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Chapter 4

Non-linear differentiable ODE

4.1 Introduction

In this chapter we address quasi-linear differential equations of type 1

𝑦′(𝑥) = 𝑓(𝑦, 𝑥), 𝑦 ∶ X ⊆ ℝ → Y ⊆ ℝ𝑛, 𝑓 ∶ X × Y → Y

  where 𝑓(⋅) is a non-linear function of 𝑦. There are several types of non-linearity, but in this
chapter we constraint 𝑓(⋅) to be continuous in 𝑦, everywhere differentiable in 𝑦, and having finite
first derivatives. 2

  Again, if 𝑦 is of dimension one, i.e., if 𝑛 = 1 we say it is a scalar ODE, if 𝑛 = 2 it is a
planar ODE, and if 𝑛 > 2 it is a higher-dimensional ODE. As for linear ODE’s we have an
autonomous ODE if function 𝑓(.) is independent of the independent variable 𝑥, i.e., it is of type
𝑦′(𝑥) = 𝑓(𝑦).

Most of the qualitative theory of ODE’s relate to stability properties, we will consider next the
case in which the independent variable is time, 𝑡 ∈ T.

If the independent variable is time, we consider next the autonomous ODE in the form

̇𝑦 = 𝑓(𝑦), 𝑦 ∶ T ⊆ ℝ+ → Y ⊆ ℝ𝑛, 𝑓 ∶ Y  → Y.

In general, the non-linear ODE that interests us depends on a parameter or a vector of parameters
𝜑 belonging to a set Φ, 𝜑 ∈ Φ, is

̇𝑦 = 𝑓(𝑦, 𝜑), 𝑓 ∶ Y × Φ → Y. (4.1)

 
In equation (4.1) function 𝑓(.) can be exactly or qualitatively  specified. The last case is

common in economic theory models in which only assumptions regarding slope and/or curvature
properties are specified.

1Sometimes this differential equation is said to be in normal form. However we reserve this classifications to the
simplest equations of a particular structure.

2This would be the case of equation 𝑦′ (𝑥) = 𝑓(𝑦)
𝑔(𝑦) in which there is a value for 𝑥, say 𝑥0 such that 𝑔′(𝑥0) = 0.

2
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We assume in this chapter that 𝑓(.) is continuous and differentiable as a function of 𝑦
(i.e, all its derivatives are finite). In this case it can be proved that a solution exists, and is unique.
3 For initial-value problems the solution is also continuous in time.

There are several new aspects introduced by non-linearity when comparing with linear ODE’s.
First, most non-linear ODE’s do not have a closed form solution. If an ODE has a closed
form solution we can characterise completely its solution. However, if the ODE is not completely
specified or a solution is not known, which can be a consequence of the fact that a solution in terms
of known functions does not exist, we can still characterise the solution qualitatively. 4

Second, differently from the linear case there may be a difference between the local and
the global properties of the solution (i.e., the local behavior of the solution may be different
at different points of the range set Y). The qualitative (or geometric) study of the solutions
of non-linear equations is based upon finding topological equivalence with linear equations or to
some non-linear equations with known solutions called normal forms. When there is topological
equivalence with linear ODE’s the local and global properties of a non-linear ODE are the same,
but when the topological equivalence is with some non-linear normal form, the local and global
properties of the solutions are different.

Qualitatively specified ODE’s can only have non-explicit solutions but exactly specified ODE’s
can have either explicit or non-explicit solutions. In all those cases, we usually need to characterize
the qualitative properties  of the solutions.

At least for ODEs in which the state space Y is of dimension equal or smaller than two the
modern approach to dealing with ODEs emphasises its geometry. A phase diagram represents
the geometry of the solution on the space Y for a given value of the parameter(s): it includes the
number of steady states, their local dynamics and other types of global trajectories (v.g., closed
orbits).

The qualitative (or geometrical) theory of ODE’s explores that topological equivalence allowing
for the characterization of the solution of non-linear ODE’s. It consists in the application of three
important results:

• the Grobmann-Hartman theorem: stating the conditions for the qualitative equivalence
between non-linear and linear ODEs;

• the Poincaré-Bendixon theorem: associated to the existence of other invariants different
from fixed points, that is closed orbits;

• several bifurcation theorems, stating the qualitative change of the solutions when some
critical parameter or parameters vary.

