Universidade de Lisboa Instituto Superior de Economia e Gestão

PhD in Economics Advanced Mathematical Economics 2018-2019

Lecturer: Paulo Brito Exam: Época Normal 23.1.2019 (18.00h-21.00h)

Partial closed book exam: students can only use a four-page note with formulas.

1. [2 points] Let y = y(t) is a function, $y : \mathbb{R}_+ \to \mathbb{R}$. Consider the terminal value problem

$$\begin{cases} \dot{y} = gy + b & t \ge 0\\ \lim_{t \to \infty} y(t) = \overline{y} \end{cases}$$

where \overline{y} is the steady state, and g and $b \neq 0$ are constants.

- (a) Assume that g < 0. Solve the terminal value problem and characterize the solutions analytically and geometrically.
- (b) Assume that g > 0. Solve the terminal value problem and characterize the solutions analytically and geometrically.
- 2. [3 points] Let y = y(t) is a function, $y: \mathbb{R}_+ \to \mathbb{R}^2$. Consider the planar ODE, $\dot{\mathbf{y}} = \mathbf{A}\mathbf{y}$ where

$$\mathbf{A} = \begin{pmatrix} 0 & 3\\ 1 & -2 \end{pmatrix}$$

- (a) Solve the ODE.
- (b) Draw the phase diagram and characterize it.
- (c) Let $\mathbf{y}(0) = (-1, 1)$. Solve the initial value problem.
- 3. [3 points] Consider the ODE $\dot{y} = \lambda y (1 y)$, for $y : \mathbb{R}_+ \to \mathbb{R}$ and $\lambda \in \mathbb{R}$.
 - (a) Find the explicit solution solution for the ODE.
 - (b) Draw the bifurcation diagram. Discuss the local and global dynamic properties for the relevant cases associated to different values of λ .
- 4. [4 points] Consider a simple habit-formation model in which there are no financial restrictions. Let $c : \mathbb{R}_+ \to \mathbb{R}_+$ be the flow of consumption and $z : \mathbb{R}_+ \to \mathbb{R}_+$ be the stock of habits. The intertemporal utility functional is

$$\int_0^\infty \ln\left(c(t)\,z(t)^{-\varphi}\right)e^{-\rho t}dt$$

where $\varphi > 1$ and $\rho > 0$, subject to the following constraints

$$\begin{cases} \dot{z} = \mu(c-z) & t \in \mathbb{R}, \\ z(0) = z_0 > 0 & t = 0 \\ \lim_{t \to \infty} z(t) \ge 0 \end{cases}$$

where $\mu > 0$ and z_0 is a known constant.

- (a) Write the first order conditions according to the Pontriyagin's principle Are those conditions necessary and sufficient ?
- (b) Write the maximized Hamiltonian dynamic system in (z, c).
- (c) Find the solution to the problem (hint: define x(t) = z(t)/c(t) and use the transversality condition).
- (d) Provide an intuition to the solution to the problem, and, in particular to its asymptotic properties.
- 5. [2 points] Consider the first-order partial differential equation (PDE) $y_t(t, x) + ax y_x(t, x) = 0$, where $y = y(t, x) \in \mathbb{R}$ and $(t, x) \in \mathbb{R}_+ \times \mathbb{R}$.
 - (a) Find the solution to the PDE (hint use the method of characteristics).
 - (b) Let $y(0,x) = e^{-x^2}$. Find the solution to the initial-value problem. Provide an intuitive characterization of the solution.
- 6. [3 points] Consider the parabolic partial differential equation $u_t u_{xx} = 0$, where $u = u(t, x) \in \mathbb{R}$ and $(t, x) \in \mathbb{R}_+ \times \mathbb{R}$.
 - a) Find the solution to the PDE.
 - b) If $u(0, x) = \delta(x x_0)$, where $\delta(.)$ is Dirac's delta "function" and $x_0 > 0$ find the solution to the initial-value problem. Provide an intuitive characterization of the solution.
- 7. [3 points] Consider the diffusion equation

$$dX(t) = \gamma X(t)dt + \sigma dW(t)$$

where $\{W(t)\}$ is a standard Brownian motion.

- (a) Let $X(0) = x_0$ be known. Find the solution of the initial value problem.
- (b) Find $\mathbb{E}[X(t)|X(0) = x_0]$ and $\mathbb{V}[X(t)|X(0) = x_0]$.
- (c) Write the forward Kolmogorov equation for the density associated to X(t) = x. Provide an intuition for this equation.