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Chapter 8

Scalar parabolic partial differential

equations

8.1 Introduction

Parabolic partial differential equations involve a known function F' depending on two independent
variables (t,z), an unknown function of them wu(t,z), the first partial derivative as regards ¢ and

first and second partial derivatives as regards the “spatial” variable x:
F(t7 x? u’ ut’ ul‘? uI‘IE) = 0

where v : 7 x X — R, where 7 C R, and X C R.

In its simplest form, F(u;,u,,) = 0, the equation models a distribution featuring dispersion
through time, for a cross section variable, generated by spatial contact (think about the time dis-
tribution of a pollutant spreading within a lake in which the water is completely still). Equation
F(u;,uy,u,,) = 0 features both dispersion and advection behaviors (think about the time dis-
tribution of a pollutant spreading within a river). Equation F'(u,,u,u,,u,,) = 0 jointly displays
dispersion, advection and growth or decay behaviors (think about a time distribution of a pollutant
spreading within a river, in which there is a permanent flow of new pollutants being dumped into
the river). The independent terms appear in function F'(.) if there are some time or spatial specific
components.

We will also see in the next chapter that there is a close connection between partial differential
equations and stochastic differential equations. This implied that continuous-time finance has been
using parabolic PDE’s since the beginning of the 1970’s.

In economics and finance applications it is important to distinguish between forward (FPDE)
and backward (BPDE) parabolic PDE’s. While the first are complemented with an initial distri-
bution and generate a flow of distributions forward in time, the latter are complemented with a

terminal distribution and its solution generate a flow of distributions consistent with that terminal
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constraint. While for FPDE the terminal distribution is unknown, for BPDE the distribution at
time ¢ = 0 is unknown. For planar systems, we may have forward, backward or forward-backward
(FBPDE) parabolic PDE’s. The last case can be seen as a generalization of the saddle-path dy-
namics for ODE’s.

In mathematical finance most applications, such as the Black and Scholes (1973) model, most
PDE’s are of the backward type. In economics there is recent interest in PDE’s related to the
topical importance of distribution issues, and, in particular spatial dynamics modelled by BPDE.
Optimal control of PDE’s and the mean-field games usually lead to FBPDE’s.

Again, the body of theory and application of parabolic PDE’s is huge. We only present next
some very introductory results and applications.

Let u(t,z) where (t,2) € T x X C R x R, is an at least C*'(R,,R) functionll. We can define

e linear parabolic PDE
uy = alt, x)uy,, + b(t, v)u, + c(t,x)u + d(t, z)
if F'(.) is linear in w and all its derivatives, and the coefficients are independent from u
e a semi-linear parabolic PDE
uy = a(t, x)u,, + b(t,x)u, + c(z,t,u)

it F'(.) is linear in the derivatives of u, and the coefficients are independent from wu

e a quasi-linear parabolic PDE
uy, = a(x, t,u)u,, + bz, t,u)u, + c(x,t,u)
if F'(.) is linear in the derivatives of u, but the coefficients can be functions of w.

Consider the simplest linear parabolic equation with constant coefficients, sometimes called the

diffusion equation with advection and growth,
U, = au,, +bu, +cu+d.

The time-behavior of u depends on three terms: a diffusion term, au,,, a transport term, bu,,

Tx)?
and a growth term cu +d. If a > 0 (a < 0) the equation is sometimes called a forward FPDE
(backward BPDE) equation, because the diffusion operator works forward (backward) in time.
The second term introduces a behavior similar to the first-order PDE: it involves a translation of the
solution along the direction x. The third term generates a time behavior of the whole distribution
u(zx,.) in a way similar to a solution of a ordinary differential equation, that is, it involves stability

or instability properties.

1Tt is, at least, differentiable to the second order as regards = and to the first order as regards t.
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In the case of a parabolic PDE the stability or instability properties are related to the whole
distribution: we have stability in a distributional sense if there is a solution u(t,z) = u(z)
such that

lim u(t,z) = u(x)
t—o0

where u(z) is a stationary distribution.
An important element regarding the existence and characterization of the solution of PDE’s
is related to the characteristics of the support of the distribution X. We can distinguish between

three main cases:
o unbounded or infinite case X = (—o0, 00)

o the semi-bounded of semi-infinite case X = [0, 00) or X = (—o0, 0], where 0 can be substituted

by any finite number
o the bounded case X = (z,Z) where both limits are finite.

In order to define problems involving parabolic PDE’s we have to supplement it with a
distribution referred to a point in time (an initial distribution for the forward PDE or terminal
distribution for a backward PDE), and possibly conditions involving known values for the values
of u(t,z) at the boundaries of X) (so called boundary conditions), i.e, x € 9X.

A problem is said to be well-posed if there is a solution to the PDE that satisfies jointly the
initial (or terminal) and the boundary conditions and it is continuous at those points. In this case
we say we have a classic solution. If a problem is not well-posed it is ill-posed. In this case
there are no solutions or classic solutions do not exist (but generalized solutions can exist).

A necessary condition for a problem involving a FPDE to be well posed is that it is supplemented
with an initial condition in time, and a necessary condition for a problem BPDE to be well-posed
is that it involves a terminal condition in time.

Next we will present the solutions for some simple equations and problems.

8.2 The simplest linear forward equation

8.2.1 The heat equation

The simplest linear parabolic PDE is the heat equation, where wu(¢,x) and is formalized by the
linear forward parabolic PDE
Uy, — Uy, =0 (8.1)

B. It describes the dynamics of the temperature distribution when spatial differences in tempera-
ture drive the change in spatial distribution of temperature across time. Consider a homogeneous

rod with infinite width and let u(¢,z) be the temperature at point z € (—oo,c0) at time ¢ > 0.

2The first formulation of the heat equation is attributed to Fourier in a presentation to the Institut de France,
and in a book with title Theorie de la Propagation de la Chaleur dans les Solides both in 1807.
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Consider a small segment of the rod between points x and x + Ax, where Az > 0. The difference

in the temperature between the two boundaries of the segment
z+Ax
u(t,x + Az) —u(t,z) = / u,(t,z)dz
x

is a measure of the average temperature in the segment at time ¢. The instantaneous change in

average temperature in the segment is

d z+Ax z+Ax
dt(/ u(t, z) dz) = / u,(t,z)dz

If there is a hotter spot located outside the segment, for instance in a leftward region, and because
the heat flows from hot to colder regions, then temperature in the segment Az is lower then in
the leftward region, implying w,(t,2) < 0, and it is higher than in the rightward region, implying
u,(t,z + Az) < 0, and the gradient in the leftward boundary is higher in absolute terms that the
rightward w,(t,z) — u,(t,z + Az) < 0. Therefore, the temperature flow is

z+Ax
uy,(t,x + Az) —u,(t,x) = / Uy, (t,2) dz.

If is assumed that the instantaneous change in the segment’s temperature is equal to the heat that

flows through the segment, then

T+Ax r+Ax
/ u(t,z)dz = / Uy, (t,2)dz.

which is equivalent to
z+Ax
/ ug(t, 2) — Uy, (t,2)dz =0,
xX

which is holds if and only if equation (@) is satisfied.

Next we define and solve the simplest linear scalar parabolic partial differential equation
u,(t,x) = awu,,(t,r) to address the differences in the solution when we consider the domain of
x, X, the existence of side conditions and the sign of a.

We start with the forward equation, where a > 0, in subsection and deal next with the

backward equation

8.2.2 Fourier transforms

There are several methods to solve linear parabolic PDE’s. When the domain of the independent
variable x is (—o0,00), the most direct method to find a solution is by using Fourier and inverse
Fourier transforms (see Appendix @)

The method of obtaining a solution follows three steps: first, we transform function u(t, z) such

that the PDE is transformed into a parameterized ordinary differential equation; second we solve
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this ODE; and finally we transform back to the original function. When the domain of x is not the
double-infinite we may have to adapt this method.

There are several possible transformations: sine, cosine, Laplace, Mellin or Fourier transforms.
Next we use the Fourier transform approach.

