit
converges to the steady state in which 𝐴(∞) = −𝑌 /𝑟. In this case 𝔼− = 𝔼𝑠 that is this is the stable
eigenspace (which as the model is linear is the stable manifold).

From this we have a geometrical interpretation of the solution to the optimal control problem:
if 𝑟 ≠ 𝜌 the solution will belong to the eigenspace 𝔼−, and it converges to the steady state if 𝑟 < 𝜌
and diverges from it if 𝑟 > 𝜌.
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This illustrates, and reinforces, the fact that interpreting phase diagrams for MHDS of optimal
control problems should be done with care: if the optimal control problem has a single solution,
the geometrical analog of it is also unique.
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Chapter 8

Dynamic programming

 
Consider again the free terminal state optimal control problem: among functions 𝑦 ∈ Y and

𝑢 ∈ 𝑈 satisfying
̇𝑦 = 𝐺(𝑦(𝑡), 𝑢(𝑡), 𝑡), for 𝑡 ∈ [0, ̄𝑡] (8.1)

  and 𝑦(0) = 𝑦0 find the pair (𝑦∗, 𝑢∗) that maximize the functional

J[𝑦, 𝑢] ≡ ∫
̄𝑡

0
 𝐹 (𝑡, 𝑦(𝑡), 𝑢(𝑡))𝑑𝑡 (8.2)

  where ̄𝑡 is given and 𝑦∗( ̄𝑡) is free.

8.1 The finite horizon case

 

Proposition 1 (Necessary conditions according to the principle of dynamic program-
ming). Consider the optimal state and control functions 𝑦∗ ∈ Y and 𝑢∗ ∈ 𝑈 for the optimal control
problem with free terminal state. Then the Hamilton-Jacobi-Bellman  equation must hold

−𝑉𝑡(𝑡, 𝑦) = max
𝑢∈𝒰

{ 𝐹(𝑡, 𝑦, 𝑢) + 𝑉𝑦(𝑡, 𝑦)𝐺(𝑡, 𝑦, 𝑢)}   (8.3)

  for all 𝑡 ∈ [0, ̄𝑡) and all 𝑦 ∈ 𝑌   ⊆ ℝ.

Proof. (heuristic) We define the functional over the state and control functions continuing from an
arbitrary time 𝑡 ≥ 0: (𝑦, 𝑢) ∶ [𝑡, ̄𝑡] → 𝑌 × 𝑈 ⊆ ℝ2

J[𝑦, 𝑢](𝑡) = ∫
̄𝑡

𝑡
 𝐹 (𝑠, 𝑦(𝑠), 𝑢(𝑠))𝑑𝑠.

and call value function to
𝑉 (𝑡, 𝑦(𝑡)) ≡ max

(𝑢(𝑠)|𝑠∈[𝑡, ̄𝑡])
J[𝑦, 𝑢; 𝑡]

43
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  for 𝑦(𝑡) ∈ 𝑌 .
The Principle of dynamic programming optimality states the following: for every (𝑡, 𝑦) ∈

[0, ̄𝑡] × 𝑌 and every Δ𝑡 ∈ (0, ̄𝑡 − 𝑡] the value function satisfies

𝑉 (𝑡, 𝑦(𝑡)) = max
(𝑢(𝑠)|𝑠∈[𝑡,𝑡+∆𝑡])

{  ∫
𝑡+∆𝑡

𝑡
𝐹(𝑠, 𝑦(𝑠), 𝑢(𝑠))𝑑𝑠 + 𝑉 (𝑡 + Δ𝑡, 𝑦(𝑡 + Δ𝑡))}  

  where
𝑦(𝑡 + Δ𝑡) = 𝑦(𝑡) + 𝐺(𝑡, 𝑦(𝑡), 𝑢(𝑡))Δ𝑡 + 𝑜(Δ𝑡).

