Universidade de Lisboa Instituto Superior de Economia e Gestão

PhD in Economics Advanced Mathematical Economics 2018-2019

Lecturer: Paulo Brito Exam: **Época Recurso** 5.2.2019 (18.00h-21.00h)

Partial closed book exam: students can only use a four-page note with formulas.

1. [3 points] The government budget constraint, in nominal variables, is

$$\dot{B} = D + iB,$$

where B(t) is the stock of government bonds at time t, (where $B : \mathbb{R}_+ \to \mathbb{R}$), D is the primary deficit, and i is the interest rate on government bonds. Assume that the GDP, Y, follows the process $\dot{Y} = gY$. All variables are in nominal terms.

- (a) Let $b \equiv B/Y$ and $d \equiv D/Y$. Which types of dynamic behavior for b one should expect ?
- (b) Assuming we know $b(0) = b_0$, solve the initial value problem.
- (c) If we introduce a solvability requirement such that $\lim_{t\to\infty} b(t)e^{-rt} = 0$, determine the initial level of b(0), assuming that $r \equiv i g > 0$.
- 2. [3 points] Consider the planar ODE $\dot{\mathbf{y}} = \mathbf{A}\mathbf{y}$ where

$$\mathbf{A} = \begin{pmatrix} a & b \\ 0 & -b \end{pmatrix}.$$

where a and b are arbitrary constants.

- (a) Which type of dynamics one would have.
- (b) Let $a + b \neq 0$. Solve the ODE.
- (c) Let a and b be strictly positive. Find, and characterize (as regards existence and uniqueness) the solutions converging asymptotically to $\mathbf{y} = (0, 0)^{\top}$.
- 3. [3 points] Consider the following ODE:

$$\dot{y}_1 = y_1(1 - y_2^2),$$

 $\dot{y}_2 = y_2(y_1 - 1)$

for $(y_1, y_2) \in \mathbb{R}$.

- (a) Find the equilibrium points and characterize them.
- (b) Prove that the equation has a first integral: $V(y_1, y_2) = \frac{1}{2} \log (y_1^2 y_2^2) (y_1 + \frac{1}{2} y_2^2)$. Which type of dynamics would be associated to it ?
- (c) Draw the phase diagram and provide an intuition.
- 4. [3 points] Let the market value of the firm be given by the present value of cash-flows, $\int_0^\infty (Ak(t) - i(t)^2) e^{-rt} dt$, where k is the capital stock, i is gross investment, r is the constant rate of interest and A is a productivity parameter. The capital accumulation is characterized by the equation $\dot{k} = i - \delta k$, where $\delta > 0$ is the capital depreciation rate. The initial capital stock is, $k(0) = k_0$, is known and we require that capital is bounded asymptotically by the solvability condition $\lim_{t\to\infty} e^{-rt}k(t) \ge 0$.
 - (a) Transform the problem into a calculus of variations problem. Write the optimality conditions.
 - (b) Find the solution to the problem. Provide an intuition for your results.
- 5. [3 points] Consider the first-order partial differential equation $u_t(t, x) + \gamma (xu_x(t, x) + u(t, x)) = 0$, where u = u(t, x) and $(t, x) \in (0, \infty) \times (-\infty, \infty)$, and γ is a constant.
 - (a) Find the solution of the PDE (hint: use the method of characteristics).
 - (b) Let $u(0,x) = e^{-\sqrt{x^2}}$. Find the solution to the initial-value problem.
- 6. [3 points] Consider the parabolic partial differential equation $u_t + u_{xx} = 0$, where $u = u(t, x) \in \mathbb{R}$ and $(t, x) \in (0, T) \times \mathbb{R}$.
 - a) Find the solution to the PDE.
 - b) If $u(T, x) = \delta(x)$, where $\delta(.)$ is Dirac's delta "function", find the solution of the terminal-value problem. Provide an intuitive characterization of the solution.
- 7. [2 points] Consider the diffusion equation

 $dX(t) = (1 - X(t))dt + dW(t), \ t \in [0, \infty)$

where $\{W(t)\}$ is a standard Wiener process.

- (a) Let X(0) = 0. Find the solution of the initial value problem.
- (b) Find $\mathbb{E}[X(t)|X(0) = 0]$ and $\mathbb{V}[X(t)|X(0) = 0]$.