The Fourier transform of u(t, z), taking t as a parameter, is i

Ult,w) = Flu(t,z)](w) = [ u(t, r)e 2™ dy (8.2)

2

where 7 = —1 and the inverse Fourier transform is

u(t,z) = FHU(t,w)|(z) = / U(t,w)e?™ o dy. (8.3)

Time derivatives can also have Fourier transform representations: first derivative representations

are
ut(t,a:)—gt/ U(tjw)e%riwxdw—/ U, (¢, w)e2™ i duy,

and

uz(t,x)—aa / U(t,w)ezm“’mdw—/ 27wi U (t, w)e?™ % dw,

Z oo

and the second derivative is

Uy g (tv I’) — / (27TW’L')2U<7§, w)627riwmdw = / <27TW>2U(t, w>62wiwmdw.

—0oQ
Next we prove the relationship between a convolution of functions and the multiplication of

Fourier transforms. The function u(¢,z) is a convolution if it can bewritten as

ults) = olt, ) ylt) = [ otttz - e

where v(t,z) and y(t, ) are integrable functions in the domain R, x R. Let Fourier transform of

u(t,z) be written as a product of two Fourier transforms,
U(t,w) = Flu(t, z)|(w) = V(t,w)Y(t,w)

where V(t,w) = Flv(t,z)](w) and Y(t,w) = Fly(t,z)](w). Then u(t,x) is the inverse Fourier

transform of U(¢,w) if and only if u(¢, z) is the convolution

u(t,z) = FHU(tw)|(z) = FHV (t,w)Y (t,w)](z) = v(t, z) * y(t, x).

8.2.3 The forward heat equation in the infinite domain

In this subsection we solve the slightly more general version of equation (EI) in the infinite domain
for an arbitrary bounded initial condition and for a given initial conditions. The last two are

versions of Cauchy problems in which the side conditions refer to ¢ = 0.

3There are different definitions of Fourier transforms, we use the definition by, v.g., Kammler (2000).
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Free but bounded initial condition

The simplest linear PDE for an infinite domain X = R
uy —au,, =0, (t,z) e R, xR (8.4)
where a > 0.

Proposition 1. Let k(x) be an arbitrary but bounded function, i.e. satisfying LO; |k(z)|dx < 0.
Then the solution to PDE (@) is
k(x), (t,z) e {t=0} xR

ult, ) = 1 /OO k(f)e*Lﬁ)Q d¢, (t,x)eR,., xR
2vmat J_ o ’ ’ A

(8.5)

Proof.  Applying the previous definition of Fourier transform, equation (@) becomes
Uy — Uy, = /‘X’ (U, (t,w) + a(2mw)?U (t,w)) e™“*dw = 0.
This equation is satisfied if U(¢,w) is solves
U,(t,w) = ANw) U(t,w).
where \(w) = —(27w)?a. The solution for this ODE is
Ut,w) = K(w) G(t,w)

where G(.) is called the Gaussian kernel

{L t=0
Gw,t) =

AWt >0

and the function K(w) is arbitrary. To obtain the solution in terms of the original function,

u(t, z), we perform an inverse Fourier transform
u(t,x) = FHU(tw) = F HE(w) G(t,w) = k(z) * g(t, z)
where k(z) * g(t,x) is a convolution, that is
k) xglta) = [ K(©glta - )

Using the tables in the Appendix, for g(z,t) = F 1[G(t,w)](z) the Gaussian kernel in the initial

variable is
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where §(.) is the Dirac’s delta function.
Therefore, because and k(z) = F K (tw)](z),

k(z), t=0
u(t,z) = 1 oo we? (8.6)
W /oo k(&)e  aar dE, t>0

where k(z) is an arbitrary but bounded function, i.e. satisfying Lo:o |k(z)|dx < oo, and

because f:; k(&)o(x — &)dE = k(x). O

Two observations can be made concerning the solution of this PDE.
First, applying the Fourier transform, we change from a distribution in the original variables x
to a frequency distribution w.

The transformed PDE becomes a linear ODE the coefficient is eigenfunction
AMw) = —(21w)%a

which is real and non-positive for any w € R: A(0) = 0 and ANw) < 0 for w # 0 and,
lim,_, . A(w) = —oo. This means that lim,, ., . U(t,w) = 0 for any ¢ if K(w) is bounded.

Second, associated to the previous property is the solution of u(t,z) is an expected value of the

arbitrary function where the density function is a Gaussian density function with average 0 and

variance 2 at.

Initial value problem Now we consider a well-posed linear FPDE. Assume we know the distri-

bution at time ¢ = 0, then we have an initial value problem

{ut = au,,,  (t,z) € (0,00) x (=00, 00) (8.7)

u(0,2) = ¢(z) (t,x) € {t =0} x (—00,00)

where a > 0 and ¢(x) is a known bounded function. Applying (@), the solution is

P(2), (t,z) e {t=0} xR
(z —¢)?

/oo 23% e dal g, (t,x)€R., xR

because j;o; d(&)d(x — €)dE = ¢(x).

Example Figure @ illustrates the behavior of the solution for a = 1 and ¢(x) = e—, which

Nz

u(t,z) =

is simplified to
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2
e

7

Figure 8.1: Solution for the initial value problem for the heat equation with @ = 1 and ¢(z) =

As can be seen, the solution decays through time and converges to a homogeneous distribution

lim u(t,z) =0,Vx € (—o0,0)

t—o0

However, a conservation law holds,

/ u(t,z)der =1, for eacht > 0

Piecewise-constant initial condition We consider the heat equation with the initial condition

¢(x> _ {¢07 lf:L' € [@7?]
0 ifx¢[z,T)

where x < T are both finite. In this case, the solution to the problem is

ceo=als() (25|

where ®(z) is the standard normal distribution function

B(y) = \/12?/ eFdz e (0,1).

22
Observe that foo e Tdz = (2m)2.
—00
The solution of equation (@) is illustrated in Figure @
In order to prove this result, applying the general solution in equation (@) yields the solution

of the initial-value problem

T g2
.
e~ at dE.

b
2v/mat I

u(t,x) =
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Figure 8.2: Solution for the initial value problem for the heat equation with a = 1 and piecewise

initial condition.

To simplify the expression, we make the transformation of variables z = (z — £)/v/2at, and denote
z=(r—¢)/V2at and z = (z — £)/v2at. Then, because dz = —1/v/2atd§ the solution simplifies f

(z—T)/V2at
e % /2dy

1 /27 e_(x_£)2/4atd£ _ . V 2at
Varat J, VAaArat Jiz—g)/v/2at

1 (z—z)/v2at ars (x—T)/V2at s
= — e F/dz — e F/edz | =
vV 2 [oo [oo

- o () (a )

8.2.4 The forward linear equation in the semi-infinite domain

Now consider the equation defined on the semi-infinite domain for z, that is X = R,. This case is
more interesting for economic applications in which the independent variable can only take non-
negative values, for instance when z refers to a stock.
The FPDE we consider is
u, — aug, =0, (t,z) € R% (8.9)

where a > 0.

Proposition 2. The solution to equation () is

u(t, z) = — /wk@)@Jif—fJTf)d5t>o (8.10)
’ 2vVmat Jy ’ ' .

where k(x) : X — R is an arbitrary bounded function.

4Recalling the formula for integration by substitution of variables, if we set 2 = ¢(&) and £ € (a, b) then

@(b) b /
/ f@M:/ﬂwww®%.
pla) a

(a
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Proof. We solve this equation by using the method of images. It consists in introducing the

following extension to the arbitrary function k(x)

Fo) = {k(w), fozo
—k(—z) ifx<0

where k(.) is an odd function satisfying k(—x) = —k(x). Using the solution (@) for t > 0 we
have

1 o o—€)2
u(t,x) = 2\/@/ Lk ({)67(45 dé =

_ 1 ° _(e=g? s _(z—g)? .
- (/wk@)e Fagr [ e da)—

1 ( /Ook<£) REET L d§+/ook(f) a2 dE)
= — e at e at
2 AV mat 0 0
where the last step involves integration by substitution: i.e., if we define u = —z for z € [0, c0)

then f_ooo flu)du = — foz f(—z)dx = fooo f(—xz)dz. Then the solution of equation () is equation
(B.11). O

The solution to the initial-value problem

— =0, f >0, (t,z) € R?
Uy — AU, ora (t,z) e RY (8.11)
u(0,t) = uy(z), for (t,z) € {t =0} xR,
is
1 > (z—€)2 (x+£)2
tx) = S e et ) dE, > 0. 8.12
) = 5 [ ) (e ) ag (812)

We obtain this result by direct application of equation ()

Example Consider the initial-value problem in which the initial distribution is log-normal

(lnz — p)?

e 202
up(x) = N Neweps
if we substitute in equation () we have the solution depicted in Figure @ for several moments
in time.
We observe that the solution is not conservative, i.e. the integral U(t) = j(;oo u(t,x)dz decays
in time such that lim, ,  U(¢) = 0.