  Performing a first-order Taylor expansion we get

𝑉 (𝑡 + Δ𝑡, 𝑦(𝑡 + Δ𝑡)) = 𝑉 (𝑡, 𝑦(𝑡)) + 𝑉𝑡(𝑡, 𝑦(𝑡))Δ𝑡 + 𝑉𝑦(𝑡, 𝑦(𝑡))𝐺(𝑡, 𝑦(𝑡), 𝑢(𝑡))Δ𝑡 + 𝑜(Δ𝑡)

  (this requires that 𝑉 is 𝐶1). If the interval Δ𝑡 is sufficiently small we can use the mean-value
theorem

  ∫
𝑡+∆𝑡

𝑡
𝐹(𝑠, 𝑦(𝑠), 𝑢(𝑠))𝑑𝑠 = 𝐹(𝑡, 𝑦(𝑡), 𝑢(𝑡))Δ𝑡

  Then

𝑉 (𝑡, 𝑦(𝑡)) = max
(𝑢(𝑠)|𝑠∈[𝑡,𝑡+∆𝑡])

{ 𝐹(𝑡, 𝑦(𝑡), 𝑢(𝑡))Δ𝑡 + 𝑉 (𝑡, 𝑦(𝑡)) + 𝑉𝑡(𝑡, 𝑦(𝑡))Δ𝑡 + 𝑉𝑦(𝑡, 𝑦)𝑔(𝑡, 𝑦(𝑡), 𝑢(𝑡))Δ𝑡 + 𝑜(Δ𝑡)} . 

Cancelling out 𝑉 (𝑡, 𝑦(𝑡)), dividing by Δ𝑡, taking Δ𝑡 → 0 and observing that the pair (𝑡, 𝑦(𝑡)) is an
arbitrary element of 𝑇 × 𝑌 we get the HJB equation (8.3).

For solving the optimal control problem, while the Pontriagyin’s principle provides necessary
conditions in a form of a initial-terminal value problem for a planar ODE, the principle of the
dynamic programming provides a formula for evaluating the value of our resource in a recursive
way and independent of time.

The HJB equation (8.3) is a PDE (partial differential equation).

8.2 Infinite horizon discounted optimal control problem

The infinite horizon discounted optimal control problem is, again, to find functions 𝑢∗ ∈ U and
𝑢∗ ∈ Y satisfying

⎧{{
⎨{{⎩

̇𝑦 = 𝑔(𝑦(𝑡), 𝑢(𝑡)), 𝑡 ∈ [0, ∞)
𝑦(0) = 𝑦0,
lim𝑡→∞ ℎ(𝑡)𝑦(𝑡) ≥ 0

that maximize the objective functional

J[𝑦, 𝑢] ≡ ∫
∞

0
𝑒−𝜌𝑡𝑓(𝑦(𝑡), 𝑢(𝑡))𝑑𝑡
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Proposition 2 (Necessary conditions according to the principle of dynamic program-
ming for the infinite horizon problem). Let (𝑦∗, 𝑢∗) be the solution to the discounted infinite
horizon problem. Then it satisfies the HJB equation

𝜌𝑣(𝑦) = max
𝑢

{ 𝑓(𝑦, 𝑢) + 𝑣′(𝑦)𝑔(𝑦, 𝑢)} (8.4)

Proof. For 𝑦(𝑡) = 𝑦 the value function is

𝑉 (𝑡, 𝑦) ≡ ∫
∞

𝑡
𝑒−𝜌𝑠𝑓(𝑦∗(𝑠), 𝑢∗(𝑠))𝑑𝑠

  Multiplying by a inverse of the discount factor, the value function becomes independent of the
initial time,

𝑒𝜌𝑡𝑉 (𝑡, 𝑦) = ∫
∞

𝑡
𝑒−𝜌(𝑠−𝑡)𝑓(𝑦∗(𝑠), 𝑢∗(𝑠))𝑑𝑠 = 𝑣(𝑦).

  Then we can write
𝑉 (𝑡, 𝑦) = 𝑒−𝜌𝑡𝑣(𝑦)

  and upon substituting in equation (8.3) we get equation (8.4).

In the case of the discounted infinite horizon the HJB equation is not a PDE but an ODE in
implicit form. In order to see this we need to determine another important element of the DP
approach: the policy function.

If we define the function ℎ(𝑢, 𝑦) ≡ 𝑓(𝑦, 𝑢) + 𝑣′(𝑦)𝑔(𝑦, 𝑢) the HJB equation (8.4) can be written
as

𝜌𝑣(𝑦) = max
𝑢

ℎ(𝑢, 𝑣).

