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Chapter 7

First order quasi-linear partial
differential equations

 

7.1 Introduction

In this chapter we present introductory results on first-order partial differential equations (PDE)
and some applications to demography and economics. Those equations can also be called hyperbolic
PDEs, using a classification for second-order equations. They are another example of functional
equations.

A first-order (or hyperbolic) PDEs is a known function of one or more unknown functions of
more than one independent variable, together with its first-order derivatives. If there is only one
unknown function we call the PDE scalar, and if there are two unknown functions we call it planar
PDE.

In physics these equations model advection, travelling or transportation behaviors. They are
used in mathematical demography for modelling age-dependent dynamics of population.

In economics, usually one of the independent variables is time and the other independent variable
is the support of some distribution. They can be applied in continuous time overlapping generations
models, vintage capital models, interest rate term-structure models in continuous time. They also
provide an elegant and effective way of modelling the dynamics of distribution in heterogeneous
agent economies.

The Hamilton-Jacobi equation for deterministic optimal control problems with a finite horizon
and a constraint given by a ordinary differential equation is also usually a non-linear first-order
PDE.

The field is very large in terms of equations studied and methods involved, and is not generally
in the toolbox of economists. We will only present a very brief introduction allowing to study very
simple linear models.

There are two benefits from studying these equations: first, they provide a convenient modelling
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framework for setting up and characterizing the solution for models with heterogeneity, which
is becoming topical in economics, second, they provide a better understanding of the implicit
assumptions which are introduced when using ODE (or difference equations ) models for studying
dynamics of heterogeneity.

We assume throughout that there are only two independent variables x  = (𝑥1, 𝑥2) ∈ X ⊆ ℝ2

and deal mainly with equations of dimension one, that is mappings 𝑢 ∶ X → ℝ.

Definition A first-order partial differential equation  in two independent variables x ∈
X ⊆ ℝ2 is a known relation 𝐹 ∶ 𝐷 → ℝ where 𝐷 ⊂ ℝ5 involving the unknown function 𝑢 ∶ X → ℝ
and its gradient

𝐹(x, 𝑢(x), ∇𝑢(x)) = 0 (7.1)

  where ∇𝑢(x) is the gradient of 𝑢(.), i.e.

∇𝑢(x) = (𝜕𝑢(x)
𝜕𝑥1

, 𝜕𝑢(x)
𝜕𝑥2

)
⊤

(𝑢𝑥1
(x), 𝑢𝑥2

(x))⊤

  where we use the 𝑢𝑥𝑖
(.) = 𝜕𝑢(.)

𝜕𝑥𝑖
= 𝜕𝑥𝑖

𝑢(x).

Types of first-order PDE First-order PDE are classified into four categories:

• linear PDE: if 𝐹(⋅) is linear in the derivatives ∇𝑢(x) and 𝑢,

𝑎(x) 𝑢𝑥1
+ 𝑏(x) 𝑢𝑥2

= 𝑐(x) 𝑢 + 𝑑(x) (7.2)

where 𝑎(⋅), 𝑏(⋅), 𝑐(⋅) and 𝑑(⋅) are differentiable functions of x;

• semi-linear PDE: if 𝐹(⋅) is linear in ∇𝑢(x) and non-linear in 𝑢, which only enters into the
right-hand side,

𝑎(x) 𝑢𝑥1
+ 𝑏(x) 𝑢𝑥2

= 𝑐(x, 𝑢); (7.3)

• quasi-linear PDE: if 𝐹(⋅) is linear in ∇𝑢 and non-linear in 𝑢 as

𝑎(x, 𝑢) 𝑢𝑥1
+ 𝑏(x, 𝑢) 𝑢𝑥2

= 𝑐(x, 𝑢) (7.4)

• non-linear PDE: if 𝐹(⋅) is non-linear in ∇𝑢(x) and 𝑢

𝐹(x, 𝑢, ∇𝑢) = 0

  where 𝐹 is non-linear in 𝑢𝑥1
and/or 𝑢𝑥2

Linear equations can be classified further as non-autonomous or autonomous, if 𝑎, 𝑏, 𝑐 and 𝑑
are constants, or non-homogeneous or homogeneous, if function 𝑐(x, 𝑢) is homogeneous in 𝑢.
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Multi-dimensional first order PDE equations   In addition we can consider systems of
hyperbolic equations

F(x, u(x), 𝐷xu(x) = 0

  where x ∈ ℝ𝑚 and u ∶ ℝ𝑚 → ℝ𝑛, and 𝐷xu denotes the Jacobian.
For, instance a linear planar equation in two independent variables we have

A Dxu(x) = B  u(x)

  where

u(x) = (𝑢1(x)
𝑢2(x)) and Dxu(x) = ( 𝜕𝑥1

𝑢1(x) 𝜕𝑥2
𝑢1(x)

𝜕𝑥1
𝑢2(x) 𝜕𝑥2

𝑢2(x))

  and

A = (𝑎11 𝑎12
𝑎21 𝑎22

)   and B = (𝑏1
𝑏2

) .

 

Solutions A solution to a first-order PDE is a differentiable function 𝑓(𝑥, 𝑦) that satisfies the
PDE. Existence and uniqueness of solutions for first-order PDE, and for problems involving them,
are not guaranteed. Classic solutions are solutions such that 𝑢 ∈ 𝐶1(X). Otherwise we call
generalised or weak solutions (i.e, non-differentiable or discontinuous solutions).

There are several methods for obtaining solutions  which can be applied to general or
specific problems. The analytical methods for simpler equations are

• method of characteristics

• transformation methods (in particular application of Laplace transforms)

Those methods simplify the first-order PDE into a system of ODE’s or a parameterised ODE.

Problems involving PDEs There are two main types of problems involving first-order PDE.

1. the Cauchy problem: there is a single constraint on x along a surface Γ ∈ X:

⎧{
⎨{⎩

𝐹(x, 𝑢(x), ∇𝑢(x)) = 0, x ∈ X

𝑢 ∣Γ= 𝜙, x ∈ Γ ⊂ X

  where 𝜙 is a constant;

2. problems may involve two constraints, associated with each independent variable, for instance

⎧{{
⎨{{⎩

𝐹(x, 𝑢(x), ∇𝑢(x)) = 0, x ∈ X

𝑢 ∣𝑥1=0= 𝜓(𝑥2), (0, 𝑥2) ∈ X

𝑢 ∣𝑥2=0= 𝜙(𝑥1), (𝑥1, 0) ∈ X
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Well-posed problems Existence, uniqueness and properties of solutions vary widely. Again we
have to distinguish existence properties of the PDE and of the problem involving the PDE (i.e., the
PDE and the boundary conditions). A problem is ill-posed  if, for instance, although the PDE
has a solution the problem involving the PDE may not have a solution, in the same domain as the
solution to the PDE. A problem is well-posed  if the general solution to the PDE has a particular
solution satisfying the constraints of the problem.

Linear PDEs, and well-posed problems involving liner PDEs, have explicit solutions.

Qualitative theory Let us consider the case in which time is one of the independent variables,
i.e., 𝑢 = 𝑢(𝑡, 𝑥) such that 𝑢 ∶ R+ × R → R. Therefore, the solution of a first-order PDE describes
a solution of a distribution, or wave, travelling over X across time.

For linear and well-posed PDE’s the distributional dynamics that characterizes their solution
can be explicitly discovered.

For non-linear PDEs we are unaware of the existence of a qualitative theory as developed as
the qualitative theory for ODE’s. In particular, a Grobmann-Hartmann theorem for PDE does
not seem to be available. There are phenomena that do not exist in ODE’s: traveling waves, front
waves, for instance.

An important case of first-order PDE’s are equations of type

𝑢𝑡 + 𝑔(𝑢)𝑥 = 0

  that satisfy a conservation law

∫
X

 𝑢(𝑡, 𝑥) 𝑑𝑥 = �̄� for every 𝑡 ∈ ℝ+.

  where �̄� is a constant. Given an initial function 𝑢(0, 𝑥) = 𝜙(𝑥) such that

∫
X

 𝜙(𝑥) 𝑑𝑥 = �̄� for 𝑡 = 0,

  the solution 𝑢(𝑡, 𝑥) conserves the same mass throughout time. Assuming that the solution exists,
we may be interested in characterizing the asymptotic behavior of the distribution lim𝑡→∞ 𝑢(𝑡, 𝑥).This
is the analog of studying the long-run behavior for ODE’s. However, while the solution of an ODE
can converge asymptotically to a steady state (a point) the solution of a PDE can converge asymp-
totically to a function (or a steady state distribution).

In the rest of the chapter, in section 7.2 we solve scalar linear equations with an infinite domain
through the method of characteristics. In section 7.3 we solve some linear equations in the semi-
infinite domain by using Laplace transform methods. In section 7.4 we discsuss the qualitatitive
analysis of first-order PDE’s when time is one independent variable. In Section 7.6 has several
applications to economics and demography are presented.
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7.2 Scalar equations in the infinite domain and the method of
characteristics

7.2.1 Introduction: the method of characteristics

In this section we solve hyperbolic PDE in the infinite domain. We denote the independent variables
by x and assume that the domain of x is the whole set X = ℝ2. We consider scalar function
𝑢 ∶ ℝ2 → ℝ as our dependent variable and consider quasi-linear equations of type 1

𝑎(x, 𝑢) 𝑢𝑥1
(x) + 𝑏(x, 𝑢) 𝑢𝑥2

(x) = 𝑐(x, 𝑢(x)), x ∈ X

  and 𝑎(.), 𝑏(.), and 𝑐(.) are known functions.
One useful method to solve the hyperbolic PDE in the infinite domain is the method of

characteristics.
The following definition is useful

Definition 1. Directional derivative Consider a function 𝑓(x), the derivative  of 𝑓 in the
direction given by vector v = (𝑣𝑥1

, 𝑣𝑥2
)⊤ is

∇v𝑓(x) = lim
ℎ→0

𝑓(𝑥1 + ℎ 𝑣𝑥1
, 𝑥2 + ℎ 𝑣𝑥2

) − 𝑓(x)
ℎ  

  if the limit exists.

If function 𝑓(𝑥, 𝑦) is differentiable, the directional derivative  of 𝑓 in the direction given by
vector v = (𝑣𝑥, 𝑣𝑦)⊤ is equal to the dot product2 

∇v𝑓(x) = ∇𝑓(x) ⋅ v = (𝑓𝑥1
, 𝑓𝑥2

) ⋅ (𝑣𝑥1
, 𝑣𝑥2

) = 𝑓𝑥1
(x)𝑣𝑥1

+ 𝑓𝑥2
(x)𝑣𝑥2

.

 
We start with simple linear PDE to illustrate their solution using the method of character-

istics. A characteristic is a curve in the domain x, which we can write as x = X(𝜉) such that
such that 𝑢(X(𝜉)) behaves like an ODE. This means that for every 𝜉 ∈ ℝ the solution of the PDE
behaves like and ODE.

