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1 Scalar ODE
1.1 General

1. Solve the following non-linear ordinary differential equations (explicitly or geometri-
cally)

(a) ẏ = 1
2y

2 − y + 4 for y ∈ R;
(b) ẏ = y3 − y + 4 for y ∈ R;
(c) ẏ = e−

1
2
y for y ∈ R;

2. Perform a bifurcation analysis to the following equation: ẏ = ay2 − b for a ∈ R and
b > 0

3. Perform a bifurcation analysis to the following equation: ẏ = y3−y2+a for (y, a) ∈ R2.

4. Perform a bifurcation analysis to the following equation: ẏ = ayb− c for (a, b, c) ∈ R3.

1.2 Applications
1. The Verhulst model of population rate assumes that the rate of population growth is

deterministic, age-independent and is dependent on the population level,

Ṅ = γ(N)N (1)

where γ = η(1−N/K), is the growth rate and K is called the carrying capacity. We
assume that N(0) = N0 is known. References Banks (1994) http://en.wikipedia.
org/wiki/Logistic_function

(a) Solve equation (1)
(b) Solve the initial value problem
(c) Characterize the dynamics.
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2. The Verhulst model of population rate assumes that the rate of population growth is
deterministic, age-independent and is dependent on the population level,

Ṅ = γ(N)N (2)

where γ = αν(1 − (N/K)ν), is the growth rate and K is called the carrying ca-
pacity. We assume that N(0) = N0 is known. References Banks (1994) http:
//en.wikipedia.org/wiki/Logistic_function

(a) Solve equation (2)
(b) Solve the initial value problem
(c) Characterize the dynamics.

3. Solow (1956) is maybe one of the most seminal papers in economics. It features a
theory of growth in which the engine of growth baed on capital accumulation. Th
main equation is

k̇ = sAf(k)− nk (3)

where k is the capital intensity, 0 < s < 1 is the savings rate, A is the total factor
productivity and n is the rate of growth of the population. The production function
in intensity terms f(k) is increasing, concave and has the Inada properties

(a) Find the equilibrium points of equation (3) and characterise qualitatively the
dynamics.

(b) What is the effect of a productivity shock.
(c) Is there any bifurcation ?

4. Consider a simplified version of the Skiba model (Skiba (1978)) in which the pro-
duction function is convex-concave and savings is exogenous, as in the Solow model
(Solow (1956)). The capital accumulation equation is

k̇ = sf(k)− δk

  where k is per-capita capital, s is the savings rate, and δ is the capital depreciation
rate. Assume a production function of type

f(k) =
1

2
(1 + erf(ln (k)− µ))

  where erf(x) = 2π− 1
2

∫ x
0 e−s2ds (see https://en.wikipedia.org/wiki/Error_function.

Let k(0) = k0 > 0 be given. (Hint: in case of trouble set (s, µ, δ) = (0.15, 0.7, 0.04),

(a) Study the existence and number of steady states depending upon the values of
the parameters.

(b) Study the local dynamics at every steady state.
(c) Provide a bifurcation analysis of the model.
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5. One of the most popularities utility functions in finance, the hyperbolic absolute
risk aversion function (HARA), has several other designations as GLUM (generalized
logarithmic utility model Rubinstein (1976)) or generalized logarithm (see (Tsallis,
2009, ch.3)). The fundamentals of the function can be better understood by the fact
that it can be derived as a solution to a differential equation
Let u be a function of the independent variable be x ∈ R+ (usually consumption or
wealth) . it can be It can be seen as the solution of the differential equation

u
′
(x)

u′′(x)
= −

(
η +

x

θ

)
  in which η and θ are parameters and u

′
(x) =

du(x)

dx
and u

′′
(x) =

d2u(x)

dx2
.

(a) Solve the differential equation.

(b) Under which conditions the CRRA function u(x) =
x1−θ − 1

1− θ
is a solution to the

equation ?
(c) Under which conditions the log function u(x) = ln (x) is a solution to the equation

? (Hint: note that f(x) = eln (f(x)))
(d) Provide an interpretation of function.

2 Planar ODE
2.1 General

1. Consider the following non-linear ODE

(1)
ẏ1 = −y2,

ẏ2 = −y1 − y22,
(2)

ẏ1 = y2,

ẏ2 = −y1 − y32,
(3)

ẏ1 = y2,

ẏ2 = −y1 + y31,
(4)

ẏ1 = y1(y1 + y2 − 1),

ẏ2 = y2(y1 − y2 + 1),

 

(a) Find the steady states.
(b) Study the local dynamics.
(c) Draw the phase diagrams.