8.2.5 The backward heat equation

In finance applications and associated to Euler equation in optimal control problems, we sometimes

need to solve backward parabolic PDE.
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0.30F

0.25F — t=0
0.20F t=1
015} t=5
0.10f \ =2

0.05}

5 - 10 1‘5 20
Figure 8.3: Solution for the initial value problem for the heat equation in the semi-infinite line with

a =1 and an initial log-normal density.

The simplest parabolic BPDE equation in the infinite domain for x and for the semi-infinite
domain for ¢ is

uy + auy, =0, (t,x) € [0,T] x (—o0,00) (8.13)

where a > 0.
Proposition 3. Consider the BPDE equation () The solution is
k(x), t=T

u(t,x) = 1 e’} 7@776)2
Viram | k(€)e wma de, te (0,T)

Proof. In order to solve it we introduce a change in variables 7 = T — ¢t and consider a change in
the variable v(7,x) = u(t(7),z) where t(7) =T — 7. As

v (T, @) = =, (4(7), ), and v, (7, 2) = Uy, (4(7), )
Then wu,(t,z) = —au,,(t,z) is equivalent to
v (1, 2) = av,, (T, 2).

Using the solution already found in equation (@) we get

k(z), T=0
(T, ) = o0 _ )2
(r:2) / k(€) (dmar) P e de, e (0,T).
Transforming back to u(t,z) we have solution. O

A problem involving a backward PDE is only well posed if together with the PDE we have a

terminal condition, for example u(T,z) = ¢p(x). In this case the value of the variable at time

t = 0 becomes endogenous.
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Consider the terminal-value problem

{ut = —au,,, (t,z) € (—o0,00) x (0,T]
w(T,z) = ¢p(x) (t,z) € (—o00,00) x {t=T}.

The solution is
¢ (), (t,z) e{t=T} xR

1 —Lﬁfm
VAra(T —t) /oo Pribe d¢, (t,x) € (0,T) xR

The initial distribution can be obtained by setting ¢t =0

u(t,x) =

IS S A a2
w0,1) = s / orlee W e

8.3 The homogeneous linear PDE

The general forward linear parabolic PDE in the infinite domain is
Uy =auy, +bu, +cu, (t,z) € R, xR

where a > 0. The dynamics of u(t,z) contains three terms: a diffusion term, if @ # 0, a transport
term, if b # 0, and a growth or decay term if ¢ > 0 or ¢ < 0.

In order to solve the equation, we can follow one of two alternative methods:

1. transform the equation into a heat equation, solve the heat equation and transform back to

the initial variables.

2. apply the Fourier transform method to transform the PDE into a parameterized ODE, solve

it, and apply inverse Fourier transforms.

8.3.1 Equation without transport term

If the linear forward PDE does not contain a transport term, we have
Uy = au,, +cu, (t,x) € (0,00) X (—00, 00) (8.14)

where a > 0 and ¢ # 0, which has solution, for an arbitrary bounded function ¢(x)

/ $(E)d(x — )df ox),  (Lz)e{t=0} xR
ct/ P& S Tia d¢, (t,r) €R,. xR

477(1

u(t,z) =

To find the solution, we use the first method. First, define v(¢t,z) = e “'u(t,x), which has
derivatives v, = —ce “'u + e “'u, and v,, = e “‘u,,. Second, equation () is equivalent to the
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simplest linear equation v, = av,, which has solution (@) Third, as u(t,z) = et v(t, z) we obtain
the solution

The dynamics of the solution depends crucially on the sign of b:

0 ife<O
lim wu(t,z) =
t=o0 oo ife>0

Figure @ illustrates the cases in which ¢ < 0 and ¢ > 0. In both cases we see that the long-time
behavior of the solution is commanded by e“’: if ¢ < 0 then lim,_,  u(t,z) = 0, for any = € R, and
if ¢ > 0 then lim, ,  u(t,z)  lim, , " = oo, for any x € R.

This means that the diffusion equation display asymptotic stability if ¢ < 0 and instability if
¢ > 0, both in a distributional sense. In the first case the solution u(t,z) is bounded and in the

second case it is unbounded.

4

Figure 8.4: Solution for the initial value problem for the heat equation with a = 1 and ¢(z) =

and ¢ = —0.5 and ¢ = 0.5.

8.3.2 The general homogeneous diffusion equation

The initial value problem for a a general linear homogeneous (forward) diffusion equation is

{“t@,x) = @, (t.2) + bu,(t,2) +cult,z),  (t,z) € (0,00) x (~00,00) (8.15)

U(O,LL‘) = d)(x)? (tal') € {t = 0} X (—O0,00),
where a > 0, b # 0 and ¢ # 0 and ¢(z) is a bounded function over X = R.

Proposition 4. The solution to problem () is

> x—s)? x—s 2 —dac) t?
u(t,a:):/ o(s) ! exp <—( )7 +25( Jt+ (b7~ dac)¢ )ds (8.16)

Vamat dat
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Proof. We will solve this problem using the Fourier transform representation of equation u, —

(au,, + bu, + cu) = 0. Using inverse Fourier transforms yields
uy(t, ) — auy, (t,x) —bu, — cu(t,x) = /OO 2™ [ U, (t,w) + Mw)U (t,w)] dw = 0.
where the coefficient is a complex-valued function of w i
Mw) = a(2mw)? — ¢ —2rbwi, i = V-1
Therefore, the PDE () is equivalent to the linear ODE parameterized by w
U (t,w) = =ANw)U(t,w), (t,w) e R, xR,
which has the explicit solution
U(t,w) = ®(w) G(t,w), fort € [0,0)

where ®(w) = F[ ¢(z)] (w) is the Fourier transform of the initial distribution, and G(¢,w) is the
Gaussian kernel

G(t,w) = e M9t fort > 0.

We obtain the solution of problem () by applying the inverse Fourier transform

u(t,x) = F LU )] (@) = T [B(w) Glt,w)] (2) = / o(s)g(t,x — s)ds

where (see the Appendix @ )

1 y? + 2bty + (b — dac)t?
ty)=F 1 e Mt = ex (— , 8.17
g(t,y) [ ] VT i (8.17)
because at > 0. O

Figure @ illustrates the solution (B.16) for negative (left figures) and positive (right figures)
values for b and negative (upper figures) and positive (lower figures) values of ¢. It is clear that
while b introduces a transportation in the positive direction, if b < 0, or in the negative direction,

if b > 0, c is associated to the time stability of the whole distribution.

8.4 Non-autonomous linear equation

Next we consider two non-autonomous equations in which there is one term depending on the
independent variables (¢, x)

5The advection term, involving the first derivative has a complex-valued the Fourier transform representation

u,(t,z) = % (/ U(t7w)62ﬂimwdw> :/ 2mwi U (t, w) e ™%« duw.
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Figure 8.5: Solution for the initial value problem linear PDE for a« = 1, b = 1 and b = —1 and
c=—0.5and b=1and b= —1 and ¢ = 0.5.

Non-homogeneous heat equation The non-homogeneous (forward) heat equation
uy — auy,, —b(t,x) =0, (t,x) € (0,00) X (—00,00) (8.18)

this equation has a component which is not affected by wu, although it changes with (¢, z).
In order to solve it, we again use inverse Fourier transforms to get an equivalent ODE in

transformed variables U (t,w),
Ult,w) = —Mw)U(t,w) + Bt w)
where B(t,w) = F[b(t,z)](w) and A\(w) = (27 w)? a. The solution to equation (B.18)is
Ult,w) = K(w)G(t,w) + / ' B(s.0) Gt — 5,w)ds,
0

where G(t,-) is a Gaussian kernel. Applying inverse Fourier transforms yields

u(t,x) = k(z) * g(t,z) + /o b(s,z) * g(t — s, x)ds.