It is very important to remember that we assume, in all this section, that there are no restrictions
on the domain of the independent variables, 𝑥1 and 𝑥2 in this section, that is, we assume x ∈ ℝ2.
In the next sections we introduce constraints on the domain X.

1The following notation sometimes is more convenient

𝑎(x, 𝑢)𝜕𝑥𝑢(x) + 𝑏(x, 𝑢)𝜕𝑦𝑢(x) = 𝑐(x, 𝑢(x)), x ∈ X.

 
2Observe there is a relationship with the total differential. Let 𝑧 = 𝑓(𝑥, 𝑦), where 𝑓(.) is differentiable. The total

differential is 𝑑𝑧 = 𝑓𝑥(𝑥, 𝑦)𝑑𝑥 + 𝑓𝑦(𝑥, 𝑦)𝑑𝑦. If we write 𝑑𝑥 = 𝑣𝑥ℎ and 𝑑𝑦 = 𝑣𝑦ℎ then ∇𝑓(𝑥, 𝑦) ⋅ v = limℎ→0
𝑑𝑧
ℎ .
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7.2.2 The two simplest first order PDEs

We start with the two simplest first-order PDE: 𝑢𝑥1
(x) = 0 and 𝑢𝑥2

(x) = 0.

Proposition 1. The equation
 𝑢𝑥1

(x) = 0, x ∈ X = ℝ2

  has the general solution
𝑢(x) = 𝑓(𝑥2)

  where 𝑓 ∈ 𝐶1(ℝ) is an arbitrary differentiable function.

Proof. First observe that the solution to equation 𝑢𝑥 = 0 is any function that remains constant
along direction 𝑣 = (1, 0)⊤. This can be proved by observing that the directional derivative along
that direction is zero,

∇𝑢(𝑥, 𝑦) ⋅ (1, 0) = 𝑢𝑥 × 1 + 𝑢𝑦 × 0 = 𝑢𝑥 = 0.

  This is equivalent to any function function, 𝑓(.), that remains unchanged along any variation
parallel to the 𝑥-axis, that is 𝑓(𝑦).

In order to have a better intuition on this result, consider an ODE 𝑢𝑥(𝑥) = 0, where 𝑢(𝑥) is an
unknown function of single independent variable 𝑢 ∶ ℝ → X ⊆ ℝ. This equation has the solution
𝑢(𝑥) = 𝑘 where 𝑘 is an arbitrary point  in the domain of 𝑢(.), X ⊆ ℝ. In the case of the PDE
𝑢𝑥1

(x) = 0 the solution is 𝑢(x) = 𝑓(𝑥2) where 𝑓(𝑥2) is an arbitrary differentiable function over ℝ.

Proposition 2. The equation
𝑢𝑥2

(x) = 0, x ∈ X = ℝ2

  has the general solution
𝑢(x) = 𝑓(𝑥1)

  where 𝑓 ∈ 𝐶1(ℝ) is an arbitrary differentiable function.

Proof. Not the PDE solution is constant along the direction 𝑣 = (0, 1)⊤, because it is equivalent to
the directional derivative along that direction being equal to zero,

∇𝑢(𝑥1, 𝑥2) ⋅ (0, 1) = 𝑢𝑥2
= 0.

  In this case, the solution is any function function, 𝑓(.), that remains unchanged along any variation
parallel to the 𝑦-axis, that is 𝑓(𝑥1).

From those two previous results we can understand more general linear first order scalar PDE’s
as being constant along particular directions, which are called characteristics.

7.2.3 Linear equation with constant coefficients

Next we consider linear equations without side constrains and Cauchy problems for linear hyperbolic
equations defined in the infinite domain.



Paulo Brito Advanced Mathematical Economics 2020/2021 8

A. Free boundary problems

Consider the first order linear autonomous PDE

𝑢𝑥1
(x) + 𝑎 𝑢𝑥2

(x) = 0, x ∈ X = ℝ2 (7.5)

where 𝑎 ≠ 0 is an arbitrary constant.

Proposition 3. The general solution of PDE (7.5) is

𝑢(x) = 𝑓(𝑥2 − 𝑎 𝑥1),

  where 𝑓 ∈ 𝐶1(ℝ) is an arbitrary differentiable function.

Proof. First, observe that the PDE (7.5) determines a function 𝑢(𝑥, 𝑦) which is constant along the
direction 𝑣 = (1, 𝑎)⊤, because

∇𝑢 ⋅ (1, 𝑎) = 𝑢𝑥 + 𝑎𝑢𝑦 = 0.

  To interpret this geometrically consider the two-dimensional surface

𝑆 ≡ { (𝑥, 𝑦, 𝑢(𝑥, 𝑦))} ⊂ ℝ3.

  A particular solution of the PDE (𝑥0, 𝑦0, 𝑢(𝑥0, 𝑦0)) belongs to the surface 𝑆. But, next we show
that a solution to the PDE traces out a curve 𝐶 over the surface 𝑆 in which 𝑢 remains constant.
We call this curve a characteristic curve.

In order to determine curve 𝐶 we parametrize the two independent variables as 𝑥 = 𝑋(𝑠),
𝑦 = 𝑌 (𝑠), where 𝑠 ∈ ℝ. Then, we get a parameterized value for 𝑢, as 𝑢 = 𝑈(𝑠) = 𝑢(𝑋(𝑠), 𝑌 (𝑠)). A
characteristic curve is defined as

𝐶 = { (𝑋1(𝑠), 𝑋2(𝑠), 𝑈(𝑠)) ∶ 𝑈(𝑠) = constant}.

  Taking derivatives to 𝑢 = 𝑈(𝑠) = 𝑢(𝑋1(𝑠), 𝑋2(𝑠)) we find

𝑑𝑈
𝑑𝑠 = 𝑑𝑢(𝑋1(𝑠), 𝑋2(𝑠))

𝑑𝑠 = 𝑢𝑥1

𝑑𝑋1
𝑑𝑠 + 𝑢𝑥2

𝑑𝑋2
𝑑𝑠

  The PDE will hold if and only if the following conditions hold:

• the characteristic system

𝑑𝑋1
𝑑𝑠   = 1

𝑑𝑋2
𝑑𝑠   = 𝑎

• the compatibility condition
𝑑𝑈
𝑑𝑠 = 0
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Solving the characteristic system and the compatibility equation we get

𝑥1 = 𝑋1(𝑠) = 𝑠 + 𝑐1

𝑥2 = 𝑋2(𝑠) = 𝑎𝑠 + 𝑐2

𝑢 = 𝑈(𝑠) = 𝑈(0)

  where 𝑐1 and 𝑐2 are arbitrary constants, and 𝑈(0) is an arbitrary function, say 𝑓(𝑘). We can set
𝑐1 = 0 and 𝑐2 = 𝑘. Eliminating 𝑠 in the first two equations we find

𝑠 = 𝑥1 = 𝑥2 − 𝑘
𝑎 .

  This implies that there, a characteristic curve is a straight line in (𝑥1, 𝑥2) with a constant value
𝑥2 − 𝑎 𝑥1 = 𝑘 is constant. Then we find the general solution for (7.5) to be constant along the
direction (1, 𝑎)⊤,

𝑢(𝑥, 𝑦) = 𝑈(𝑠) = 𝑓(𝑘) = 𝑓(𝑥2 − 𝑎 𝑥1),
  where 𝑓 is an arbitrary 𝐶1 function.

Verification:   In order to check that this is a solution, assume that 𝑢(𝑥1, 𝑥2) = 𝑓(𝑥2 − 𝑎 𝑥1)
for 𝑓(⋅) ∈ 𝐶1(R) Then

𝑢𝑥1
(𝑥1, 𝑥2) + 𝑎 𝑢𝑥2

 (𝑥1, 𝑥2) = −𝑎𝑓 ′(𝑥2 − 𝑎 𝑥1) + 𝑎𝑓 ′(𝑥2 − 𝑎 𝑥1) = 0

  which is equation (7.5).
We call projected characteristic  to the line 𝑥2 = 𝑘 + 𝑎 𝑥1, where 𝑘 ∈ ℝ is arbitrary, and we

call 𝑓(𝑥2 − 𝑎 𝑥1) the first integral  of the PDE.
Figure 7.1 depicts projected characteristic lines for cases 𝑎 > 0 and 𝑎 < 0. These curves

correspond to the projection in the space (𝑥1, 𝑥2) of the solution curves of the PDE (7.5) over
which 𝑢(𝑥1, 𝑥2) is constant.

Figure 7.1: Characteristic lines for equation (7.5) for 𝑎 > 0 (left figure) and 𝑎 < 0 (right figure)

Linear right hand side Next we introduce the linear first-order PDE with an homogeneous
right-hand side

𝑢𝑥1
+ 𝑎 𝑢𝑥2

  = 𝑏 𝑢, x  ∈ ℝ2 (7.6)

where 𝑎 ≠ 0 and 𝑏 ≠ 0 are constants.
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Proposition 4. The general solution of PDE (7.6) is

𝑢(x) = 𝑓(𝑥2 − 𝑎 𝑥1) 𝑒𝑏 𝑥1

  where 𝑓(.) is an arbitrary 𝐶1 function.

Proof. To solve it by using the method of characteristics we parameterize again both the indepen-
dent variables, 𝑥1 = 𝑋1(𝑠) and 𝑥2 = 𝑋2(𝑠), and the unknown function 𝑢 = 𝑢(𝑋1(𝑠), 𝑋2(𝑠)) = 𝑈(𝑠)
and solve the system

𝑑𝑋1
𝑑𝑠 = 1, 𝑑𝑋2

𝑑𝑠 = 𝑎, 𝑑𝑈
𝑑𝑠 = 𝑏𝑈

  which have solutions

𝑥1 = 𝑋1(𝑠) = 𝑠, 𝑥2 = 𝑋2(𝑠) = 𝑎 𝑠 + 𝑘, 𝑢 = 𝑈(𝑠) = 𝑔(𝑘) 𝑒𝑏𝑠.

  where 𝑘 is an arbitrary constant and 𝑔(𝑘) is an arbitrary function. Then 𝑠 = 𝑥1 and the projected
characteristic if again 𝑥2 − 𝑎 𝑥1 = 𝑘 and 𝑢 = 𝑔(𝑘)𝑒𝑏𝑐1𝑒𝑏 𝑥1 = 𝑓(𝑘)𝑒𝑏 𝑥1 .

This equation has the same projected characteristics as shown in figure 7.1 but now, the value
of 𝑢(.) will not remain constant along the characteristics, as in the case of equation (7.5): it will
grow or decay along the characteristic at the rate 𝑏, respectively, if 𝑏 > 0 or if 𝑏 < 0.