One important feature of the dynamic analysis is related to the concept of stability of a steady
state. We say a steady state ̄𝑦 is asymptotically stable if given an initial value for 𝑦, 𝑦(0),

3See Coddington and Levinson (1955), Hartman (1964) and many others.
4There are several handbooks with closed form solutions for non-linear ODE’s as Zwillinger (1998), Zaitsev and

Polyanin (2003)  or Canada et al. (2004). At present most symbolic manipulation software, as Mathematica, Maple,
Maxima, the library Sympy of Python have libraries with exact solutions for ODEs.
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lim𝑡→∞ 𝑦(𝑡) = ̄𝑦. The steady state is locally asymptotically stable if 𝑦(0) is required to be in a
small neighborhood of ̄𝑦 and it is globally asymptotically stable if 𝑦(0) ∈ 𝑌 can be any value.
A fixed point is stable  if 𝑦(0) is in a neighborhood of ̄𝑦, ||𝑦(0) − ̄𝑦|| < 𝛿 there is a neighbohood
𝜖 such that ||𝑦(𝑡) − ̄𝑦|| < 𝜖. That is, if we start close to a steady state we will stay close for any
point in time. A steady state is unstable if it is not stable: if 𝑦(0) is close to a steady state 𝑦(𝑡)
will not stay close. We say a steady state is neither stable nor unstable if depending on the
neighborhood of ̄𝑦 to which 𝑦(0) belongs 𝑦(𝑡) can converge or not to ̄𝑦.

For any type of non-linear ODE (explicit or not and with or without explicit solutions) we can
characterise the local dynamics by the following sequence of steps:

1. first, determine the existence and number of steady states (or time-independent solutions) or
of other invariant solutions;

2. second, determine the stability properties for every steady state by linearizing function 𝑓(𝑦)
in the neighbourhood of every steady state: i.e., by approximating locally a linear equation
of type

̇𝑦 = 𝐷𝑦𝑓( ̄𝑦, 𝜑)(𝑦 − ̄𝑦)

  where ̄𝑦 ∈ { 𝑦 ∈ 𝑌 ∶ 𝑓(𝑦, 𝜑) = 0} and 𝐷𝑦𝑓( ̄𝑦, 𝜑) is the Jacobian of 𝑓(𝑦, ⋅) evaluated at the
steady state ̄𝑦. In some cases, some global dynamics properties not existing in linear models
(heteroclinic and homoclinic trajectories, limit cycles, for instance), can also be identified. We
will see that, when 𝐷𝑦𝑓( ̄𝑦, 𝜑) = 0 by Taylor expanding in higher order terms v.g 5,

̇𝑦 = 𝐷𝑦𝑓( ̄𝑦, 𝜑)(𝑦 − ̄𝑦) + 1
2 𝐷2

𝑦𝑓( ̄𝑦, 𝜑)(𝑦 − ̄𝑦)2 + 𝑜((𝑦 − ̄𝑦)2),

  we can find topological equivalente with non-linear normal forms;

3. at last, determine the existence of critical values of the parameters, or bifurcation points.
Usually, not only the number and the magnitude of the steady states, but also their dynamic
properties, depend on the value of the parameters. We say that the tuple ( ̄𝑦(𝜑0), 𝜑0) is a
bifurcation if introducing a small quantitative change in 𝜑 the characteristics of the phase-
diagram change qualitatively. There are, again, both local but also global bifurcations.
A bifurcation diagram, plotting ( ̄𝑦(𝜑), 𝜑) for all values 𝜑 ∈ Φ, with a reference to the
stability properties, is a useful device for conducting bifurcation analysis.

Next, in section 4.2, we start by presenting the normal forms for scalar and for some planar
non-linear ODE’s and in section 4.3 we present a brief introduction to the qualitative theory of
non-linear ODE’s.

5The rest, 𝑅(𝑦− ̄𝑦), if it is of order 𝑜(𝑦− ̄𝑦)2 in a weak sense, means that lim𝑦→∞
𝑅(𝑦 − ̄𝑦)
(𝑦 − ̄𝑦)2 = 0. See the appendix

for the definition of the little-o notation.
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4.2 Normal forms

A normal form is the simplest ODE, whose exact solution is usually known and represents a
whole family of ODEs by topological equivalence.6 The simplest case of a normal form is a linear
ODE, scalar or planar. It is locally or globally topological equivalent to any ODE with one steady
state and whose Jacobian, evaluated at that steady state, does not eigenvalues with zero real
parts or whose Jacobian, evaluated at any point 𝑦 ∈ 𝑌 has no singularities (i.e., infinitely valued
eigenvalues).