Therefore, the solution to the parabolic PDE (B.1§) is, for ¢t > 0,

1 2

_ ® e ' 1 © e
u(t,x)—m[mk(ﬁ)e a d£—|—/0 m[me @sb(s,&)déds.

The solution can converge to a spatially non-homogenous distribution.
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Non-autonomous diffusion equation

Consider the equation
U = AUy, +bu+d(x), (t,z) € (—o0,00) x (0,00)
where a > 0. It can be proved (see Exercise 1) that the solution for ¢t > 0 is

_(z—¢)?

u(t,x) = ebt/oo (e df-i-; /t )
" Varat oo Vara(t —71) J

/ d(€)e w7 dedr

8.5 Fokker-Planck-Kolmogorov equation

We will see in the chapter on stochastic differential equations, that the probability distribution
of a diffusion process follows a particular parabolic PDE, called the Fokker-Planck-Kolmogorov
equation. This equation is having an increase attention, also in economics, as a model for processes

satisfying a conservation law as
/p(t,x)dm =1, for every teT
X

where p(t,z) : T'x X — (0,1).
The Fokker-Planck-Kolmogorov equation is

,p(t,z) = %am (alt, )2 p(t,2)) — 8, (b(t,2) p(t,2) ) (8.19)

where we assume p(0, z) is known and satisfies

/Xp(O,a:)d:U =1.

In applications resulting from stochastic differential equations, the initial state is known x = z
and the dynamics of a probability distribution is given by Kolmogorov forward equation (or Fokker-
Planck equation) and the initial condition p(0,z) = §(x —x,) where §(-) is Dirac’s delta generalized

function.

8.5.1 The simplest problem

The simplest model has constant coefficients b(¢,x) = p and a(t,z) = o and a Dirac delta initial

function:

2

g
8tp(t7m) = ?

p(0,2) = d(x — z) (t,x) e {t=0} xR

Opup(t,x) — pd,p(t,x), (t,x) ER, xR (8.20)
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The solution is a Gamma probability density

x—xo—,ut>2

(t2) = —— (
= — eXxXp —
P SR o 207t
o2
:F<_Mt;77$—wo> (t,7) € Ry xR

Figure @ presents an illustration of the solution

Figure 8.6: Solution for () for xy =5, p=1and o = 0.5.

8.5.2 The distribution associated to the Ornstein Uhlenbeck equation

The simplest model has constant coefficients b(t,x) = py + py  and a(t,z) = o and a Dirac delta

initial function:

2
8tp(t,l‘) = % axxp(tam) - (/’LO + 251 $) 8xp<t7x) - Nlp(ta‘r)v (ta IL‘) € [R+ xR

p(0,2) = 6(x — z;) (t,x) e{t=0} xR

(8.21)

The solution is a Normal density function

p(t,z) =

2
1 (.’IJ—J)O eult_uo(l—eﬂlt>>
exp{ —
\/27r02(1_e2u1t> 202 (1 —e2mt)

0.2

= N (wgert + pig(1— e, & (1 et ) (t.2) €R, xR

Exercise: prove this.

We see that if j1; < 0 then
2
. o
Qi p(t, @) ~ N(po, )
this means that the distribution is ergodic: for any initial value z it tends asymptotically to a

normal distribution (see Figure @)
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Figure 8.7: Solution for () for zy =5, py =1, p; = —1 and 0 = 0.5.

8.6 Economic applications

8.6.1 The distributional Solow model

In () we prove that in an economy in which the capital stock is distributed in an
heterogeneous way between regions, K(t,z), if there is an infinite support, and there are free

capital flows between regions, the budget constraint for the location x can be represented by the

parabolic PDE.
Consider the accounting balance between savings and internal and external investment for a

region x at time ¢

I(t,x) + T(t,z) = S(t,z)

where I(t,2) and S(t, z) is investment and domestic savings of location x at time ¢ and T'(¢, ) is

the savings flowing to other regions.
Assume that the capital flow for a region of length Az is symmetric to the capital distribution

gradient to neighboring regions:
T(t,z)Az = — (K (z + Az, t) — K, (t,x))

that is capital flows proportionaly and in a reverse direction to the ”spatial gradient” of the
capital distribution: regions with high capital intensity will tend to ”leak” capital to other regions.
If Az — 0 leads to T'(t,z) = —K,,(t, x).

If there is no depreciation then I(t,z) = K,(t,x). If the technology is AK and the savings rate
is determined as in the Solow model then S(t,z) = sAK(t,z) where 0 < s < 1 and A is assume to
be spatially homogeneous.

Therefore we obtain a distributional Solow equation for an economy composed by heterogenous

regions
K, =K, +sAK,(t,x) € (—o00,00) x (0,00)
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We can define a spatially-homogenous balanced growth path (BGP) as

K(t) = Ket
where v = sA.
Then, if we define the deviations as regards the BGP as k(t,z) = K (t,z)e 7", we observe that
the transitional dynamics is given by the solution of the equation

ky =k

T

which is the heat equation. Therefore, given the initial distribution of the capital stock K (x,0) =
ko(x) the solution for this spatial AK model is

k()(x): t=20

K(t, .CL‘) = o0 _ (z—€)2
et / ko (€) (4mt) P e 5 dg, t> 0
and the solution is similar to the case depicted in Figure @ when b > 0.
The main conclusion is that: (1) there is long run growth; (2) , if there are homogenous
technologies and preferences the asymptotic distribution will become spatially homogeneous. That

is: the so-called - and o- convergences can be made consistent !

8.6.2 The option pricing model

The Black and Scholeg (1973) model is a case in which a research paper had an immense impact
on the operation of the economy. It is related to the onset of derivative markets and basically gave
birth to stochastic ﬁnancea.

It provides a formula (the so called Black-Scholes formula) for the value of an European call
option when there are two assets, a riskless asset with interest rate r and a underlying asset whose
price, S which follows a diffusion process (in a stochastic sense): dS = pSdt + 0SdB where dB is
the standard Brownian motion (see next chapter). An European call option offers the right to buy
the underlying asset at time T for a price K fixed at time ¢t = 0, which is conventioned to be the
moment of the contract.

Under the assumption that there are no arbitrage opportunities Black and Scholes (1973) proved
that the price of the option V' = V(¢,5) is a a function of time, ¢ € (0,7') and the price of an

underlying asset S € (0, 00) follows the backward parabolic PDE and has a terminal constraint

{Vt(t, S) == Vs(t,S) — rSVs(t,8) + 1V (1, 8), (1,5) € 0,T] x (0, 00) (8.22)

V(T,S) =max{S—K,0}, (t,5) € {t=T} x (0,00).

6Myron Scholes was awarded the Nobel prize in 1997, together with Robert Merton another important contributer

to stochastic finance, precisely for this formula. Fisher Black was deceased at the time.
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The first equation is valid for any financial option having the same underlying asset dynamics, and
the terminal constraint is characteristic of the European call option: because the writer sells the
right, but not the obligation, to purchase the underlying asset at the price K at time t = T', the
buyer is only interested in that purchase if he can sell it at the prevailing market price S = S(T')
when that price is higher than the exercise price K. In this case the payoff will be S(T') — K.
Otherwise he will not execute the option and the terminal payoff will be zero.

The two boundary constraints

V(t,0)=0, (t8)€[0,T]x {S =0}
lm V(ES) =S, (4,5)€[0,7] x {S — oo},

are sometimes referred to, but they are redundant.

The same structure occurs in the Merton’s model (see Merton (1974)) which is a seminal paper
on the pricing of default bonds. It was the first model on the so-called structural approach to
modelling credit risk which is on the foundation of the credit risk models used by rating agencies
(see Duffie and Singleton (2003)). In essence, this model assumes that the value of the firm follows
a linear diffusion process and it consideres the issuance of a bond with an expiring date 1" whose
indenture gives it absolute priority on the value of the firm at the expiry date. This means that
either if the value of the firm is smaller that the face value of the bond the creditor takes possession
of the firm and in the opposite case it recovers the face value. In this case, we can interpret the
position of the equity owner as holding an European call option over the value of the firm with
strike price equal to the face value of the debt and the creditor as having an European put option
security.