Cauchy problems

Consider again equation (7.5) and assume that we know the distribution for 𝑥2 for a particular
value of 𝑥1, say 𝑥1 = 0. If 𝑥1 is interpreted as time, and 𝑥2 as another independent variable, we
call the problem an initial-value problem (which is a particular case of the Cauchy problem)

⎧{
⎨{⎩

𝑢𝑥1
(x) + 𝑎 𝑢𝑥2

 (x) = 0, x ∈ ℝ+ × ℝ
𝑢 = 𝜙(𝑥2), x ∈ {𝑥1 = 0}  × ℝ

(7.7)

  where 𝜙 is a known  𝐶1 function. We can write the initial condition as 𝑢(0, 𝑥2) = 𝜙(𝑥2) where
𝜙(.) is known.

Proposition 5. The general solution to the Cauchy problem (7.7) is

𝑢(𝑥1, 𝑥2) = 𝜙(𝑥2 − 𝑎 𝑥1), (𝑥1, 𝑥2) ∈ X = ℝ2

 

Proof. In the three-dimensional surface 𝑆, previously presented, the constraint defines a curve 
(0, 𝑥2, 𝜙(𝑥2)) that has a projection in the (𝑥1, 𝑥2) space characterized by a curve passing through
point { (0, 𝑥2)}. Using the same method that we used to determine the characteristic curve 𝐶, we
parameterize the constraint Γ by a new variable 𝑟, such that it defines a direction Γ = { (0, 𝑟)}.

Introducing the two parameterizations (associated to the characteristic curve and the initial
condition) we define

𝑥1 = 𝑋1(𝑠, 𝑟), 𝑥2 = 𝑋2(𝑠, 𝑟)
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  implying
𝑢 = 𝑢(𝑋1(𝑠, 𝑟), 𝑋2(𝑠, 𝑟)) = 𝑈(𝑠, 𝑟).

  The characteristic system and the compatibility condition become the system of parameterized
(by 𝑟) intitial value problems where the ODE’s have the independent variable 𝑠

𝜕𝑋1(𝑠, 𝑟)
𝜕𝑠 = 1, s.t 𝑋1(0, 𝑟) = 0,

𝜕𝑋2(𝑠, 𝑟)
𝜕𝑠 = 𝑎, s.t 𝑋2(0, 𝑟) = 𝑟

𝜕𝑈(𝑠, 𝑟)
𝜕𝑠 = 0, s.t 𝑈(0, 𝑟) = 𝜙(𝑟).

The solution to the three ODE initial value problems allows us to obtain a relationship between
the initial independent variables and the parameters related to the characteristic and the initial
condition

𝑥1 = 𝑋1(𝑠, 𝑟) = 𝑠 (7.8)
𝑥2 = 𝑋2(𝑠, 𝑟) = 𝑎𝑠 + 𝑟 (7.9)

and
𝑢 = 𝑈(𝑠, 𝑟) = 𝑈(0, 𝑟) = 𝜙(𝑟), for any  𝑠 ∈ 𝑅

 
To get the solution in the original independent variables, we have to obtain the reversed re-

lationships, say 𝑠 = 𝑆(𝑥, 𝑦) and 𝑟 = 𝑅(𝑥, 𝑦). In order to get it, observe that the solution for
the characteristic system can be written as (𝑥1, 𝑥2) = 𝐺(𝑠, 𝑟). If this system is invertible then
(𝑠, 𝑟) = 𝐺−1(𝑥1, 𝑥2). The system (7.8)-(7.9) can provide this solution:

(𝑥1
𝑥2

) = (1 0
𝑎 1) (𝑠

𝑟) ⇔ (𝑠
𝑟) = ( 1 0

−𝑎 1) (𝑥1
𝑥2

) = ( 𝑥1
𝑥2 − 𝑎 𝑥1

)

  Therefore, 𝑠 = 𝑥1 and 𝑟 = 𝑥2 − 𝑎 𝑥1. Then 𝑢(𝑥1, 𝑥2) = 𝑈(𝑠, 𝑟) = 𝜙(𝑟) = 𝜙(𝑥2 − 𝑎 𝑥1)

Example If the initial distribution is 𝑢(0, 𝑥2) = 𝜙(𝑥2) = 𝑒−𝑥2
2 , then the solution to the Cauchy

problem (7.7) is
𝑢(𝑥1, 𝑥2) = 𝑒−(𝑥1−𝑥2)2 .

Figure 7.2 illustrates this case. The projected characteristics are again as those depicted in figure
7.1.

Next, consider an equation (7.6) and the associated Cauchy problem

⎧{
⎨{⎩

𝑢𝑥1
(x) + 𝑢𝑥2

(x) = 𝑏 𝑢(x), x ∈ ℝ2

𝑢 = 𝜙(𝑥2), x ∈ { 𝑥1 = 0}  × ℝ
(7.10)

where 𝑐 ≠ 0 is a constant.
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Figure 7.2: Solution for the problem 𝑢𝑥 + 𝑢𝑦 = 0 and 𝑢(0, 𝑥2) = 𝑒−𝑥2
2 , 3d plot and 2d plot for

𝑥1 ∈ {−1, −0.5, 0, 0.5, 1}

Proposition 6. The solution to problem (7.10) is

𝑢(x) = 𝜙(𝑥2 − 𝑥1)𝑒𝑏 𝑥1

 

Exercise: prove this.
In Figure 7.3 we present an illustration. Observe that for 𝑏 > 0 the solution has both a advection

(i.e., transport) and a growing behavior.

Figure 7.3: Solution for the problem 𝑢𝑥 + 𝑢𝑦 = 0.7𝑢 and 𝑢(0, 𝑦) = 𝑒−𝑦2 , 3d plot and 2d plot for
𝑥 ∈ {−1, −0.5, 0, 0.5, 1}

Next, we will see what we can learn from the application of the method of characteristics to
solving the semi-linear and the quasi-linear equations.
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7.2.4 Semi-linear equation

We consider first one simple semi-linear equation that can be solved by transformation to a linear
equation. Next we present conditions for the existence of solutions to more general semi-linear
equations, with or without a zero right-hand side, i.e, with 𝑐(x, 𝑢) = 0 or 𝑐(x, 𝑢) ≠ 0.

Semi-linear equation with zero right-hand-side

We consider the problem for a more general case, in which the coefficient functions are not specified

⎧{
⎨{⎩

𝑎(x)𝑢𝑥1
+ 𝑏(x)𝑢𝑥2

= 0, x ∈ ℝ2

𝑢 ∣Γ= 𝜙, x ∈ Γ ⊂ ℝ2
(7.11)

where 𝑎(.), 𝑏(.) and 𝑐(.) are 𝐶1 functions in ℝ2, and there is a constraint given by curve Γ. The
solution to this problem depends on the form of the constraint surface Γ.

Let us consider the points in the constrained set parameterised by 𝑟, write Γ = { (𝑥1, 𝑥2) =
(𝛾1(𝑟), 𝛾2(𝑟))} and define

𝐴(𝑟) ≡ 𝑎(𝛾1(𝑟), 𝛾2(𝑟))
𝐵(𝑟) ≡ 𝑏(𝛾1(𝑟), 𝛾2(𝑟))

 
We say that the constraint Γ is characteristic  if it is tangent to the projected characteristic

and Γ is non-characteristic if it is not tangent to the projected characteristic.
We will see next that, Γ is characteristic if

𝐴(𝑟)
𝐵(𝑟) = 𝛾′

1(𝑟)
𝛾′

2(𝑟)

  and Γ is non-characteristic if
𝐴(𝑟)
𝐵(𝑟) ≠ 𝛾′

1(𝑟)
𝛾′

2(𝑟) . (7.12)

 

Proposition 7. Consider the Cauchy problem (7.11). A unique solution exists if Γ is non-
characteristic in all its domain. The local solution to the problem exist and is unique, and can be
written as

𝑢(𝑥1, 𝑥2) = 𝜙(𝐺|−1
Γ (𝑥1, 𝑥2)).

where det 𝐺|Γ ≠ 0.

Proof. In order to see this we proceed in two phases.
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• First: applying the same method as before, we introduce the change in coordinates 𝑥1 =
𝑋1(𝑠, 𝑟), 𝑥2 = 𝑋2(𝑠, 𝑟), implying 𝑢 = 𝑢(𝑥1, 𝑥2) = 𝑢(𝑋1(𝑠, 𝑟), 𝑋2(𝑠, 𝑟)) = 𝑈(𝑠, 𝑟). The charac-
teristic system and the compatibility condition become

𝜕𝑋1(𝑠, 𝑟)
𝜕𝑠 = 𝑎(𝑋1(𝑠, 𝑟), 𝑋2(𝑠, 𝑟))

𝜕𝑋2(𝑠, 𝑟)
𝜕𝑠 = 𝑏(𝑋1(𝑠, 𝑟), 𝑋2(𝑠, 𝑟))

𝜕𝑈(𝑠, 𝑟)
𝜕𝑠 = 0

and the constraints on their values introduced by Γ that we associate with 𝑠 = 0 are

𝑋1(0, 𝑟) = 𝛾1(𝑟)
𝑋2(0, 𝑟) = 𝛾2(𝑟)
𝑈(0, 𝑟) = 𝜙(𝑟).

If we solve the ODE characteristic system together with the initial conditions we obtain the
transformation (𝑥1, 𝑥2) = 𝐺(𝑠, 𝑟), where

𝑥1 = 𝑋1(𝑠, 𝑟) (7.13)
𝑥2 = 𝑋2(𝑠, 𝑟). (7.14)

In order to obtain the solution satisfying 𝑢 = 𝑈(0, 𝑟) = 𝜙(𝑟) we need to solve system (7.13)-
(7.14), that is, we need to find (𝑠, 𝑟) = 𝐺−1(𝑥1, 𝑥2).

• Second: The system is locally invertible to 𝑠 = 𝑆(𝑥, 𝑦) and 𝑟 = 𝑅(𝑥, 𝑦) if we can apply the
inverse function theorem (𝑠, 𝑟) = 𝐺−1(𝑥1, 𝑥2). This is possible if the Jacobian of 𝐺 has a
non-zero determinant evaluated at points (0, 𝑟).
The Jacobian of system (7.13)-(7.14) evaluated at point (𝑠, 𝑟) = (0, 𝑟) is

𝐷(𝐺)|Γ =
⎛⎜⎜⎜⎜⎜
⎝

𝜕𝑋1
𝜕𝑠  (0, 𝑟) 𝜕𝑋1

𝜕𝑟  (0, 𝑟)

𝜕𝑋2
𝜕𝑠  (0, 𝑟) 𝜕𝑋2

𝜕𝑟  (0, 𝑟)

⎞⎟⎟⎟⎟⎟
⎠

= (𝑎(𝛾1(𝑟), 𝛾2(𝑟)) 𝛾′
1(𝑟)

𝑏(𝛾1(𝑟), 𝛾2(𝑟)) 𝛾′
2(𝑟)) = (𝐴(𝑟) 𝛾′

1(𝑟)
𝐵(𝑟) 𝛾′

2(𝑟))

 

Then det (𝐷(𝐺|Γ)) ≠ 0 if condition (7.12) holds, and, using the inverse function theorem, we can
(at least locally) determine (𝑠, 𝑟)|𝑠=0 = 𝐺−1(𝑥1, 𝑥2), and the solution will have the generic form
𝑢(𝑥, 𝑦) = 𝜙(𝐺−1(𝑥1, 𝑥2))

This means that, geometrically, the solution will propagate not along parallel characteristic
lines but along lines which can change slope depending on the values of 𝑥1 and 𝑥2.