2. Consider the following ODE’s, depending on a parameter λ ∈ (−∞,∞):

(1)
ẏ1 = λy2,

ẏ2 = −y1 − y22,
(2)

ẏ1 = y2,

ẏ2 = λy1 − y22,
(3)

ẏ1 = y2 + λy21,

ẏ2 = y1 − y22,

 

(a) Find the equilibrium points.
(b) Find possible bifurcation points and characterize them.
(c) Draw phase diagrams for the generic cases.
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2.2 Applications
1. The Lotka-Volterra model (see Kot (2001) or http://en.wikipedia.org/wiki/Lotka-Volterra_

equation) is an important model in mathematical biology. It models the dynamics
of the interaction between predators and preys. In its simplest formulation it is

Ṅ1 = N1(α− βN2)

Ṅ2 = −N2(γ − δN1)

where N1 is the number of prey (for example, rabbits) and N2 is the number of some
predator (for example, foxes) and the rates of growth of preys and predators are
γ1 = α− βN2 and γ2 = δN1 − γ.

(a) find the equilibrium points and study the local dynamics
(b) draw the phase diagram
(c) prove that the model solution verifies the first integral V = −δ N1+ γ log(N1)−

β N2 + α log(N2) such that V̇ = 0. Discuss the dynamic properties when this
condition holds

2. Consider the dynamics of a two-sector growth model

k̇1 = A1k
α
1 k

1−α
2 − δ1k1, 0 < α < 1

k̇2 = A2k
1−β
1 kβ2 − δ2k2, 0 < β < 1

(4)

where ki is the capital stock of sector i, Ai > 0 and δi > 0 are the total factor
productivity and the rate of depreciation for section i ∈ {1, 2}. Assume that k1 > 0
and k2 > 0.

(a) Under which conditions equilibrium points of equation (4) exist ? Characterize
their dynamic properties.

(b) If the previous condition(s) don’t hold which type of dynamics is displayed by
the solution of equation (4) ? Provide an intuition for your results.

3. The Ramsey (1928) model addresses the dynamics of capital accumulation (or savings)
as a way to maximize intertemporal consumption. The optimality conditions features
a non-linear planar ODE together with an initial and a terminal condition. However,
it is instructive to look at the dynamics of the ODE’s which provide candidates for
solutions. We have the following ODE over capital stock and consumption, (k, c) ∈
R+, assuming we have a Cobb-Douglas production function and an isoelastic utility
function,

k̇ = kα − c− δk

ċ =
c

σ

(
αkα−1 − (ρ+ δ)

)
  where 0 < α < 1 is the income share for capital, δ > 0 is the capital depreciation
rate, ρ is the rate of time preference, and σ > 0 is the inverse of the elasticity of
intertemporal substitution for consumption.
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(a) Find the steady states.
(b) Determine the local dynamics.
(c) Draw the phase diagram.
(d) Prove that there are two heteroclinic trajectories connecting all the steady states.

4. Calvo (1983) was one of the first papers to deal with perfect foresight dynamics. The
model features a two-dimensional system

Ṗ = δ(V − P )

V̇ = δ
(
V − P + βf(P − Ē, δ(V − P ))

) (5)

where P and V are the logs of the price and of the price-set contracts, Ē is the inflation
expectation, δ and β are positive parameters and function f(x, y) has the following
properties: f(0, 0) = 0 and fx(x, y) > 0 and fy(x, y) > 0 for all (x, y) ∈ R2. Let
V (0) = V0 be given.

(a) Find the steady state and characterize the local dynamics for the system (5).
(b) Find a general linear approximation to the solution of system system (5) in the

neighborhood of the steady state.
(c) Find the solution along the stable eigenspace.
(d) Draw the phase diagram.
(e) Assuming that V0 > Ē, which type of adjustment of both P and V can we expect

to have.

3 Dimensions higher than two
1. A seminal paper on the mathematical theory of epidemics is Kermac and McKendrick

(1927) (see also Kot (2001), Murray (2003a) and Murray (2003b)). Consider the
division of total population N(t) = S(t) + I(t) +R(t) where N is total population, S
is the number of subjected, I the number of infected and R the number of removed
either by immunisation or death. The dynamic model is

Ṡ = −βSI (6)
İ = βSI − γI (7)
Ṙ = γI (8)

all the parameters are positive, and have the following meaning: β is the infection
rate and γ is the recovery rate.

(a) Study the dynamics of the model and the existence of bifurcations.
(b)   Study the effect of an increase in β
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2. A benchmark model for infections breakthroughs is an extension of the seminal paper
on the mathematical theory of epidemics by Kermac and McKendrick (1927). The
total population, at some point in time, N(t) is divided as N(t) = S(t)+E(t)+I(t)+
R(t) where S is the number of subjected, E is the number of exposed, I the number
of infected and R the number of removed either by immunisation or death. The SEIR
model has the following structure

Ṡ = −β
SI

N
(9)

Ė = β
SI

N
− σ E (10)

İ = σ E − γI (11)
Ṙ = γI. (12)

The parameters are positive, and have the following meaning: β = R0 γ is the trans-
mission rate, where R0 is the basic reproduction number, σ is the infection rate and
γ is the recovery rate.

(a) Study the dynamics of the model and the existence of bifurcations.
(b)  Study the effect of an increase in R0. You can use the parameters in Wang et al.

(2020) for the corona-virus outbreak: they consider the parameters σ = 1/5.2,
γ = 1/18, and they provide several values for R0.
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