The price of the European call option B, given the former assumptions is given by
V(t,S) = 85®(d,) — Ke " T®(d,), tec0,T) (8.23)

where ®(.) is cumulative Gaussian density function such that ®(d) = P(x < d) where

In(S/K)+ (T —1) ('r + 2)
d, = (8.24)
oVl —t

In(S/K)+ (T —t) (r - ‘;)
dy, = (8.25)
oV —t

Proof. In order to solve the B-S PDE, which is a non-linear backward parabolic PDE, we transform
it to to a quasi-linear parabolic forward PDE, by applying the transformations: ¢(7) = T — 7 and

S = Ke® and setting u(7,z) = V(t(7), S(x)). We can transform the option-pricing problem to the

“For the credit risk model S would be the value of assets of a firm, K would be the face value of loan, and T the

term of the loan.
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Figure 8.8: Solution for the Black and Scholes model, for » = 0.02, T' = 20, ¢ = 0.2, and K = 10.

equivalent initial-value problem PDE equivalent to ()
2 2

u, = %um + (7‘ — %) u, —ru, (7,2) € [0,T] x (—00,00)

u(0, ) = ug(x)

0, ifz <0
up(z) = )
K(e*—1), ifz>0

(8.26)

where

The PDE is a particular example of equation (), which implies that the solution is

0 )
u(r,z) = [ 0g(r,z — s)ds + K/O (e —1) g(1,2 — s)ds

K o0
V2ro2T / (2 —1) ehtreolds
0

where (from equation ())
2 27 2
y2+27(r—%)y+<r+%) 72

2702

h<T7 y) =-

Then

K o 0
u T, xXr) = S+h(T,:E—S)dS — / eh(T,IE—S)dS>
() V2mo?T ( 0 b
K

e
N V2no?r (h=1).

In order to simplify the integrals it is useful to remember the forms of the error function, erf(x),

and of the Gaussian cumulative distribution ®(z),

2 v 1 * L 2
erf(z) = ﬁ/ e dz, d(x) = E/ e 2 dz
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which are related as

1 T
O(x)=-| 1+erf| — .
=3[ (5)]
After some algebra we obtain
s+h(r,x—s)=x— %(51(5))2
h(rt,x —s) = —r1 — %(52(8»2
where
2 2
x—s+(r+2> x—s+(r—2)
0,(s) = - , and dy(s) = e
ThenE

= V2mo?re®(d,)

where d; = §,(0) as in equation (B.24) for 7 = T'— ¢ , and also, writing that d, = §,(0), as in
equation () for T =T —1t,

1
oo —7(6 s 2
IZZQTT/ e 2 2< )> ds:
0

1
o 1,
= —U\ﬁe”/ e 2°ds, =
dy

)

dz _15%
= \/027'6”/ e 2 do, =
—0o0

= V2mo?re " P(d,)
Thus
u(r,x) = K (e*®(dy) —e "7 ®(d,))

and transforming back V(¢,5) = u (T —t,In (S/K)) we get equation () O

Observe this is a backward parabolic PDE, which implies that the terminal condition determines

the particular solution.

8We use integration by transformation of variables: if we define z = ¢(s) where ¢ : [a,b] = J and f:J — R we
have that

@(b) b
z)dz = s "(s)ds.
/W) frdz= [ f (el s)
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8.A Appendix: Fourier transforms

Consider a function f(z) such that z € Rand | OOOO |f(z)|dz < co. We can define a pair of generalized
functions, the Fourier transform of f(z), F(s) = F[f(z)](s) and the inverse Fourier transform
FYHF(s)] (z) = f(x) (using the definition of Kammler (2000) ), where

F(s) = 7lf @)= [ fa)ermionds

where i2 = —1 and

oo
F@) = FUF(s)] = / F(s)e2rise s,
—0o0
There are some useful properties of the Fourier transform that we use in the main text:

1. the Fourier transform preserves multiplication by a complex number a € C:
Flaf(x)] =aF(s), and F[aF(s)] = af(z),

Proof: Fla f(z)] = fj)ooaf(a:) e 2misT dy = q ff:o f(z)e2™i52dy = a F(s),and F l[a F(s)] =
f_O:o a F(s)e?™s%ds = q f_o:o F(s)e*™5%ds = a f(z);

2. the Fourier transform preserves linearity:

Flaf(x)+bg(x)] =aF(s)+bG(s), and F1[aF(s)+bG(s)] =af(z)+bg(r)

3. the Fourier transform does not preserve multiplication of two functions. However, there is
a relationship between convolution of functions and multiplication of Fourier transforms. A

convolution between two functions f(x) and g(x) is defined as

f(x)*g(x) = / fy) g(x —y)dy.

The inverse Fourier transform of a product of two Fourier transforms is a convolution,

f(x)* g(x) = FUF(s)G(s)] = [ F(s)G(s) 2757 ds

1
4. Flz) = —T(S/(S), where §(z) is Dirac’s delta. To prove this observe that
)

/ 2™ §5(s)ds = 1
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Therefore
ZL':ZL‘/ e2msT5(5)ds
:_L (/Ooe2fri51‘5(s>_/0027T,ix€27risx5(s>ds>
2w o o
1 /OO 27risx5/( )d
= e s)ds
27 )
1 1 1
=gt i)
5. Fla?) = g (s)
(2m)2
6. Fla f(2)] = —— F'(s)
Cow Y s
Proof:

Flx f(z)] :/ xf(z)e 2TisT dy

1 o .
=—— / —2mix f(x)e 2T 5% dy

211

= —ﬁ /OO f(x) %(efzmwﬁ dx

d d = —2misx
= —— dSF(s):dS[ /oof(x)e 2 d:z]

Alternative proof:

1 1
21

?Wﬂ@]=?M*?U@H=/ -

Iy Fls—y)dy=—5—F

26

7. if f = f(x,t) where t is a real variable then F(s,t) = F[f(z,t)] and f(z,t) = F1[F(s,t)].

Also F,(s,t) = F[f,(x,t)] and f,(x,t) = FL[F,(s,t)]

8. F[f'(z)] =2misF(s)
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Proof:
o0 .
?[f%.’l))] :/ f/($>€72WZszdlf
—00
integration by parts
e ) e 0 )
— f(x) 627rzsm_/ f($>7<6727rzsx> dx
/oo o Ox
because e 2757 is symmetric the first integral is equal to zero
:27rz's/ flx)e 2™z dy
=2misF(s)
9. Flaf'(x)] =—(F(s)+sF'(s))if seR
Proof:

Fle f'(@)] = Flz] « F[f(2)]

10. F[f" ()] = —472s2 F(s)
1. Fle f(2)] = QZ,LS(ZF(S)—I—SF’(S))
12. Fla? f(x)] = —s2F"(s)

Some useful results:

27
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Table 8.1: Fourier and inverse Fourier transforms of some functions

Advanced Mathematical Economics 2020/2021

f(z) for —co <z < oo F(s)for —oo <s<oo obs
ko(x) k k constant
k ko(s) k constant
Sx — a) 67271'2'5(1
- o s
e eme@mtibenis) 50, beR
\/ﬁec—% e—a(2ms)*+e a>0, ceR
ﬁec (w+b) 6—a(27rs)2+b(27ris)+c a>0, (b,C) c R?
f(z) * g() F(s) G(s)
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Chapter 9

Optimal control of parabolic partial

differential equations

9.1 Introduction

The optimal control of parabolic PDE is sometimes called optimal control of distributions.

Similarly to the optimal control of ODE’s, the first order conditions include a system of forward-
backward parabolic PDE’s together with boundary conditions. The requirements for the existence
of solutions are clearly very strong, because the general solutions of the PDE system may not allow
for the boundary conditions to be satisfied. Ill-posedness is, therefore, an important issue here.

Next we present the necessary conditions for three different optimal control of parabolic PDE’s:
a simple infinite horizon problem in section @, an average optimal control problem in subsection
, and the optimal control of a Fokker-Planck-Kolmogorov equation in section @

9.2 A simple optimal control problem

Next we consider a simple optimal control problem for a system governed by a parabolic PDE.