Exercise Consider next the special case of (7.11)

⎧{
⎨{⎩

𝑢𝑥1
+ 𝑏 𝑥2 𝑢𝑥2

= 0, x ∈ ℝ2

𝑢(0, 𝑥2) = 𝜙(𝑥2) x ∈ { 𝑥1 = 0}  × ℝ
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  where 𝜙(⋅) is an arbitrary 𝐶1(ℝ) function.
Show that the solution is

𝑢(x) = 𝜙(𝑥2 𝑒−𝑏 𝑥1) for any  x ∈ ℝ2.

 
In this case we can observe that the characteristics are

𝑥2 = 𝑘 𝑒𝑏 𝑥1

  they are still parallel as in the linear case, but behave differently depending on the sign of 𝑏:

1. if 𝑏 > 0 then 𝑥2 diverges exponentially for increasing values of 𝑥1

2. if 𝑏 = 0 then 𝑥2 is constant for any values of 𝑥1

3. if 𝑏 < 0 then 𝑥2 converges exponentially to zero for increasing values of 𝑥1.

 

General semi-linear equation

The Cauchy problem for a semi-linear equation and an associated boundary in a surface Γ is

⎧{
⎨{⎩

𝑎(x)𝑢𝑥1
(x) + 𝑏(x)𝑢𝑥2

(x) = 𝑐(x, 𝑢(x)), x ∈ ℝ2

𝑢 ∣Γ= 𝜙, x ∈ Γ ⊂ ℝ2
(7.15)

where 𝑎(.) and 𝑏(.) are 𝐶1 functions in ℝ2 and 𝑐(.) is a 𝐶1 function in ℝ3. Observe that the function
𝑢 enters, possibly in a non-linear from, in the right-hand side.

Again we introduce a parameterisation associated with the characteristic surface and the bound-
ary surface by a pair (𝑠, 𝑟) and set 𝑥1 = 𝑋1(𝑠, 𝑟) and 𝑥2 = 𝑋2(𝑠, 𝑟) and 𝑢 = 𝑈(𝑠, 𝑟) = 𝑢(𝑋1(𝑠, 𝑟), 𝑋2(𝑠, 𝑟))

In this case the characterstic equation system and the compatibility condition become
𝜕𝑋1(𝑠, 𝑟)

𝜕𝑠 = 𝑎 (𝑋1(𝑠, 𝑟), 𝑋2(𝑠, 𝑟))
𝜕𝑋2(𝑠, 𝑟)

𝜕𝑠 = 𝑏 (𝑋1(𝑠, 𝑟), 𝑋2(𝑠, 𝑟))
𝜕𝑈(𝑠, 𝑟)

𝜕𝑠 = 𝑐 (𝑋1(𝑠, 𝑟), 𝑋2(𝑠, 𝑟), 𝑈(𝑠, 𝑟))

and the constrains on their values introduced by Γ that we associate with 𝑠 = 0

𝑋1(0, 𝑟) = 𝛾1(𝑟)
𝑋2(0, 𝑟) = 𝛾2(𝑟)
𝑈(0, 𝑟) = 𝜙(𝑟)

We observe again that from the solution of the two first ODE’s we get a relationship (𝑥1, 𝑥2) =
𝐺(𝑠, 𝑟) and if Γ is non-characteristic we get, at least locally (𝑠, 𝑟) = 𝐺−1(𝑥1, 𝑥2), which allows for
uniqueness and existence of solutions for the PDE problem. The only difference is related to the
fact that now the right hand side of the compatibility condition for 𝑈 depends on 𝑈 .
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7.2.5 Quasi-linear equations

Let us consider the semi-linear equation and an associated boundary in a surface Γ

⎧{
⎨{⎩

𝑎(x, 𝑢)𝑢𝑥1
+ 𝑏(x, 𝑢)𝑢𝑥2

= 𝑐(x, 𝑢), x ∈ ℝ2

𝑢 ∣Γ= 𝜙, x ∈ Γ ⊂ ℝ2

where 𝑎(.), 𝑏(.) and 𝑐(.) is a 𝐶1 functions in ℝ3.
Again we introduce a parameterisation associated with the characteristic surface and the bound-

ary surface by a pair (𝑠, 𝑟) and set 𝑥1 = 𝑋1(𝑠, 𝑟) and 𝑥2 = 𝑋2(𝑠, 𝑟) and 𝑢 = 𝑈(𝑠, 𝑟) = 𝑢(𝑋1(𝑠, 𝑟), 𝑋2(𝑠, 𝑟))
In this case the characterstic equation system and the compatibility condition become

𝜕𝑋1(𝑠, 𝑟)
𝜕𝑠 = 𝑎 (𝑋1(𝑠, 𝑟), 𝑋2(𝑠, 𝑟), 𝑈(𝑠, 𝑟))

𝜕𝑋2(𝑠, 𝑟)
𝜕𝑠 = 𝑏 (𝑋1(𝑠, 𝑟), 𝑋2(𝑠, 𝑟), 𝑈(𝑠, 𝑟))

𝜕𝑈(𝑠, 𝑟)
𝜕𝑠 = 𝑐 (𝑋1(𝑠, 𝑟), 𝑋2(𝑠, 𝑟), 𝑈(𝑠, 𝑟)) .

This system, differently from the previous cases, lost their recursive structure, in the sense that
we cannot separate the determination of the solutions for 𝑋1(.) and 𝑋2(.) from 𝑈(.): the two
independent variables, 𝑋1 and 𝑋2, and the dependent variable, 𝑈 , are jointly determined. In order
to solve the system, Γ provides the boundary conditions for 𝑠 = 0:

𝑋1(0, 𝑟) = 𝛾1(𝑟)
𝑋2(0, 𝑟) = 𝛾2(𝑟)
𝑈(0, 𝑟) = 𝜙(𝑟)

Now the non-characteristic conditions for (Γ, 𝜙) are more involved because all three differential
equations depend on (𝑋1, 𝑋2, 𝑈) and the conditions for the application of the non-characteristic
condition may not hold.

The geometric meaning is the following: while for linear and semi-linear PDE the characteristic
lines are parallel and do not cross, for the quasi-linear case this may not be the case. At singularity
points the uniqueness and even the existence of solutions may break down.

A well known quasi-linear first-order PDE is the inviscid Burger’s equation (see https://en.
wikipedia.org/wiki/Burgers%27_equation)

⎧{
⎨{⎩

𝑢𝑡 + 𝑢𝑢𝑥 = 0, (𝑡, 𝑥) ∈ ℝ2

𝑢(0, 𝑥) = 𝜙(𝑥) (𝑡, 𝑦) ∈ { 𝑡 = 0}  × ℝ

It can be proved that the characteristic equations can intersect which implies that the solutions
cannot be unique at those singular points. Introducing some solvability conditions, gives birth to
shock waves, which is a type of behavior not presented in linear hyperbolic PDE’s.

https://en.wikipedia.org/wiki/Burgers%27_equation
https://en.wikipedia.org/wiki/Burgers%27_equation
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7.3 The linear equation in the semi-infinite domain and Laplace
transform methods

In the previous cases we assumed that the independent variables were defined in the space X = ℝ2.
The solution of the first-order PDE and/or of the associated problems varies both in terms of the
existence and of the methods of determination if the domain is different, that is X ⊂ ℝ2. In this
case we may have as solutions not functions (single-valued continuous mappings) but generalized
functions (also called weak solutions).

7.3.1 Linear equation with zero right-hand side

To illustrate this, assume that X = ℝ2
++, that is 𝑥 > 0 and 𝑦 > 0 and consider the problem

⎧{{
⎨{{⎩

𝑢𝑥 + 𝑎𝑢𝑦 = 0, (𝑥, 𝑦) ∈ ℝ2
++

𝑢(𝑥, 0) = 𝜓(𝑥), (𝑥, 𝑦) ∈ ℝ++ × {𝑦 = 0}
𝑢(0, 𝑦) = 𝜙(𝑦), (𝑥, 𝑦) ∈ {𝑥 = 0} × ℝ++×

(7.16)

A convenient way to solve this equation is to use Laplace transforms  instead of the method
of characteristics (see the Appendix ). In order to do this we pick one of the independent variables
as a parameter (for instance 𝑥) and keep one variable as an independent variable (for instance
𝑦)3. Laplace transforms are convenient because the domain of transformation is the semi-infinite
interval [0, ∞).

The method of solution follows the steps:

1. First, we apply Laplace transforms to go from the PDE into a parameterized ODE

2. Second, we solve the ODE and apply the transforms of the boundary conditions

3. Finally, we apply inverse Laplace transforms to obtain the solution

Proposition 8. The solution to Cauchy problem (7.16) is

𝑢(𝑥, 𝑦) = 𝜙(𝑦 − 𝑎𝑥)𝐻(𝑦 − 𝑎𝑥) + 𝑎 ℒ−1 [  ∫
𝑥

0
𝜓(𝑠)𝑒−𝑎𝜉(𝑥−𝑠)𝑑𝑠]  (𝑦) (7.17)

  where

𝐻(𝑧) =
⎧{
⎨{⎩

0, if 𝑧 ≤ 0
1, if 𝑧 > 0

  is the Heaviside generalized function and ℒ−1[𝑓(𝑥)] (𝑦) is the inverse Laplace transform.  There-
fore

𝜙(𝑦 − 𝑎𝑥)𝐻(𝑦 − 𝑎𝑥) =
⎧{
⎨{⎩

0 if 𝑦 − 𝑎𝑥 ≤ 0
𝜙(𝑦 − 𝑎𝑥) if 𝑦 − 𝑎𝑥 > 0.

  

 
3The choice can be done in a way to simplify the solution of the problem, given the constraints.
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Proof. Let 𝑈(𝑥, 𝜉) be the Laplace transform of 𝑢(𝑥, 𝑦) taking variable 𝑥 as a parameter, that is

𝑈(𝑥, 𝜉) ≡ ℒ[𝑢(𝑥, 𝑦)](𝜉) = ∫
∞

0
𝑒−𝜉𝑦𝑢(𝑥, 𝑦)𝑑𝑦

  where 𝜉 > 0. The Laplace transforms of 𝑢𝑥(⋅) and  𝑢𝑦(⋅) are

ℒ[𝑢𝑥(𝑥, 𝑦)](𝜉) = ∫
∞

0
𝑒−𝜉𝑦𝑢𝑥(𝑥, 𝑦)𝑑𝑦 = 𝑈𝑥(𝑥, 𝜉)

  and
 ℒ[𝑢𝑦(𝑥, 𝑦)](𝜉) = ∫

∞

0
𝑒−𝜉𝑦𝑢𝑦(𝑥, 𝑦)𝑑𝑦 = 𝜉𝑈(𝑥, 𝜉) − 𝑢(𝑥, 0) = 𝜉𝑈𝑦(𝑥, 𝜉) − 𝜓(𝑥).