  We can obtain the optimal control from the first-order condition

𝜕ℎ(𝑢, 𝑦)
𝜕𝑢 = 0.

  If function ℎ(𝑢, 𝑣) is monotonic as regards 𝑢, by appealing to the implicit function theorem, we
can obtain the optimal control as a function of the state variable, 𝑢∗ = 𝜋(𝑦). Function 𝜋(.) in the
DP literature is called policy function. It gives the optimal control as a function of the state
variable. This is why it is called a feedback control problem.

The reason for this is the following. If we substitute the policy function in equation (8.4) we
finally obtain the HJB equation as an ODE in implicit form

𝜌𝑣(𝑦) = 𝑓(𝜋(𝑦), 𝑦) + 𝑣′(𝑦)𝑔(𝜋(𝑦), 𝑦)

  where the state variable 𝑦 is the independent variable and the value function, 𝑣(𝑦), is the unknown
function.

If we are able to determine a solution to this equation, we can usually specify the utility function,
which means that we are able to obtain the optimal control as a function of the state variable. We
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can obtain the solution to the optimal control problem by substituting in the ODE constraint to
get

̇𝑦  = 𝑔(𝑦, 𝜋(𝑦)), 𝑡 ∈ [0, ∞)

  which, together with the initial condition 𝑦(0) = 𝑦0, would, hopefully, allow for the determination
of the solution for the state variable.

If we can find the policy function, then obtaining the optimal dynamics for 𝑦 reduces to solving
an initial-value problem instead of a mixed initial-terminal value problem (or two-point boundary
value problem) as is the case when we use the calculus of variations of the Pontriyagin’s principle
approaches.

However, only in a very small number of cases we can obtain closed form solutions to the HJB
equation. Next we show some cases in which this is possible.

8.3 Applications

8.3.1 Example 1: The resource depletion problem

 
We solve again resource-depletion problem for an infinite horizon

max
𝐶

∫
∞

0
𝑒−𝜌𝑡 ln (𝐶(𝑡))𝑑𝑡, s.t �̇� = −𝐶, 𝑊(0) = 𝑊0

  by using the DP principle.
The HJB equation is

𝜌𝑣(𝑊) = max
𝐶

[  ln (𝐶) + 𝑣′(𝑊)(−𝐶)]

  Policy function
1

𝐶∗ − 𝑣′(𝑊) = 0 ⇔ 𝐶∗ = (𝑣′(𝑊))−1

  Then the HJB becomes
𝜌𝑣(𝑊) = −  ln (𝑣′(𝑊)) − 1

 
The textbook method for solving the HJB equation through is by using the method of un-

determined coefficients  after we make a conjecture over the form of the value function (no
constructive way here).

Assume the trial function
𝑣(𝑊) = 𝑎 + 𝑏 ln (𝑊)

  As 𝑣′(𝑊) = 𝑏/𝑊 and substituting and collecting terms we get

𝜌𝑎 + 1 + ln (𝑏) = ln (𝑊) (1 − 𝜌𝑏)

  then 𝑏 = 1/𝜌 and 𝑎 = (ln 𝜌 − 1)/𝜌.
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Then:
𝑣(𝑊) = ln 𝜌 − 1 + ln (𝑊)

𝜌 , 𝐶∗ = (𝑣′(𝑊))−1 = 𝜌𝑊

A second method: the HJB equation is an ODE, where 𝑊 is the independent variable, so we
can try to solve it (this is a constructive method).

The HJB is equivalent to
𝑣′(𝑊) = 𝑒−(1+𝜌𝑣(𝑊))

  ODE 𝑦′(𝑥) = 𝑒(𝑎+𝑏𝑦(𝑥)) has the closed form solution

𝑦(𝑥) = 1
𝑏   (−𝑎 + ln (− 1

𝑏(𝑘 + 𝑥) ))

  where 𝑘 is an arbitrary constant. Then we determine

𝑣(𝑊) = −1
𝜌 (1 + ln ( 1

𝜌(𝑊 + 𝑘) ))  

  and
𝐶∗ = (𝑉 ′(𝑊))−1 = 𝜌(𝑊 + 𝑘)

 
Substituting in the constraint �̇� = −𝐶 = −𝜌(𝑊 + 𝑘), we get the solution

𝑊(𝑡) = −𝑘 + (𝑊(0) + 𝑘)𝑒−𝜌𝑡.