We have two independent variables, time ¢ € R, and another independent variable x € R and
two dependent functions, the control v = u(t,x), mapping v : R, x R = R and a state y = y(t, x),
mapping u : R, X R — R.

The system to be controlled is given by a semi-linear parabolic partial differential equation
Yy = Ygr + 9(t,z,u,y) where g(-,u,y) is smooth, by an initial condition y(0,z) = y,(x), where
function y, : R — R is and bounded, and a Neumann boundary condition lim,_,, y,(t,z) = 0 is
given for every t. The boundary condition means that the state variable should be ”flat” for very

large absolute values of variable x.

29
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The utility functional involves both integration in time and in the other independent variable
oo o
Tu) = [ [ fwultz) o) dr
0 —o0
where we assume that f(-,u,y) is smooth and measurable, in the sense i

[ st < o
R+XR

Therefore our problem is to find the optimal u* = (u*(t, a:))(t )R, R and y* = (y*(t, g;))(t PR E

that solve the problem:

max [ [t ult, o), y(t. ) dade (9.1)
ul) Jo —00
subject to the constraints
oy %y
5 = 922 +g(t,z,u(t,x),y(t,x)), for(t,x) e R xR
y(0,z) = yo(x), for (t,z) e {t=0} xR (9.2)
lim, ., 8y((9t:;:c) =0 for (t,z) € Ry x {(z = —00), (x = 00) }

Next we find the optimality conditions for this problem applying a distributional Pontriyagin
maximum principle.
We define the Hamiltonian

H(t,z,u,y,A) = f(t,z,u,y) + At 2)g(t, z, u,y)
and call A = A(¢,z) the co-state variable.

Proposition 1 (Necessary first-order conditions ). Let (u*,y*) be a solution to problem (@)—

(@) Then there is a co-state variable X such that the following necessary conditions hold

OH*(t,x)
o =0 (9.3)
ONt,x) _82)\(t,a?) _ O0H*(t,z) (9.4)
ot N Ox2 Oy )
tli)m At,z) = 0 (9.5)
im 2B (9.6)

r—400 ax

together with equations (@)

IThis condition requires that the function is bounded for every value of u(.) and y(.) and allow for the use of
Fubini’s theorem, i.e, for the interchange of the integration for ¢ and x. Intuitively, we should consider functions such
that the order of integration does not matter.
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See the proof in the appendix. Equation (@) is a static optimality condition, that if function
H (u,.) is sufficiently smooth, allows for the determination of the optimal control u* as a function of
the co-state variable, and the state variable. Equation (@) is a Euler-equation. In this case it is a
backward parabolic PDE which encodes the incentives for changing the control variable. Equations
(@) and (@) are transversality conditions, which are dual to the boundary conditions in (@)
related to the asymptotic properties of the solution.

If functions f(-) and g(-) are sufficiently smooth in (u,y) , we can use the implicit function

theorem to obtain from equation (@)
ut = U(t,z,y(t, ), \(t,z)),
yielding
G(t,z,y(t,z), \t,x)) = g(t, z,u*(t,z),y(t,x))
and

L(t,z,y(t,z), At z)) = f,(t,z,u*(t,2),y(t,z)) + At 2) g, (t, 7, u*(t, 2), y(t, 7))

we have a distributional MHDS system

oy 0%y
%\ - 833822:_ G(t,l‘,y, )‘)’ for <t7x) € [R-‘r x R
E:—@—L(t,m,y,)\) for (t,z) € R, x R.

This system has two semi-linear parabolic PDE’s: a forward parabolic PDE for the state variable
and a backward parabolic PDE for the co-state variable. It is a distributional generalization of the
MHDS for an optimal control problem of ODE’s.

9.2.1 Average optimal control problem

Next we consider a particular case of the previous problem in which the planner maximizes the

present-value of an average utility function

J(yu) = lim — / ) /0 " Rl 0), ule, £))e e (9.7)

where p > 0 and f(.) is continuous and differentiable. We assume the same semi-linear parabolic
constraint.

The problem is

u  xr—00 2T

1 xT o0
X 1 - 7t ) 7t 7ptdtd
max lim / / FylE,t), ule, £))e Pt dtde

subject to
Y = O'Zyza: +g<y7u>7 (ta x) € [RJr x R (98)
y(z,0) = o¢(x), z€R (9.9)
tlim R(t)y(t,z) > 0, z€R (9.10)
t
im Y60 g e R,. (9.11)
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where R(t) < Rye ', where hy is a constant.

The (current-value) Hamiltonian function is

H(y,u,q) = f(y,u) +q9(y, u)

where ¢(t,x) is the current value co-state variable.
The necessary first order conditions, according to the Pontryagin’s maximum principle are the

following.

Proposition 2 (Necessary conditions for the optimal average problem). Assume there are optimal
processes for the state and the control variable, y* = (y*(1, %)) p)erxr, and u* = (W' (¢, 2)) 4 o)erxr,

then there is a (current-value) co-state variable q(t,x) such that the following conditions hold:

the optimality condition

0H

Bu (y*(t,x),u*(t,x),q(t,z) ) =0, (t,z) € (t,z) € R, xR

the distributional Euler equation

qf—ﬂﬂ%f+wp—%§<¢uwxmum»mum>»<a@e<umek++xR

the boundary condition, dual to equation ()
(t,2)

. 4
lim e "t
r—+00 xr

—0,teR,,

the transversality condition

t—o0

tim e lim [ (¢, 0€,) =0, {t =0

See the proof in the Appendix

9.2.2 Application: the distributional AK model

As application consider a simple model in which there is a central planner in a dynastic economy who
wants to maximize the average (un-weighted) utility of an economy composed with heterogeneous
agents, distributed in space from a central point x = 0. Assume that the heterogeneity is only
given by their initial asset position, ky(x). Each agent produces a different quantity of a good,

depending only on their endowment of capital and the central planner assigns consumption which
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varies between consumers and can be different from their production (given the capital endowment).
Therefore there is a distribution of savings in the economy allowing some agents to use more (less)
capital than they have at the beginning of every (infinitesimal) period. This section draws upon
Britg (2004) and Brito (2011), which present this model with more detail.

Consider agents located at r and having the capital stock K (t,7) and having savings S(t,7) at
time t. Savings is equal to income minus consumption, where we assume that income is generated
by a linear production function

Y(t,r)=AK(t,r).

Savings can be applied in the own region, I(¢,r), or in other regions T'(¢,r) : therefore S(¢,r) =

I(t,r)+T(t,r) where is trade balance. If there is no depreciation then I(¢,s) = 87175{ We order the
regions according to their capital endowment then x can be used as a index for the regions. If, in
addition, we consider that: first, the flow of capital runs from regions with high capital intensity
to regions to low capital intensity and, second, that the flow is proportional to the gradient of the

capital intensity at the boundary of region r = [z, z + Ax], then flow

Ax
0K
T =72 —_— .
(t,r) T/w o (t,s)ds

If we let Az — 0 then we find distributional capital accumulation constraint for every location x

OK(t,x) 2 O?K(t,z)

ot Ox?

The problem is to maximize the average intertemporal discounted utility of consumption, C,

+ AK(t,z) — C(t,z) V(t,z) e R, xR (9.12)

1 [T oyt
K)= lim — 0 ept . 1
J(C,K) II[lca’]ng& o [I/O g ¢ dtd¢ (9.13)

subject to the distributional capital accumulation equation () and the terminal, the boundary

and the initial conditions

Jim e b eI K (L g) > 0, VaeR (9.14)
—00
K(t
i AG2) VteR, (9.15)
r—F oo X
K(z,0) = ¢(z), Yoz €R given. (9.16)

According to the distributional Pontriyagin maximum principle (see the Appendix) the distri-
butional MHDS is

0K ,0?K
- = AK — R 1
5 T@x2+ C, zeR, t>0 (9.17)
aC , |92 140 roC\?
- _ _ ~ 1
- - (au«) +4C, 2 E€R, £>0 (9.18)
where the endogenous growth rate i s
A—
y=222, (9.19)
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the transversality condition

lim lim — / " P (€, 1)C(E, 1) 0dE = 0, (9.20)

t—oo x—00 20

and the dual boundary conditions

lim (e”C(t,x)’z) " =0, t > 0. (9.21)

T—+00

In system (9 )—(), A is the net total factor productivity and v is equal to the endogenous
growth rate in the benchmark homogeneous AK model. The initial condition K (z,0) = ¢(x) and
the boundary condition (9.15) should also hold.