  From the continuity and differentiability properties of 𝑢(⋅), 𝑢𝑥(𝑥, 𝑦) + 𝑎𝑢𝑦(𝑥, 𝑦) = 0 holds if and
only if

∫
∞

0
𝑒−𝜉𝑦 (𝑢𝑥(𝑥, 𝑦) + 𝑎𝑢𝑦(𝑥, 𝑦)) 𝑑𝑦 = 0.

Then the PDE, in Laplace transforms, is equivalent to the linear ODE in the variable 𝑥, parame-
terized by the transformed variable 𝜉 4 

𝑈𝑥(𝑥, 𝜉) + 𝑎(𝜉𝑈(𝑥, 𝜉) − 𝜓(𝑥)) = 0.

  In order to solve the Cauchy problem, we also need to introduce the Laplace transform of 𝜙(𝑦),
that is

ℒ[𝑢(0, 𝑦)](𝜉) = ∫
∞

0
𝑒−𝜉𝑦𝜙(𝑦)𝑑𝑦 = Φ(𝜉).

  Then we get an initial-value problem for the parameterized (by 𝜉) ODE

⎧{
⎨{⎩

𝑈𝑥(𝑥, 𝜉) = −𝑎𝜉𝑈(𝑥, 𝜉) + 𝑎𝜓(𝑥), 𝑥 > 0
𝑈(0, 𝜉) = Φ(𝜉), 𝑥 = 0.

  The solution is
𝑈(𝑥, 𝜉) = Φ(𝜉)𝑒−𝑎𝜉𝑥 + 𝑎 ∫

𝑥

0
𝜓(𝑠)𝑒−𝑎𝜉(𝑥−𝑠)𝑑𝑠.

  The inverse Laplace transform is

𝑢(𝑥, 𝑦) = ℒ−1 [ 𝑈(𝑥, 𝜉)]  (𝑦) = 1
2𝜋𝑖 lim

𝑌 →∞
∫

𝛾+𝑖𝑌

𝛾−𝑖𝑌
𝑒𝜉𝑦 𝐹 (𝑧)𝑑𝑧.

4We can obtain the same functional equation if we evaluate directly the integral, because

∫
∞

0
𝑒−𝜉𝑦 (𝑢𝑥(𝑥, 𝑦) + 𝑎𝑢𝑦(𝑥, 𝑦)) 𝑑𝑦 = ∫

∞

0
𝑒−𝜉𝑦 𝜕𝑢

𝜕𝑥 (𝑥, 𝑦)𝑑𝑦 + 𝑎 ∫
∞

0
𝑒−𝜉𝑦 𝜕𝑢

𝜕𝑦  (𝑥, 𝑦)𝑑𝑦 =

= 𝑈𝑥(𝑥, 𝜉) + 𝑎 (∫
∞

0
𝑒−𝜉𝑦𝑢(𝑥, 𝑦) − ∫

∞

0
𝑢(𝑥, 𝑦) 𝑑

𝑑𝑦   (𝑒−𝜉𝑦) 𝑑𝑦) =

= 𝑈𝑥(𝑥, 𝜉) − 𝑎𝑢(𝑥, 0) + 𝑎𝜉𝑈(𝑥, 𝜉) = 0

applying integration by parts.
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  Therefore

𝑢(𝑥, 𝑦) = ℒ−1[𝑈(𝑥, 𝜉)]  =

= ℒ−1[Φ(𝜉)𝑒−𝑎𝜉𝑥] + 𝑎 ℒ−1[ ∫
𝑥

0
𝜓(𝑠)𝑒−𝑎𝜉(𝑥−𝑠)𝑑𝑠].

  The solution is (7.16). This can be proved by the fact that

 𝑒−𝑎𝑥𝜉Φ(𝜉) = 𝑒−𝑎𝑥𝜉 ∫
∞

0
𝑒−𝜉𝑠𝜙(𝑠)𝑑𝑠 = ∫

∞

0
𝑒−𝜉(𝑠+𝑎𝑥)𝜙(𝑠)𝑑𝑠

= ∫
∞

𝑎𝑥
𝑒−𝜉 𝑦𝜙(𝑦 − 𝑎 𝑥)𝑑𝑦, (𝑠 + 𝑎𝑥 = 𝑦)

= ∫
∞

0
𝑒−𝜉 𝑦𝜙(𝑦 − 𝑎 𝑥) 𝐻(𝑦 − 𝑎𝑥)𝑑𝑦 =

= ℒ[ 𝜙(𝑦 − 𝑎 𝑥) 𝐻(𝑦 − 𝑎𝑥)] (𝜉)

 

  and ℒ−1 [ ℒ[ 𝜙(𝑦 − 𝑎 𝑥) 𝐻(𝑦 − 𝑎𝑥)] (𝜉)]  = 𝜙(𝑦 − 𝑎 𝑥) 𝐻(𝑦 − 𝑎𝑥).

Example 1. In order to have an intuition on the solution consider the case: 𝑎 > 0, 𝜙(𝑦) = 0
and 𝜓(𝑥) = 𝜓, a constant. In this case

𝑈(𝑥, 𝜉) = 𝑎𝜓 ∫
𝑥

0
𝑒−𝑎𝜉(𝑥−𝑠)𝑑𝑠 = 𝜓  (1 − 𝑒−𝑎𝜉𝑥

𝜉 ) .

  Then
𝑢(𝑥, 𝑦) = 𝜓ℒ−1 [ 1 − 𝑒−𝑎𝜉𝑥

𝜉 ] (𝑦) = 𝜓𝐻(𝑎𝑥 − 𝑦)

  That is the solution is

𝑢(𝑥, 𝑦) =
⎧{
⎨{⎩

𝜓 for 0 < 𝑦 < 𝑎 𝑥
0 for 𝑦 ≥ 𝑎 𝑥

  In this case the solution takes a constant value for {(𝑥, 𝑦) ∶ 0 < 𝑦 < 𝑎𝑥} where 𝑎 > 0 and 𝑥 > 0 ,
and it is equal to zero elsewhere.

Example 2. If, instead, we had the case 𝜙(𝑦) = 𝑒𝑏𝑦 and 𝜓(𝑥) = 0 we would have

𝑢(𝑥, 𝑦) = 𝜙(𝑦 − 𝑎𝑥)𝐻(𝑦 − 𝑎𝑥) = 𝑒𝑏(𝑦−𝑎𝑥) 𝐻(𝑦 − 𝑎𝑥)

 

𝑢(𝑥, 𝑦) =
⎧{
⎨{⎩

0 for 0 < 𝑦 ≤ 𝑎𝑥
𝑒𝑏(𝑦−𝑎𝑥)  for 𝑦 > 𝑎𝑥.

  In this case the projected characteristics are as in figure :
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Figure 7.4: Characteristic lines for (7.16) for 𝑎 > 0 𝜓(𝑥) = 0 and 𝜙(𝑦) = 𝑒𝑏𝑦

7.3.2 Linear equation with homogeneous right-hand side

Now consider the problem
⎧{{
⎨{{⎩

𝑢𝑥 + 𝑢𝑦 = 𝑎𝑢, 𝑥 > 0, 𝑦 > 0
𝑢(𝑥, 0) = 𝑒𝑏𝑥, 𝑥 > 0
𝑢(0, 𝑦) = 0, 𝑦 > 0

 
Using the same method we find the solution

𝑢(𝑥, 𝑦) = 𝑒 𝑏
𝑎 (𝑎𝑥−𝑦)(1 − 𝐻(𝑦 − 𝑎 𝑥)).

  or, equivalently,

𝑢(𝑥, 𝑦) =
⎧{
⎨{⎩

𝑒 𝑏
𝑎 (𝑎𝑥−𝑦), if 0 < 𝑦 < 𝑎 𝑥

0, if 𝑦 ≥ 𝑎 𝑥
 

To prove this we can go back to the Laplace transform of equation (7.17),

𝑈(𝑥, 𝜉) = 𝑎 ∫
𝑥

0
𝑒𝑏 𝑠 𝑒−𝑎𝜉(𝑥−𝑠)𝑑𝑠 =  𝑎 𝑒𝑏 𝑥   − 𝑒−𝑎 𝜉 𝑥

𝑏 + 𝑎𝜉 ,

  applying the inverse Laplace transform, we find

𝑢(𝑥, 𝑦) = ℒ−1[ 𝑈(𝑥, 𝜉)](𝑦) = 𝑒 𝑏
𝑎 (𝑎𝑥−𝑦)(1 − 𝐻(𝑦 − 𝑎 𝑥)).

 
A graphical depiction of the solution for 𝑎 = 1 and 𝑏 = 2 presented in Figure 7.5. The projected

characteristics are as in Figure 7.4 but, differently from that case where 𝑢 is constant, now the
solution growth at the rate 𝑎 along the characteristic lines.

7.4 Evolution equations

In this section we assume that the independent variables are time and one set of characteristics 𝑥,
and that the PDE takes the form

𝑢𝑡 + 𝜕𝑥𝑞(𝑢) = 0 (𝑡, 𝑥) ∈ ℝ+  × ℝ.
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Figure 7.5: Solution for the problem 𝑢𝑥 + 𝑢𝑦 = 𝑢, 𝑢(0, 𝑦) = 0, 𝑢(𝑥, 0) = 𝑒2𝑥 and defined for 𝑥 > 0
and 𝑦 > 0

 
The solution for generic non-linear first order PDE’s can display several types of behavior (see

(Dafermos, 2000, p.13) :

(1)   blow-up if the the solution becomes infinite when a certain level for 𝑥 is reached in finite
time,

(2)   globally bounded solutions while 𝑥 goes to infinite in infinite time;

(3) progressive concentration along time tending asymptotically to a degenerate distribution con-
centrated at a finite value for 𝑥, 𝑥∗, in infinite time;

(4)   shock-waves such that, after a surface Γ(𝑡, 𝑥) is reached, the solution becomes non-smooth
and multivalued; or

(5)   rarefaction waves such that the distribution becomes increasingly dispersed.

From the above results we can conclude the following as regards the linear case

𝑢𝑡 + 𝑏(𝑥) 𝑢𝑥 = 𝑐𝑢 (𝑡, 𝑥) ∈ ℝ+  × ℝ.

  (see (Olver, 2014, p.29)). The characteristic curves have the following generic properties:

1  for each point (𝑡, 𝑥) ∈ ℝ2, there is a unique characteristic passing through that point

2 characteristic curves cannot cross each other

3 if 𝑥 = ℎ(𝑡) is a characteristic curve, then 𝑥 = ℎ(𝑡) + 𝑘 is also a characteristic curve for 𝑘 ∈ ℝ,
if 𝑐 = 0 or 𝑥 = 𝑘 𝑒−𝑐𝑡

4 the path traced out by a characteristic curve 𝑥 = ℎ(𝑡) for increasing values of 𝑡 always moves
in the same direction and cannot change the direction of propagation
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5 as 𝑡 → ∞ the characteristic curve either converges to a fixed point, 𝑥(𝑡) → 𝑥∗ where 𝑐(𝑥∗) = 0
or go to ±∞ either in finite or infinite time.