However, the term normal form is usually reserved to ODE’s which are topologically equivalent
to ODE’s in which 𝑓(𝑦) is a polynomial in 𝑦.

We present next some important normal forms for scalar and planar ODEs, in subsections 4.2.1
and 4.2.2.

4.2.1 Scalar ODE’s

For the scalar case we have (see (Hale and Koçak, 1991, ch. 2)) two quadratic equations with
a single bifurcation parameter (𝑎), the Ricatti’s equation ̇𝑦 = 𝑎 + 𝑦2 and a quadratic Bernoulli
equation, ̇𝑦 = 𝑎𝑦 + 𝑦2, and three cubic equations with one (𝑎) or two bifurcation parameters (𝑎
and 𝑏): the cubic Bernoulli equation, ̇𝑦 = 𝑎𝑦 − 𝑦3 and two Abel’s equations, ̇𝑦 = 𝑎 + 𝑦 − 𝑦3 and

̇𝑦 = 𝑎 + 𝑏𝑦 − 𝑦3.
For each equation we present: (1) the closed form solution (in most cases) and characterize it;

(2) the steady states; and (3) the bifurcation points. Those equations are usually named after the
particular bifurcations that they generate. We will also present the relevant bifurcation diagrams.

We assume next that 𝑦 ∶ ℝ+  → Y  ⊆ ℝ, and the parameters are real numbers.

The Ricatti’s equation: saddle-node or fold bifurcation The quadratic equation

̇𝑦 = 𝑓(𝑦, 𝑎) ≡ 𝑎 + 𝑦2 (4.2)

  is called Ricatti’s equation, in which the following properties hold: 𝑓𝑦𝑦(⋅) ≠ 0 and 𝑓𝑎(⋅) ≠ 0.
It has an explicit solution7 :

𝑦(𝑡) =
⎧{{
⎨{{⎩

− 1
𝑡−𝑘  , if 𝑎 = 0

√𝑎 (tan (√𝑎(𝑡 − 𝑘)))  , if 𝑎 > 0
−√−𝑎 (tanh (√−𝑎(𝑡 − 𝑘)))  , if 𝑎 < 0

  where 𝑘 = 1
𝑦(0) and 𝑦(0) ∈ Y is an arbitrary constant belonging to the domain of 𝑦.

The behavior of the solution is the following:
6In heuristic terms, we say functions 𝑓(𝑦) and 𝑔(𝑥) are topologically equivalent if there exists a diffeomorphism,

i.e., a smooth map ℎ with a smooth inverse ℎ−1, such that if 𝑦 = ℎ(𝑥) then ℎ(𝑔(𝑥)) = 𝑓(ℎ(𝑥)). This property may
hold globally of locally. The last case is the intuition behind the Grobman-Hartmann theorem.

7See appendix section 4.A
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• if 𝑎 = 0, the solution takes an infinite value at a finite time 𝑡 = 1
𝑦(0)

8, i.e., lim𝑡→−𝑘 𝑦(𝑡) = ±∞
and tends asymptotically to a steady state ̄𝑦 = 0, that is lim𝑡→∞ 𝑦(𝑡) = 0 independently of
the value of 𝑘;

• if 𝑎 > 0 the solution takes infinite values for a periodic sequence of times 𝑡 ∈ {−𝑘, 𝜋 − 𝑘, 2𝜋 −
𝑘, … , 𝑛𝜋 − 𝑘, …},

lim
𝑡→𝑛𝜋−𝑘

𝑦(𝑡) = ±∞, for 𝑛 ∈ ℕ

  and it has no steady state;

• if 𝑎 < 0, the solution converges to

lim
𝑡→∞

𝑦(𝑡) =
⎧{
⎨{⎩

−√−𝑎 , if 𝑘 < √−𝑎 or − √−𝑎 < 𝑘 < √−𝑎
+∞, if 𝑘 > √−𝑎.