The coupled system (P.1 )—(bl’?l) has the closed form solution

K(t,x) = e"k(t,z), C(t,z) = eVe(t,z), t >0, z €R (9.22)
where -
bt o) = — / s(&)e(5) dede, 50, 2R
2rv ot J_ o
and

1 > 1 (z=6N\*\| (=22
c(t,x)—%—m/wd)(f) [r—7+(9—1)(2—0t—<2ﬂ9t>>] (5 Hag, 10,z €R.

A necessary condition for the existence of a solution of the centralized problem is that A >
~. This model displays convergence to a time-unbounded balanced growth path similar to the
homogeneous-agent AK model: capital will be equalized among regions. Figure @ presents a
graphic depiction of the detrended-solution for ¢(z) = e~ 1*l. We observe that the initial hetero-
geneity is eliminated along the transition

I\'OZ:‘C

Figure 9.1: Convergence to a homogeneous asymptotic: local dynamics for the detrended k(t,z)
and c(t, x) for the case AK.
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9.3 Optimal control of the Fokker-Planck-Kolmogorov equation

In this section we consider a problem in which the PDE constraint of the economy is represented
by a Fokker-Planck-Kolmogorov equation, which, as we saw models probabilities of distributions
across time.

This problem has two particularities: first, the transport and the diffusion terms are controled
endogeneously by the. control variable, second, the state variable enters in the objective functional
as a weighting variable.

In principle, this problem has other particular properties that should be highlighted:

1. the boundary conditions () introduce an initial condition is a density function such that

(é%Wszl

and for every point in time the density zero in the extremes of the support. This implies

that the a conservation law should hold for every t € T,

/Xy(t,x) dr =1

and that the state variable is bounded in X for every point in time (it is a L? function);

However, in order to have this conservative property several technical problems have to be
solved. Although first-order PDE’s satisfy a conservation law for ¢ > 0 if the initial condition, for
t = 0 does satisfy it, this property does not hold generally for parabolic PDE’s. Some normalization
has to be introduced in the solution for single equations. We are not aware of the effect of this on
the solution to optimal control problem.

Therefore, the version we present next does not necessary satisfy a conservation law.

Let T = [t,t] and X = [z,7], the state variable y : T x X — R and the control variable
u:Tx X —R.

We consider the optimal control problem of a Fokker-Planck equation

max// f(t,z,u(t,z)) y(t, z) de dt (9.23)
ul) JrJx
subject to

Oy(t,x) + 0, (g(x,u(t,x)) y(t, ac)) — Oy (h(x,u(t, z)) y(t,x)) =0, ae (t,x)eTx X (9.24)
and the boundary constraints

{y@@=%@%@@eﬁ=ﬁxX

(9.25)
0, (t,o) €T x{z=z,x =7}

<
—~
S
8
~—
I

We assume that functions f(-), g(-) and h(-) are continuous and continuously differentiable as

regards the control variable u(-).
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Proposition 3 (Optimal control of the FPK equation).
Let u*(-) and y*(-) be the solution of problem (b2$)—(|924])—(b25|) Then there is a function X :
T x X — R such that:

1. the optimality condition

Dy 9(xz, u*(t, )0, A(t, x) + O h(x, u* (t,2)) D A (t, ) + 0, f(t, z,u*(t,x)) =0 a.e (t,z) € T x X
(9.26)

2. the distributional Euler equation

ON(t, x)+g(z, u (¢, )0\t ) +h(z, u*(t, 2)) 0, At )+ f(t,z,u*(t,z)) =0 a.e (t,2) € TxX
(9.27)

3. the transversality condition

At,z) =0, (t,z)e{t=1t} xX

4. and the admissibility constraints (M) and (M) evaluated at the optimum.

9.3.1 Application: optimal distribution of capital with stochastic redistribution

Consider an economy with heterogeneous households and that the household with capital stock

k(t), at time ¢t has the accumulation equation
dk(t) = (Ak(t) — c(t)) dt + ok(t)dW ()

where dWW is a Wiener process. We assume that k € [0, 00). If n(¢, k) is the density of households

with capital k£ at time ¢ the distribution function for households satisfies
oo
/ n(t, k)dt = 1, for every t € [0, c0).
0
Therefore, the distribution of households satisfies the FPK equation

Ou(t.k) + 0y ((Ak — ) n(t. b)) %akk ((oh)2n(t. ) =0

where n(0, k) = ¢(k) is given and n(t,0) = lim,_, n(t, k) = 0.
We assume a central planer wants to allocate consuming among households, and through time,

in order to maximize a social welfare function. We assume the social welfare function is

/ / In (c(k,t))n(k,t)e Pt dkdt, p >0
0o Jo
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Applying Proposition E the necessary first order conditions lead to the forward-backward parabolic
PDE-system

1
Ouq(t, k) + Ak Oy, q(t, k) +In ((Opq(t, k) ™1) + 5 o*k*Oppa(t, k) — pa(t, k) —1 =0 (9.28)
2
Oyn(t, ) + ((Ak — (Dyat, 1)) n(t, 1)), — O (Wn(t, ) = 0 (9.29)
together with a transversality condition
. —pt —
tlg(r)lo e Pq(t, k) = 0.

where q(t, k) = e”*\(t, k) is the current distributional co-state variable.
Because the system is recursive, we can solve the Euler equation together with the transversality
condition for (¢, k). Substituting in the constraint () we obtain a linear parabolic PDE for the

optimal dynamics of the distribution

Om(k, ) + O (Yhn(k, 1) — - Oy (Kn(k, 1)) =

Solving the Cauchy problem with n(0, k) = ¢(k) a closed form solution can be obtained

*(t, z) / 3 t1n<§>);d§. (9.30)

g(t,y) = (2m0?t)"= exp [(7— o)t — <y_t(;g_2§ ) ] ,zeR. . (9.31)

where

This solution contains both a transport mechanism, which tends to generate growth at a rate
v = A—p >0 and a diffusion mechanism, with strength 0. We can show that the average capital

stock is -
M, (1) = / kn(t, k) dk = M, (0) €=t £ € [0, 00)
0

meaning that there is long run growth if y—o? > 0, that is if the stochastic distribution of growth

is not too volatile.

9.4 References

e Optimal control problem of partial differential equations or an optimal distributed control
problem Butkovskiy (1969), Lions (1971), Derzko et al| (1984) or Neittaanmaki and Tiba
(1994) present optimality results with varying generality. We draw mainly upon the last two
references. See also the textbooks: Fattorini (1999) and Troltzsch (2010).

o Applications in economics Carlson et al) (1996, chap.9)
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9.A Proofs

Next we present heuristic proofs of the three versions of the distributional PMP presented in the

main text.

Proof of Proposition B The value functional is

Viu,y] = /0 /_ f(t,z,u(t,z), y(t,x))dzdt,

considering the constraint we have

Viu,y] = /OOO /: 1t .t 2)y(0.2)) £ X (g(t,x,u(t,x),y(t,x)) _ 2{2 + gig)} dz dt =

=0 9y 0%y
= H(t,z,u(t,z),y(t,z),A\(t,x)) — At,x) = + A(t,z) =—5 | dxd
[ ] [ty M)~ s G o) ] ded
T ONt,z)  O*A(t,x)
= H(t,x,u(t,x),yt,x), \N(t,x , T ,x)| dxd
J A N R e = O} P I

o L O+ /Ooo ()\(t,x)ay(t’x> B 8>\(t,$)y(t’x)) gt

oo [ee]

— / At, x)y(t, z)dex

ox ox
t=

T=—00

for any control and state variables.