To illustrate the last point consider the problem

⎧{
⎨{⎩

𝑢𝑡 + 𝛽(𝑥 − 𝑥∗) = 0, for (𝑡, 𝑥) ∈ ℝ+ × ℝ
𝑢(0, 𝑥) = 𝜙(𝑥), for (𝑡, 𝑥) ∈ { 𝑡 = 0}  × ℝ.

  The solution to this Cauchy problem is

𝑢(𝑡, 𝑥) = 𝜙(𝑥∗ + (𝑥 − 𝑥∗) 𝑒−𝛽 𝑡,  (𝑡, 𝑥) ∈ ℝ+ × ℝ.

  The asymptotic dynamics depend on the sign of 𝛽:

1. if 𝛽 > 0 we have a rarefaction wage, i, e. lim𝑡→∞ 𝑢(𝑡, 𝑥) = 𝜙(𝑥∗) which is a constant for all
𝑥 ∈ 𝑋

2. if 𝛽 < 0 we have a rarefaction wage, i, e. lim𝑡→∞ 𝑢(𝑡, 𝑥) = 𝛿𝑢(𝑥∗) is a degenerate distribution
whose mass is concentrated at 𝑥 = 𝑥∗.

7.5 Applications

7.5.1 The transport equation

We consider a simple example called the transport equation. To simplify assume that the
independent variables are (𝑡, 𝑥) and that their domain is unbounded, i.e., (𝑡, 𝑥) ∈ ℝ2 5 :

⎧{
⎨{⎩

𝜕𝑡𝑢(𝑡, 𝑥) + 𝜕𝑥 (𝜇 𝑥 𝑢(𝑡, 𝑥)) = 0, (𝑡, 𝑥) ∈ ℝ+ × ℝ
𝑢(0, 𝑥) = 𝜙(𝑥), (𝑡, 𝑥) ∈ {𝑡 = 0} × ℝ

(7.18)

The transport equation describes a conservation phenomenon. If, for instance,

∫
∞

−∞
𝜙(𝑥)𝑑𝑥 = 1

 

Proposition 9. The solution to the transport equation Cauchy problem (7.18) is

𝑢(𝑡, 𝑥) = 𝑒−𝜇𝑡𝜙 (𝑥𝑒−𝜇𝑡) .

 

5We use the notation 𝜕𝑥𝑖 𝑓(x) = 𝜕𝑓(x)
𝜕𝑥𝑖

, where x = (𝑥, … , 𝑥𝑖, … 𝑥𝑛) ∈ ℝ𝑛.
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Proof. The PDE can be equivalently written as

𝑢𝑡(𝑡, 𝑥) + 𝜇 𝑥 𝑢𝑥(𝑡, 𝑥) + 𝜇 𝑢(𝑡, 𝑥) = 0.

  Let us consider a change in variables: 𝑥 = 𝑋(𝑦) = 𝑒𝜇𝑦 and

𝑣(𝑡, 𝑦) = 𝑒𝜇𝑡 𝑢(𝑡, 𝑋(𝑦)).

  Taking derivatives for 𝑡 and 𝑦 and applying the relationship in equation (7.18) we find that

𝑣𝑡(𝑡, 𝑦) + 𝑣𝑦(𝑡, 𝑦) = 0

  if and only if 𝑢𝑡(𝑡, 𝑥) + 𝜇𝑥𝑢𝑥(𝑡, 𝑥) + 𝜇𝑢(𝑡, 𝑥) = 0. This equation has the form of (7.5), with 𝑎 = 1.
As 𝑣(0, 𝑦) = 𝑢(0, 𝑋(𝑦)) = 𝜙(𝑋(𝑦)) we can use the solution to Cauchy problem (7.7) to obtain

𝑣(𝑡, 𝑦) = 𝜙(𝑋(𝑦 − 𝑡)) = 𝜙 (𝑒𝜇(𝑦−𝑡)) = 𝜙 (𝑋(𝑦)𝑒−𝜇𝑡) .

  To obtain the solution we just need to transform back to the original function 𝑢(.) and substitute
𝑋(𝑦) = 𝑥.

The projected characteristics are as in Figure 7.6 for 𝜇 > 0. Differently from the previous cases
we see that the characteristics are non-linear, and, in this case exponentially growing.

Figure 7.6: Characteristic lines for (7.18) for 𝑎 > 0

7.5.2 Age-structured population dynamics

The exponential model for population dynamics, �̇� = 𝜇𝑛, where 𝜇 is the difference between the
fertility rate and the mortality rate, has the solution 𝑛(𝑡) = 𝑛(0)𝑒𝜇𝑡,

Although this model may be a good approximation asymptotically, in the shorter run there is
a large deviation. One of the reasons for the deviation is related to the fact that both fertility and
mortality rates are age-dependent. If we introduce age-dependent mortality and fertility rates the
dynamics of the population is governed by a first-order PDE.

Let 𝑁(𝑎, 𝑡) be the number of females of age 𝑎 at time 𝑡 in a population. The total population
at time 𝑡 is

𝑁(𝑡) = ∫
𝑎𝑚𝑎𝑥

0
𝑁(𝑎, 𝑡) 𝑑𝑎  



Paulo Brito Advanced Mathematical Economics 2020/2021 24

  Defining the proportion of population with age 𝑎 by 𝑛(𝑎, 𝑡) = 𝑁(𝑎, 𝑡)/𝑁(𝑡) we have

∫
𝑎𝑚𝑎𝑥

0
𝑛(𝑎, 𝑡) 𝑑𝑎   = 1.

  The proportion of population, measured by the proportion of females, between ages 𝑎1 and
𝑎2 > 𝑎1 at time 𝑡 is

𝑛([𝑎1, 𝑎2], 𝑡) = ∫
𝑎2

𝑎1

𝑛(𝑎, 𝑡)𝑑𝑎.

  If there is no mortality, the instantaneous change in 𝑛([𝑎1, 𝑎2], 𝑡) is

𝑑
𝑑𝑡 ∫

𝑎2

𝑎1

𝑛(𝑎, 𝑡)𝑑𝑎 = 𝑛(𝑎1, 𝑡) − 𝑛(𝑎2, 𝑡)

  where 𝑛(𝑎1, 𝑡) and 𝑛(𝑎2, 𝑡) is the flow of females which is just entering and leaving the inter-
val [𝑎1, 𝑎2]. As 𝑑

𝑑𝑡 ∫𝑎2
𝑎1

𝑛(𝑎, 𝑡)𝑑𝑎 = ∫𝑎2
𝑎1

𝑢𝑡(𝑎, 𝑡)𝑑𝑎 and, using the fundamental theorem of calculus
𝑛(𝑎1, 𝑡) − 𝑛(𝑎2, 𝑡) = − ∫𝑎2

𝑎1
𝑢𝑎(𝑎, 𝑡)𝑑𝑎 then

𝑑
𝑑𝑡 ∫

𝑎2

𝑎1

𝑛(𝑎, 𝑡)𝑑𝑎 − (𝑛(𝑎1, 𝑡) − 𝑛(𝑎2, 𝑡)) = ∫
𝑎2

𝑎1

(𝑛𝑡(𝑎, 𝑡) + 𝑛𝑎(𝑎, 𝑡)) 𝑑𝑎 = 0

  and there is a conservation law. However, introducing mortality, the population in the interval
[𝑎1, 𝑎2] will not remain constant

∫
𝑎2

𝑎1

(𝑛𝑡(𝑎, 𝑡) + 𝑛𝑎(𝑎, 𝑡)) 𝑑𝑎 − ∫
𝑎2

𝑎1

𝜇(𝑎, 𝑡)𝑛(𝑎, 𝑡)𝑑𝑎 = 0

  Therefore we have the equation for an age-dependent population

𝑛𝑡(𝑎, 𝑡) + 𝑛𝑎(𝑎, 𝑡) = 𝜇(𝑎, 𝑡)𝑛., for (𝑎, 𝑡) ∈ [0, 𝑎𝑚𝑎𝑥]  × ℝ+.

The McKendry model further assumes an initial population distribution and an age-dependent
fertility

⎧{{
⎨{{⎩

𝑛𝑡 + 𝑛𝑎 = −𝜇(𝑎, 𝑡)𝑛, (𝑎, 𝑡) ∈ (0, X) × (0, ∞)
𝑛(𝑎, 0) = 𝑛0(𝑎), (𝑎, 𝑡) ∈ (0, X) × {𝑡 = 0}
𝑛(0, 𝑡) = 𝑏(𝑡), (𝑎, 𝑡) ∈ {𝑎 = 0}  × (0, ∞)

(7.19)

X = max{𝑎}, the maximum age of the population, 𝑛0(𝑎) is the initial age-distribution of the
population, and the number of newborns is

𝑏(𝑡) = ∫
𝑎𝑚𝑎𝑥

0
𝛽(𝑎, 𝑡)𝑛(𝑎, 𝑡)𝑑𝑎

  where 𝛽(𝑎, 𝑡) is the age-distribution of fertility at time 𝑡. If we compared to the PDE already
presented, the McKendrick model has two new features:

1. first, it has two boundary conditions: an initial distribution for the population (at 𝑡 = 0) and
for the population at age 𝑎 = 0;
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2. second, the boundary condition referring to the newborns is non-local, that is, it depends on
the distribution of the total population. This last feature implies that it is hard to solve,
requiring the solution of an integral equation.

Assuming away that global nature of fertility, the Mc-Kendrick equation features a different
type of dynamics depending in the difference between 𝑎 and 𝑡: for 𝑎 < 𝑡 the dynamics depends
on the newborns, i.e., population with age 𝑎 = 0, while for 𝑎 > 𝑡 the dynamics is governed by
the initial age-distribution of the population. Of course, asymptotically the first type of behavior
prevails.

Consider the case
⎧{{
⎨{{⎩

𝑛𝑡 + 𝑛𝑎 = −𝜇𝑛, (𝑎, 𝑡) ∈ (0, X) × (0, ∞)
𝑛(𝑎, 0) = 𝑛0(𝑎), (𝑎, 𝑡) ∈ (0, X) × {𝑡 = 0}
𝑛(0, 𝑡) = 𝑏(𝑡), (𝑎, 𝑡) ∈ {𝑎 = 0}  × (0, ∞)

where 𝑛0(𝑎) is the initial distribution of population, and 𝜙(𝑡) is the number of offspring here
assumed as exogenous, i.e., independent of the distribution of population.

Prove that the solution is

𝑛(𝑎, 𝑡) =
⎧{
⎨{⎩

𝑏(𝑡 − 𝑎)𝜋(𝑎), if  𝑎 ≤ 𝑡
𝑛0(𝑎 − 𝑡) 𝜋(𝑎)

𝜋(𝑎−𝑡)  , if  𝑎 ≥ 𝑡

  where
𝜋(𝑎) = 𝑒−𝜇𝑎

  is the probability of survival until age 𝑎. Therefore, 𝜋(𝑎)
𝜋(𝑎−𝑡) = 𝑒−𝜇𝑡.