  The problem is somewhat incompletely specified, which reveals a potential problem when using
the DP approach.

In our case, as it is natural to assume that lim𝑡→∞ 𝑊(𝑡) = 0 we would obtain 𝑘 = 0 and
therefore we would get the same solution as from using the CV and Pontriyagin’s approaches:

𝐶∗(𝑡) = 𝜌𝑊0𝑒−𝜌𝑡, 𝑊 ∗(𝑡) = 𝑊0𝑒−𝜌𝑡, for 𝑡 ∈ [0, ∞).

 

8.3.2 Example 2: The benchmark consumption-savings problem

Applying the HJB equation (8.4) to our problem we have

𝜌𝑣(𝐴) = max
𝐶

{ 𝐶1−𝜃 − 1
1 − 𝜃 + 𝑣′(𝐴)(𝑌 − 𝐶 + 𝑟𝐴)} . (8.5)

   Define a indirect utility function by

�̃�(𝑣′(𝐴)) = max
𝐶

{𝐶1−𝜃 − 1
1 − 𝜃 − 𝑣′(𝐴) 𝐶} 

  and total wealth, summing up human and financial wealth, by 𝑊(𝐴) ≡ 𝑌
𝑟 + 𝐴, then the HJB

equation (8.5) at the optimum is a implicit ODE

𝜌𝑣(𝐴) = �̃�(𝑣′(𝐴)) + 𝑟 𝑣′(𝐴) 𝑊(𝐴). (8.6)
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   Solving the static utility problem we get the optimum policy for consumption

𝐶∗ = 𝜋(𝐴) ≡ (𝑣′(𝐴))− 1
𝜃 .

  as a function of the (unknown) marginal value function, and upon substitution yields

�̃�(𝑣′(𝐴)) = 1
1 − 𝜃( (𝑣′(𝐴))

𝜃−1
𝜃 − 1).

  Therefore, equation (8.6) becomes

𝜌 𝑣(𝐴) = 𝜃
1 − 𝜃 (𝑣′(𝐴))

𝜃−1
𝜃 − 1

1 − 𝜃  + 𝑟 𝑣′(𝐴) 𝑊(𝐴) (8.7)

  To solve this (implicit ODE) equation, we use again the method of undetermined coefficients.
Conjecturing the trial function

𝑣(𝐴) = 𝑎 + 𝑏 𝑊(𝐴)1−𝜃,

  with arbitrary parameters 𝑎 and 𝑏. Then

𝑣′(𝐴) = 𝑏 (1 − 𝜃) 𝑊(𝐴)−𝜃

  and after substitution in equation (8.7) we get

𝑎𝜌 + 1
1 − 𝜃 = 𝑊(𝐴)1−𝜃 𝑏 𝜃 [ (𝑏 (1 − 𝜃))

−1/𝜃
− (𝑟 − 𝛾)] 

  where we have again 𝛾 ≡ (𝑟 − 𝜌)/𝜎. Setting both sides to zero, yields

𝑎 = 1
𝜌(𝜃 − 1) and 𝑏 = (𝑟 − 𝛾)−𝜃

1 − 𝜃

  Then, the value function is

𝑣(𝐴) = 1
1 − 𝜃[ (𝑟 − 𝛾)−𝜃 (𝑌

𝑟 + 𝐴)
1−𝜃

− 1
𝜌]. 

  Taking the derivative as regards 𝐴 and substituting in the policy function for 𝐶, we find the
optimal consumption in feedback form

𝐶∗(𝐴) = (𝑟 − 𝛾) (𝑌
𝑟 + 𝐴)

  which only makes sense if 𝑟 > 𝛾.
We can get the optimal asset path by substituting optimal consumption in the budget constraint

̇𝐴∗ = 𝑌 + 𝑟𝐴 − 𝐶∗(𝐴) = 𝛾 (𝑌
𝑟 + 𝐴) .