Let us assume we know the optimal control and state variables u*(¢,z) and y*(¢,z) then

Vil = | N / " fltz (b ),y (1 @) dadt,
0 —00

and let u(t,x) and y(¢,x) be admissible perturbations over the optimal levels

Oh,(t, )

vtoo g = 0, for every

where € is a constant, and h,(0,7) = 0, for every z € R, and lim
teR,.
The integral derivative evaluated at € = 0 is

e o [T [T 0H (t,x) OH*(t,z) OXt,x) O*\(t,x) _
oVu*, y*| = /0 /oo [ B h,(t,x) + ( 2y + 5 + 507 h,(t,z)| dzdt

- * O (B2) AL w) N B
t_0+/0 At ) h, (t, >> dt -

_ /oo At 2)h, () dz — -

T=—00

where H*(t,z) = H(t,zu*(t,z),y*(t,x), A(t,x)). From admissibility conditions, we have

OV [u*, y*| = /OOO /00 [ OH™(t,2) h,(t,x) + ( OH'(t,2) + O, ) + O 2) ) hy(t,x)} dzdt—

- ou Oy ot 0x?
[ > (ANt x) -
_ t]ggo N At,z)h, (t,z)dx — /0 (&rhy (t,a:)) dt

Tr=—00
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Optimality requires that V[u*,y*] > Vu,y] which holds only if 0V [u*,y*] = 0. Then optimality
conditions are as in equation (@) O

Proof of Proposition @ Let us assume that there is a solution (u*,y*), for the problem, and define

the value function as
1 xT o0
Vi) = Jim o [ [ pr .0 € e vt

Consider a small continuous perturbation (u(e),y(e)) = {(u(t,x),y(t,z)) : (t,x) € R x R}, where
€ is any positive constant, such that u(t,r) = u*(t,x) + €h,(t,z) and y(t,r) = y*(t,z) + eh, (L, z),
for ¢ > 0, and h,(z,0) = h,(z,0) = 0, for every z € R. The value of this strategy is

V(e) = lim 1/ / Fu(&t),y(&,t))e Ptdtd.
—x Y0

But,

V@wzhmljﬁ/mf<@>,@,»mw&—
—m// &[%“—%gtmmmwﬂM&

+ lim lim 1/95 e &N (€ (€, t)dE (9.32)

t—oo z—o0 21 |

where A(.) is the co-state variable and p(.) is a Lagrange multiplier associated with the solvability

condition. In the optimum, the Kuhn-Tucker condition should hold

1 X
lim lim o / e &Y (€ (€, t)dE = 0.

t—oo x—0o0 20 =

By using integration by parts we find that

/ At ) 22 x>dt— NS x)|fjo—/oo NLZ) 4 yat
0

ot
and that

/_I/ §t 8&2 )dtd§

_ dy(& 1| DA, t) D2\(
/0 Men ™ . e = 5wdwr/_z/ 352 y(E, t)dtde, (9.33)

where the second term is canceled by the boundary conditions ( ) Then
) 1 xr o0 B
Ve = lm o [ (o ne s

ﬁAéi’ utect)+ 83(52’%(5, t) + A& t)g(ul€, 1), y (€, t))) dtdé —

" x
)
f=—x

1 x - o0 0y(¢&,
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If an optimal solution exists, then we may characterize it by applying the variational principle,

0T, y) | J(u(e),y(e) = T y)

Oe €—0 €

=0.

But, defining the Hamiltonian function as H(u,y, ) = f(u,y) + Ag(u,y), then

oJ
86 xlggozx{/z/o (f? )7)‘(€7t))hu(‘57t)+
v (20 aéi” N1 <*<s,t>,y*<§,t>,x<§,t>>) hy(6.1) | ava
. < o[
- [ MeomenlT e [ aen=" -
~ i [ utenesn s aef . 93

The last and the third to last expressions are canceled if lim, ,__[u(t, z)e "b%) — (¢, z)] = 0,
and by the fact that hy(z,0) = 0, for any x. Then, substituting in the Kuhn-Tucker condition

we get a generalized transversality condition. We get the first order conditions by equating to

zero all the remaining components of %—i. Equations (?7)-(??) are obtained by simply making

q(t, ) = eP' (¢, x).

Proof of Proposition B The Lagrange functional is

Llu,y, A //ft:nutx y(t, z) dx dt

—/T/X)\(t,x)ﬁty(t,m) dx dt

—/ A(t,x)0, g(x,u(t,:v)) y(t,m)),d:ndt
'

—I—//)\ta: e h(z,u(t, x)) (tm)) dzx dt
TJX

=1 — I3+ 1,
Integrating by parts, we find

I, = / A(t, x) y(t,a:)dx| — // Ot x) y(t, z)dx dt,
X teoT T JXx
where 0T is the boundary of T', i.e, 0T = { t,t},

I = /T At z) g(z,u(t,z)) y(t, «

weaX

//Xg:vutx)awx) (t,)dx dt

and

At (z,u(t,x)) y(t,x)) — O At x) h(z,u(t,x)) y(t,x)] dt ox

/ h(z,u(t,x)) y(t, z) 0., (¢, ) dx dt.
b'e

_l_
"]\H\
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Therefore, the Lagrange functional becomes

Liu,y,\] = /T/X [ f(t,z,u(t,z)) + O Nt x) + gz, u(t, z)) O Nt z)+
+ h(z,u(t,z)) 0, (¢, ar)] y(t,z) dx dt
At x) y(t,x)dx ‘

tedT

At z) g(z,u(t,z)) y(t, x) dt

redX

+ [ A(t,x) 0, (h(a:, u(t,z)) y(t, x)) — O A (t, ) h(z,u(t,z)) y(t, w)] dt

|
T S

redX

I —Ig—I; + Iy

The Lagrange functional at the optimal control and state variables, u*(-) and y*(-) is written
L* = L[u*,y*, A].

We Introduce perturbations on the control and state variables,

u(t,z) =u*(t,z) +e0,(t,x), (t,x) €T x X
(t.z) = y'(ta) + £8,(t.2), (ta) €T x X

which are admissible if §,(¢,2) = 0 for any € X, and §,(t,2) = 0 for z € 90X and §,(¢,z) is
arbitrary for z € Int(X).

A necessary condition for the optimum is that the integral derivative (Gateux derivative) of
L{u,y, A], evaluated at u*(-) and y*(-), L* = L[u*,y*, A\] is zero 0L* = 0. As I, I, I; and Ig are
also functionals over u(-), y(-) and A(+), this is equivalent to requiring the functional derivatives to
be zero when evaluated at u*(-) and y*(+).

The first functional derivative is
51 = // [8u [tz u*(t,2)) + 0,9(x, u*(t,2)) O A(t, x) + O, h(x, u*(t, x) am)\(t,w)] y*(t,x)d,(t,x)
TJXx
+ [f(t, z,ut(t,z)) + O Nt x) + g(a, u* (¢, ) O ANt ) + +h(z, u*(t,2)) Oy AL, ac)] o, (t,x) dz dt.

As the perturbations §,,(¢,z) and J,(¢,x) are arbitrary in the interior of 7' x X the functional is
equal to zero if and only if equations (P.26) and (?7).
The second functional derivative

SI; = / At @) %(t,x)dw‘
X

tedT

= t,x) 0, (t, x)de — x) 0, (t, x)dx
/X)\(t, )8, (F,2)d /A(t, )8, (t.x)d

X
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is equal to zero because d,(t,x) = 0 and if the transversality condition A(t,z) = 0 for every
x € X. The last two functional derivatives are

60 = /T { 0, 9(z,u*(t,x)) y*(t, ) + g(z,u*(t,x)) 6y(t,x)] At, z)dt

zedX

:/T {8ug(x,u*(t,x))y*(t,x)+g(z,u*(t,x))6y(t,x)] A(t,T) dt—

—/T [8ug<£’u*(t72))y*(tv£>+g(£’u*(t7£))6y(t’£)] A(t, ) dt

and

_'_

51;:/T { [A(t.m)8u(8r(h(x,u*(t,x))y*(t,x)))—8IA(t,x)8uh(x,u*(t,x))y*(t,x)] 5, (t, )

At.z) ay(am (h(x,u*@,x))y*(t,gc))) —ax)\(t,x)h(x,u*(t,x))] 5, (t, ) } dt

xedX

are both equal to zero because y(t,7) = y(t,z) = 0,(t,7) = J,(t, )0. O
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