A simpler version of this model, assumes that there is only one fertile age 0 < 𝛼 < X, leading
to

𝑏(𝑡) = ∫
𝑎𝑚𝑎𝑥

0
𝛽 𝛿(𝑎 − 𝛼) 𝑛(𝑎, 𝑡)𝑑𝑎 = 𝛽𝑛(𝛼, 𝑡).

  The solution displays an ”echo effect” with period equal to 𝛼.
Reference: McKendrick (1926) and for a recent textbook presentation Kot (2001)

7.5.3 Cohort’s budget constraint

Let 𝑤(𝑎, 𝑡) be the financial wealth of an agent with age 𝑎 at time 𝑡. The budget constraint is

𝑤𝑡 + 𝑤𝑎 = 𝑠(𝑎, 𝑡) + 𝑟𝑤(𝑎, 𝑡) (7.20)

  where 𝑠(𝑎, 𝑡) is the savings at age 𝑎 at time 𝑡 and 𝑟 is the interest rate. If we assume that the
initial stock of wealth is unbounded then 𝑤 ∶ (0, 𝐴) × (0, 𝑇 ) → ℝ and the initial wealth distribution
is 𝑤(0, 𝑡) = 0.

The general solution of equation (7.20) is

𝑤(𝑎, 𝑡) = (∫
𝑎

0
𝑠(𝑧, 𝑧 − 𝑎 + 𝑡)𝑒−𝑟𝑧𝑑𝑧 + 𝑓(𝑡 − 𝑎)) 𝑒𝑟𝑎
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  for an arbitrary 𝑓(.).
If we assume that there are no bequests, that is no wealth at birth, 𝑤(𝑎, 𝑡) = 0 and 𝑠(𝑎, 𝑡) =

𝑒𝑏𝑎(𝐾−𝑎)+𝑔𝑡 − 𝑐 the solution becomes

𝑤(𝑎, 𝑡) =
√𝜋
2
√

𝑏
(Φ (𝐾𝑏 + 𝑔 − 𝑟

2
√

𝑏
 ) − Φ ((𝐾 − 2𝑎)𝑏 + 𝑔 − 𝑟

2
√

𝑏
 ))  𝑒 𝐾2𝑏2((2𝐾+4(𝑡−𝑎))𝑔−2(𝐾−2𝑎)𝑟)𝑏+(𝑔−𝑟)2

4𝑏  −

− 𝑐
𝑟 (1 − 𝑒𝑟𝑎) (7.21)

  where Φ(𝑥) = erf(𝑥) = (2/√𝜋) ∫𝑥
0 𝑒−𝑧2𝑑𝑧. Figure ?? illustrates equation (7.21). It displays a

life-cycle behavior of savings: the agent tends to be a net borrower at young age and lender at older
ages, although it dissaves later in life.

Figure 7.7: Illustration of equation (7.21) for 𝐾 = 88, 𝑏 = 0.0029, 𝑟 = 0.02, 𝑔 = 0.02 and 𝑐 = 50.

7.5.4 Interest rate term-structure

We consider an economy in which there is perfect foresight (i.e, there is a deterministic setting) and
in which there are two types of assets: a bank account and a continuum of bonds with maturity
dates ranging from zero to infinity, 𝑥 ∈ [0, ∞). We show that, if there is absence of arbitrage
opportunities, the forward rate at time 𝑡 for a bound maturing at time 𝑡 + 𝑥 perfectly anticipates
the spot interest rate for time 𝑡 + 𝑥.

First, the bank account’s balance, for an initial deposit of 𝐵(0), follows the process

𝐵(𝑡) = 𝐵(0)𝑒∫𝑡
0 𝑟(𝜏)𝑑𝜏 .

  where 𝑟(𝑡) is the spot interest rate. Therefore, the rate of return for a bank account is

𝑑𝐵(𝑡)
𝑑𝑡

1
𝐵(𝑡)  = 𝑟(𝑡), for any 𝑡 ≥ 0.
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Second, the price, at time 𝑡, for a bond6 that matures at time 𝑡 + 𝑥,

𝑃(𝑡, 𝑥) = 𝑒− ∫𝑥
0 𝑓(𝑡,𝑦)𝑑𝑦  (7.22)

  where 𝑓(𝑡, 𝑥) is the forward interest rate for maturity 𝑥 ≥ 0. The spot interest rate and the
forward rate with maturity zero are the same 𝑓(𝑡, 0) = 𝑟(𝑡).

The change in the price of the bond is

𝑑𝑃(𝑡, 𝑥) = 𝜕𝑡𝑃(𝑡, 𝑥) 𝑑𝑡 + 𝜕𝑥𝑃(𝑡, 𝑥) 𝑑𝑥 =
= (𝜕𝑡𝑃(𝑡, 𝑥) − 𝜕𝑥𝑃(𝑡, 𝑥)) 𝑑𝑡

  because in we move 𝑑𝑡 on time the duration to maturity reduces such as 𝑑𝑥 + 𝑑𝑡 = 0. Taking
derivatives in equation (7.22) we have

𝜕𝑡𝑃(𝑡, 𝑥) = −𝑃(𝑡, 𝑥) ∫
𝑥

0
 𝜕𝑡𝑓(𝑡, 𝑦)𝑑𝑦

𝜕𝑥𝑃(𝑡, 𝑥) = −𝑃(𝑡, 𝑥) 𝑓(𝑡, 𝑥).
  Therefore, the rate of return for a bond with maturity 𝑥

𝑑𝑃(𝑡, 𝑥)
𝑑𝑡

1
𝑃(𝑡, 𝑥) = 𝑓(𝑡, 𝑥) − ∫

𝑥

0
𝜕𝑡𝑓(𝑡, 𝑦) 𝑑𝑦.

  Using the mean value theorem 𝑓(𝑡, 𝑥) − 𝑓(𝑡, 0) = ∫𝑥
0 𝜕𝑥 𝑓(𝑡, 𝑦) 𝑑𝑦, and noting that 𝑓(𝑡, 0) = 𝑟(𝑡)

we find
𝑑𝑃(𝑡, 𝑥)

𝑑𝑡
1

𝑃(𝑡, 𝑥) = − ∫
𝑥

0
(𝜕𝑡𝑓(𝑡, 𝑦) − 𝜕𝑥𝑓(𝑡, 𝑦)) 𝑑𝑦 + 𝑟(𝑡)

  Third, If there are no arbitrage opportunities, the instantaneous rate of return for any two
investments should be equal for every point in time 𝑡. In particular, the rate of return for the bank
account should be equal to the rate of return for a bond of any maturity 𝑥 ≥ 0,

𝑑𝐵(𝑡)/𝑑𝑡
𝐵(𝑡)   = 𝑑𝑃(𝑡, 𝑥)/𝑑𝑡

𝑃 (𝑡, 𝑥) .

This condition is equivalent to

∫
𝑥

0
(𝜕𝑡𝑓(𝑡, 𝑦) − 𝜕𝑥𝑓(𝑡, 𝑦)) 𝑑𝑦 = 0, for every 𝑥 ≥ 0.

  Therefore the forward rate, in a deterministic setting, solves the following Cauchy problem
⎧{
⎨{⎩

𝜕𝑡𝑓(𝑡, 𝑥) − 𝜕𝑥𝑓(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ ℝ2
+

𝑓(𝑡, 0) = 𝑟(𝑡), (𝑡, 𝑥) ∈ ℝ+ × {𝑡 = 0} .
  Because the PDE has the general solution 𝑓(𝑡, 𝑥) = ℎ(𝑡 + 𝑥), the solution to the Cauchy problem
is

𝑓(𝑡, 𝑥) = 𝑟(𝑡 + 𝑥)
  the forward rate, at time 𝑡, for a bond maturing at time 𝑡 + 𝑥 is a perfect predictor to the spot
rate at time 𝑡 + 𝑥.

6It is implicitly assumed that the bond has face value equal to one and does not pay coupons.
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7.5.5 Optimality condition for a consumer choice problem

Consider the following general consumer problem

max
𝑐1,𝑐2

 𝑢(𝑐1, 𝑐2)

  subject to the following constraints

⎧{{
⎨{{⎩

𝐸(𝑐1, 𝑐2) = 𝑝1𝑐1 + 𝑝2𝑐2 ≤ 𝑊
0 ≤ 𝑐1 ≤ ̄𝑐1

0 ≤ 𝑐2 ≤ ̄𝑐2

  Assume that 𝑢(.) is continuous, differentiable, increasing and concave in both arguments. Forming
The Lagrangean

ℒ = 𝑢(𝑐1, 𝑐2) + 𝜆(𝑊 − 𝐸(𝑐1, 𝑐2)) − 𝜂1𝑐1 − 𝜂2𝑐2 + 𝜁1( ̄𝑐1 − 𝑐1) + 𝜁2( ̄𝑐2 − 𝑐2).

The solution (which always exists) (𝑐∗
1, 𝑐∗

2) verifies the Karush-Kuhn-Tucker conditions

𝑢𝑐𝑖
(𝑐1, 𝑐2) − 𝜆𝑝𝑗 − 𝜂𝑗 − 𝜁𝑗 = 0, 𝑗 = 1, 2

𝜂𝑗𝑐𝑗 = 0, 𝜂𝑗 ≥ 0, 𝑐𝑗 ≥ 0, 𝑗 = 1, 2
𝜁𝑗( ̄𝑐𝑗 − 𝑐𝑗) = 0, 𝜁𝑗 ≥ 0, 𝑐𝑗 ≤ ̄𝑐𝑗, 𝑗 = 1, 2
𝜆(𝑊 − 𝐸(𝑐1, 𝑐2)) = 0, 𝜆 ≥ 0, 𝐸(𝑐1, 𝑐2) ≤ 𝑊

  We have three cases:
First, an interior solution, 𝑐∗

1 ∈ (0, ̄𝑐1) and 𝑐∗
2 ∈ (0, ̄𝑐2), with the optimality conditions

𝑝2𝑢𝑐1
(𝑐∗

1, 𝑐∗
2) = 𝑝1𝑢𝑐2

(𝑐∗
1, 𝑐∗

2) (7.23)
𝐸(𝑐∗

1, 𝑐∗
2) = 𝑊 (7.24)

Equation (7.23) is a first-order partial differential equation with solution

𝑢(𝑐∗
1, 𝑐∗

2) = 𝑣 (𝑝1𝑐∗
1 + 𝑝2𝑐∗

2
𝑝1

)

  and, if we use equation (7.24) and define 𝑤 ≡ 𝑊/𝑝1 in the optimum, we have

𝑢(𝑐∗
1, 𝑐∗

2) = 𝑣(𝑤)

  If the utility function is strictly concave then with very weak conditions (differentiability) we
have an unique interior optimum. It is clear that the budget set, in real terms, is a projected
characteristic.