 

Therefore the dynamic properties depend on the value of 𝑎:

• existence and number of steady states: ̄𝑦 = { 𝑦 ∶ 𝑎 + 𝑦2 = 0}: if 𝑎 > 0 there are no steady
states, if 𝑎 = 0 there is one steady state ̄𝑦 = 0, and if 𝑎 < 0 there are two steady states

̄𝑦 ∈ {  − √−𝑎, √−𝑎};

• local dynamics at a steady state: if 𝑎 = 0 the steady state ̄𝑦 = 0 is neither stable nor unstable
and if 𝑎 < 0 steady state ̄𝑦 = −√−𝑎 is asymptotically stable and steady state ̄𝑦 = √−𝑎
is unstable. This is because 𝑓𝑦(𝑦) = 2𝑦 then 𝑓𝑦(0) = 0, 𝑓𝑦(  − √𝑎) = −2  − √𝑎 < 0, and
𝑓𝑦(√𝑎) = 2  − √𝑎 > 0. If 𝑎 < 0 the stable manifold associated to steady state ̄𝑦 = −√−𝑎, 9

𝒲𝑠
−√−𝑎 = { 𝑦 ∈ Y  ∶ 𝑦 < √−𝑎}.

  Comparing to the linear case, for the case in which the steady state is asymptotically stable,
the stable manifold is a subset of Y not the whole Y.

There is a bifurcation point at (𝑦, 𝑎) = (0, 0), which is called saddle-node bifurcation. This
bifurcation point is defined by { (𝑦, 𝑎) ∶ 𝑓(𝑦, 𝑎) = 0, 𝑓𝑦(𝑦, 𝑎) = 0}. The bifurcation point, (0, 0), is
determined by solving for (𝑦, 𝑎) the system of equations

⎧{
⎨{⎩

𝑓(𝑦, 𝑎) = 0
𝑓𝑦(𝑦, 𝑎) = 0

⇔
⎧{
⎨{⎩

𝑎 + 𝑦2 = 0
2𝑦 = 0.

 
Figure 4.1 shows phase diagrams for the 𝑎 > 0 (left sub-figure) and for the 𝑎 < 0 (center

sub-figure) cases and the ifurcation diagram (right sub-figure). In the bifurcation diagram we
8This is different to the linear case, v.g., ̇𝑦 = 𝑦 which, if 𝑦(0) ≠ 0, whose solution 𝑦(𝑡) = 𝑦(0)𝑒𝑡 takes an infinite

value only in infinite time.
9In some literature this is called the basin of attraction.
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Figure 4.1: Phase diagrams for 𝑎 > 0, 𝑎 = 0, and 𝑎 < 0 and bifurcation diagram for equation (4.2)

depict points (𝑎, 𝑦) such that 𝑎 + 𝑦2 = 0, say ̄𝑦(𝑎), and in full-line the subset of points such
that 𝑓 ′( ̄𝑦(𝑎)) < 0 and in dashed-line the subset of points such that 𝑓 ′( ̄𝑦(𝑎)) > 0. The first
case corresponds to asymptotically stable steady states and the second to unstable steady states.
Observe that the curve does not lie in the positive quadrant for 𝑎 which is the geometrical analogue
to the non-existence of steady states. The saddle-node bifurcation point is at the origin (0, 0).

Quadratic Bernoulli equation: transcritical bifurcation The equation

̇𝑦 = 𝑎𝑦 + 𝑦2 (4.3)

  is a quadratic Bernoulli equation, in which the following properties hold: 𝑓𝑦𝑦(⋅) ≠ 0 and
𝑓𝑦𝑎 (⋅) ≠ 0. It is a particular case of the Bernoulli’s equation ̇𝑦 = 𝑎𝑦 + 𝑏𝑦𝜂, for a real number 𝜂.