  Solving this equation with 𝐴(0) = 𝐴0 we get the optimal paths for asset holdings

𝐴∗(𝑡) = −𝑌
𝑟 + (𝑌

𝑟 + 𝐴0) 𝑒𝛾𝑡, for 𝑡 ∈ [0, ∞),
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  and consumption
𝐶∗(𝑡) = (𝑟 − 𝛾) (𝑌

𝑟 + 𝐴0) 𝑒𝛾𝑡, for 𝑡 ∈ [0, ∞).

 
Exercise Prove, by setting 𝜃 = 1, that the value function for 𝑢(𝐶) = ln (𝐶) is

𝑉 (𝐴) = 1
𝜌[ 𝑟 − 𝜌

𝜌 + ln (𝜌 𝑊(𝐴)) ]. 

  Hint: use the property 𝑓(𝑥) = exp (ln 𝑓(𝑥)) and use the l’Hôpital theorem.

The utility function is a generalized logarithm 𝑢(𝐶) = ln𝜃(𝐶) = 𝐶1−𝜃 − 1
1 − 𝜃 . Sometimes in the

literature people write

𝑢(𝐶) =
⎧{
⎨{⎩

𝐶1−𝜃

1 − 𝜃 if 𝜃 ≠ 1
ln (𝐶)  if 𝜃 = 1

 

  The problem with this formulation is that if we cannot obtain the value function for the logarithm
utility by setting the limit of 𝜃 = 1 for the general case 𝜃 = 1, which is

𝑣(𝐴) = (𝑟 − 𝛾)−𝜃

1 − 𝜃 𝑊(𝐴)1−𝜃.

 

8.3.3 Example 3: The Ramsey model

The HJB for the Ramsey model is

𝜌𝑣(𝑘) = max
𝑐

{ 𝑢(𝑐) + 𝑣′(𝑘) (𝐹(𝑘) − 𝑐)}  

The optimality condition is
𝑢′(𝑐) = 𝑣′(𝑘)

  if 𝑢 is sufficiently smooth then we obtain the policy function 𝑐 = 𝐶(𝑘) = (𝑢′)−1(𝑣′(𝑘)). Substi-
tuting back in the HJB equation yields the implicit ODE in 𝑣(𝑘)

𝜌𝑣(𝑘) = 𝑢(𝐶(𝑘)) + 𝑣′(𝑘)(𝐹(𝑘) − 𝐶(𝑘))

  which does not have a closed form solution in general.

Exercise: for the case in which 𝑢(𝑐) = 𝑐1−𝜃 − 1
1 − 𝜃 and 𝐹(𝑘) = 𝑘𝛼, such that 𝜃 = 𝛼 prove that a

closed form solution can be found.

8.3.4 Example 4: The 𝐴𝐾 model

The Rebelo (1991) 𝐴𝐾 model can be seen as a special case of the previous problem in which the
HJB function is

𝜌𝑣(𝐾) = max
𝐶

{  𝐶1−𝜃

1 − 𝜃 + 𝑣′(𝐾) (𝐴𝐾 − 𝐶)}  
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Using the same steps as before, we get

𝜌𝑣(𝐾) = 𝜃
1 − 𝜃 (𝑣′(𝐾))

𝜃−1
𝜃 + 𝑣′(𝐾)𝐴𝐾 (8.8)

To solve the equation we use again the method of undetermined coefficients and find

𝑣(𝐾) = ((𝐴 − 𝛾)𝐾)1−𝜃

1 − 𝜃 .

  where
𝛾 = 𝐴 − 𝜌

𝜃 .

  The consumption, in the feedback form is,

𝐶∗(𝐾) = (𝐴 − 𝛾)𝐾

  and the budget constraint of the economy is

�̇�∗ = 𝐴𝐾∗ − 𝐶∗(𝐾) = 𝛾𝐾∗.

  Considering the given initial level for capital 𝐾(0) = 𝐾0 we get the optimal paths for capital and
output

𝐾∗(𝑡) = 𝐾0𝑒𝛾𝑡, 𝑌 ∗(𝑡) = 𝐴𝐾0𝑒𝛾𝑡, for 𝑡 ∈ [0, ∞).

 

8.4 Bibliography

• The seminal contribution: Bellman (1957)
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