Second, the first corner solution for 𝑐1 is 𝑐∗
1 = 0 and an interior solution for 𝑐2 𝑐∗

2 ∈ (0, ̄𝑐2) and
the budget constraint be saturated, and satisfies the conditions

𝑝2𝑢𝑐1
(𝑐∗

1, 𝑐∗
2) = 𝑝1𝑢𝑐2

(𝑐∗
1, 𝑐∗

2) − 𝑝2𝜂1 (7.25)
𝐸(𝑐∗

1, 𝑐∗
2) = 𝑊 (7.26)
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Figure 7.8: Interior optimum

Figure 7.9: Corner solution: zero consumption

Equation (7.25) is a first-order partial differential equation with solution

𝑢(𝑐∗
1, 𝑐∗

2) = 𝜂1𝑐∗
2

𝑝1
  + 𝑣 (𝑝1𝑐∗

1 + 𝑝2𝑐∗
2

𝑝1
)

  If we use equation (7.28) in the optimum we have

𝑢(𝑐∗
1, 𝑐∗

2) = −𝜂1𝑝2𝑐∗
2

𝑝1
  + 𝑣(𝑤) < 𝑣(𝑤)

  then the indirect utility level is smaller than for the unconstrained case
Third, the second corner solution for 𝑐1: lLet 𝑐∗

1 = ̄𝑐1 and 𝑐∗
2 ∈ (0, ̄𝑐2) and let the budget

constraint be saturated; It verifies the conditions

𝑝2𝑢𝑐1
(𝑐∗

1, 𝑐∗
2) = 𝑝1𝑢𝑐2

(𝑐∗
1, 𝑐∗

2) + 𝑝2𝜁1 (7.27)
𝐸(𝑐∗

1, 𝑐∗
2) = 𝑊 (7.28)
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Equation (7.27) is a first-order partial differential equation with solution

𝑢(𝑐∗
1, 𝑐∗

2) = −𝜁1𝑐∗
2

𝑝1
  + 𝑣 (𝑝1𝑐∗

1 + 𝑝2𝑐∗
2

𝑝1
)

  and if we use equation (7.28) in the optimum we have

𝑢(𝑐∗
1, 𝑐∗

2) = 𝜁1𝑝2𝑐∗
2

𝑝1
  + 𝑣(𝑤) < 𝑣(𝑤)

  then the indirect utility level is smaller than for the unconstrained case
We verify that the interior optimum has characteristics given by 𝑐1 + 𝑝1

𝑝2
𝑐2, and in general they

coincide with the budget constraint.
We can repeat the same exercise for the corner solutions for 𝑐2.

7.5.6 Growth and inequality dynamics

Consider an economy in which the households are heterogenous as regards their capital endowments,
let the endowments belong to the continuum 𝑘 ∈ [𝑘(𝑡), 𝑘(𝑡)] ⊂ ℝ+, and let 𝑁(𝑡, 𝑘) be the number
of people having an asset endowment 𝑘, at time 𝑡.

If we denote the total population by 𝑁(𝑡) then

𝑁(𝑡) = ∫
𝑘(𝑡)

𝑘(𝑡)
 𝑁(𝑡, 𝑘)𝑑𝑘.

  We can denote the population density  by 𝑛(𝑡, 𝑘) = 𝑁(𝑡, 𝑘)/𝑁(𝑡). In this case

∫
𝑘(𝑡)

𝑘(𝑡)
𝑛(𝑡, 𝑘)𝑑𝑘 = 1.

Assume that the capital accumulates in linearly as

𝑑𝑘
𝑑𝑡 = 𝛾𝑘(𝑡).

  Then, using Leibniz rule

𝑑
𝑑𝑡 ∫

𝑘(𝑡)

𝑘(𝑡)
𝑛(𝑡, 𝑘)𝑑𝑘 = ∫

𝑘(𝑡)

𝑘(𝑡)
𝑛𝑡(𝑡, 𝑘)𝑑𝑘 + 𝑛(𝑡, 𝑘(𝑡))𝑑𝑘(𝑡)

𝑑𝑡 − 𝑛(𝑡, 𝑘(𝑡))𝑑𝑘(𝑡)
𝑑𝑡

= ∫
𝑘(𝑡)

𝑘(𝑡)
𝑛𝑡(𝑡, 𝑘)𝑑𝑘 + 𝑛(𝑡, 𝑘(𝑡))𝛾𝑘(𝑡) − 𝑛(𝑡, 𝑘(𝑡))𝛾𝑘(𝑡) =

= ∫
𝑘(𝑡)

𝑘(𝑡)
𝑛𝑡(𝑡, 𝑘) + 𝜕 (𝛾𝑘𝑛(𝑡, 𝑘))

𝜕𝑘 𝑑𝑘

  by the mean-value theorem. Then the density satisfies the PDE

𝑛𝑡(𝑡, 𝑘) + 𝛾𝑘𝑛𝑘(𝑡, 𝑘) + 𝛾𝑛(𝑡, 𝑘) = 0
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Figure 7.10: Density for several increasing dates

  which has the form of the transport equation (7.18).
Given an initial density 𝑛0(𝑘) the solution is then

𝑛(𝑡, 𝑘) = 𝑒−𝛾𝑡𝑛0 (𝑘𝑒−𝛾𝑡) , (𝑡, 𝑘) ∈ ℝ+.

  Assuming a log-normal distribution

𝜙(𝑘) = (2𝜋𝑘2𝜎2)− 1
2 exp (−(log (𝑘) − 𝜇)2

2𝜎2 )

  then
𝑛(𝑡, 𝑘) = (2𝜋𝑘2𝜎2)− 1

2 exp (−(log (𝑘) − 𝛾𝑡 − 𝜇)2

2𝜎2 )
 

Figure ?? presents the dynamics of capital distribution, that is, the dynamics of the density of
population for several levels of capital

Growth can be seen as travelling of the density of population for higher levels of capital wealth.
We can compute several statistics to characterize the growth and distributional facts from this
simple model (see Figure 7.11:

1. There is unbounded growth, with a constant growth rate 𝛾(𝑡) = 𝛾

2. The distribution is non-ergodic (the average and variance tends to infinity)

�̄�(𝑡) = 𝑒𝛾𝑡+𝜇+ 𝜎2
2 , 𝜎𝑘(𝑡) = (�̄�(𝑡))2 (𝑒𝜎2 − 1)

 

3. But the inequality measures are constant: Gini and Theil indices

𝐺(𝑡) = erf (𝜎
2 ) , Th(𝑡) = 𝜎2

2
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Figure 7.11: Linear accumulation function for 𝛾 > 0 and an initial log-normal distribution

4. Ratio of the quantiles is also constant

𝑘90
𝑘10

= −𝜎
√

2 [erf−1 (1 − 2 9
10) − erf−1 (1 − 2 1

10)]

7.6 References

• Mathematics of PDE: introductory Olver (2014) more advanced (Evans, 1998, ch 3) or
Chechkin and Goritsky (2009)

• Applications to economics: Hritonenko and Yatsenko (2013)

• Application to mathematical demography: (Kot, 2001, ch. 23)

• A useful site: http://eqworld.ipmnet.ru/en/solutions/fpde/fpdetoc1.htm

http://eqworld.ipmnet.ru/en/solutions/fpde/fpdetoc1.htm
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7.A Laplace transforms and inverse Laplace transforms

Consider function 𝑓(𝑥) where 𝑥 > 0. The Laplace transform of 𝑓(𝑥) is

ℒ[𝑓(𝑥)](𝑠) = ∫
∞

0
𝑒−𝑠𝑥𝑓(𝑥)𝑑𝑥 = 𝐹(𝑠).

  The application of Laplace transforms to the solution of differential equations is convenient
because it allows for the transformation of a ODE into an non-differential equation and the trans-
formation of a PDE into an ODE.

The Laplace transform of 𝑓 ′(𝑥) = 𝑑𝑓(𝑥)/𝑑𝑥 is

ℒ[𝑓 ′(𝑥)](𝑠) = 𝑑
𝑑𝑥 (  ∫

∞

0
𝑒−𝑠𝑥𝑓 ′(𝑥)𝑑𝑥) = 𝑠 ∫

∞

0
𝑒−𝑠𝑥𝑓(𝑥)𝑑𝑥 + 𝑒−𝑠𝑥𝑓(𝑥) ∣∞𝑥=0= 𝑠𝐹(𝑠) − 𝑓(0)

  if the function 𝑓(.) is bounded.
Example: consider the differential equation

𝑓 ′(𝑥) = 𝑎𝑓(𝑥).

  Applying the Laplace transform to both sides, yields

ℒ[𝑓 ′(𝑥)](𝑠) = 𝑎ℒ[𝑓(𝑥)](𝑠),

  which is equivalent to the the algebraic equation in 𝐹(𝑠)

𝑠𝐹(𝑠) − 𝑓(0) = 𝑎𝐹(𝑠).

Therefore
𝐹(𝑠) = 𝑓(0)

𝑠 − 𝑎.
  To go back to the solution as a function of the independent variable 𝑥, we apply the inverse
Laplace transform

ℒ−1[𝐹 (𝑠)](𝑥) = 𝑓(0)ℒ−1[ 1
𝑠 − 𝑎](𝑥).

  But
𝑓(𝑥) = ℒ−1[𝐹 (𝑠)](𝑥) = ∫

∞

0
𝑒−𝑥𝑠𝐹(𝑠)𝑑𝑠

  and
ℒ−1 ( 1

𝑠 − 𝑎) (𝑥) = 𝑒𝑎𝑥

  Therefore,
𝑓(𝑥) = 𝑓(0) 𝑒𝑎𝑥.

 
Some Laplace transforms used in the main text are presented in Table 7.1
The Laplace transform and the inverse Laplace transforms are tabulated in many textbooks on

calculus or in the web, see http://tutorial.math.lamar.edu/pdf/Laplace_Table.pdf. We can
compute them using Mathematica http://reference.wolfram.com/language/ref/LaplaceTransform.
html and http://reference.wolfram.com/language/ref/InverseLaplaceTransform.html.

http://tutorial.math.lamar.edu/pdf/Laplace_Table.pdf
http://reference.wolfram.com/language/ref/LaplaceTransform.html
http://reference.wolfram.com/language/ref/LaplaceTransform.html
http://reference.wolfram.com/language/ref/InverseLaplaceTransform.html
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Table 7.1: Laplace transforms and inverse Laplace transforms

𝑓(𝑥) 𝐹(𝑠)

𝑎 1
𝑠

𝑥 1
𝑠2

𝑒𝑎𝑥 1
𝑠−𝑎

𝐻(𝑎 − 𝑥) 𝑒−𝑎𝑠
𝑠 𝑎 > 0

𝑓(𝑥 − 𝑎) 𝐻(𝑥 − 𝑎) 𝐹(𝑠) 𝑒−𝑎𝑠 𝑎 > 0
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