As for the general Bernoulli equation, it also has an explicit solution 10:

𝑦(𝑡) =
⎧{
⎨{⎩

1
1/𝑦(0)−𝑡  , if 𝑎 = 0

𝑎
(1+𝑎/𝑦(0))𝑒−𝑎𝑡−1 , if 𝑎 ≠ 0

  where 𝑦(0) is an arbitrary element of Y.
The behavior of the solution is the following:

10See appendix section 4.B for the explicit solution for the general Bernoulli ODE.
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• if 𝑎 > 0

lim
𝑡→∞

𝑦(𝑡) =
⎧{
⎨{⎩

−𝑎 , if 𝑦(0) < 0
+∞, if 𝑦(0) > 0

 

• if 𝑎 = 0, it behaves as the Ricatti’s equation when 𝑎 = 0

• if 𝑎 < 0,

lim
𝑡→∞

𝑦(𝑡) =
⎧{
⎨{⎩

0 , if 𝑦(0) < −𝑎
+∞, if 𝑦(0) > −𝑎

 

The dynamic properties depend on the value of 𝑎:

• existence and number of steady states: if 𝑎 = 0 there is one steady state ̄𝑦 = 0, if 𝑎 ≠ 0 there
are two steady states ̄𝑦 = {0, −𝑎};

• local dynamics at the steady states: if 𝑎 = 0 the steady state ̄𝑦 = 0 is neither stable nor
unstable; if 𝑎 < 0 steady state ̄𝑦 = 0 is asymptotically stable and steady state ̄𝑦 = −𝑎 is
unstable; and if 𝑎 > 0 steady state ̄𝑦 = 0 is unstable and steady state ̄𝑦 = −𝑎 is asymptotically
stable. Then, the stable manifolds associated to the asymptotically stable equilibrium points
are: if 𝑎 < 0 the stable manifold is

𝒲𝑠
0 = { 𝑦 ∈ 𝑌 ∶ 𝑦 < −𝑎}.

  and, if 𝑎 > 0, the stable manifold is

𝒲𝑠
−𝑎 = { 𝑦 ∈ 𝑌 ∶ 𝑦 < 0}.

 

There is a bifurcation point at (𝑦, 𝑎) = (0, 0), which is called transcritical bifurcation. Figure
4.2 shows two phase diagrams and the bifurcation diagram.

Exercise Show that ̇𝑦 = 𝑎 𝑦 − 𝑦2 also has a transcritical bifurcation.

Bernoulli’s cubic equation: subcritical pitchfork The equation

̇𝑦 = 𝑎𝑦 − 𝑦3 (4.4)

is a cubic Bernoulli equation, in which the following properties hold: 𝑓𝑦𝑦𝑦(⋅) ≠ 0 and 𝑓𝑦𝑎 (⋅) ≠ 0.
Being a Bernoulli equation, it also has an explicit solution:

𝑦(𝑡) = ±√𝑎 [1 − (1 − 𝑎
𝑦(0)2  ) 𝑒−2𝑎𝑡 ]

−1/2

  where 𝑦(0) is an arbitrary element of Y. The solution trajectories have the following properties
for different values of the parameter 𝑎:
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Figure 4.2: Phase diagrams for 𝑎 < 0, 𝑎 = 0, and 𝑎 > 0 and bifurcation diagram for equation (4.3)
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• if 𝑎 ≤ 0, lim𝑡→∞ 𝑦(𝑡) = 0

• if 𝑎 > 0,

lim
𝑡→∞

𝑦(𝑡) =
⎧{{
⎨{{⎩

−√𝑎 , if 𝑦(0) < 0
√𝑎 , if 0 < 𝑦(0) < √𝑎
+∞, if 𝑦(0) > √𝑎

 

The dynamic properties depend on the value of 𝑎:

• existence and number of steady states: there is one  steady state ̄𝑦 = 0 and if 𝑎 ≤ 0 and
there are three  steady states ̄𝑦 = {0, −√𝑎, √𝑎} if 𝑎 > 0;

• local dynamics at the steady states: if 𝑎 = 0 the steady state ̄𝑦 = 0 is neither stable nor
unstable; if 𝑎 < 0 steady state ̄𝑦 = 0 is asymptotically stable; and if 𝑎 > 0 steady state ̄𝑦 = 0
is unstable and the other two steady states ̄𝑦 = −√𝑎 and ̄𝑦 = √𝑎 are asymptotically stable.

To find the bifurcation point, we solve jointly 𝑓(𝑦, 𝑎) = 0 and 𝑓𝑦(𝑦, 𝑎) = 0 for (𝑦, 𝑎), yielding

⎧{
⎨{⎩

𝑎 𝑦 − 𝑦3 = 0
𝑎 − 3 𝑦2 = 0

⟺
⎧{
⎨{⎩

3 𝑎 𝑦 − 3 𝑦3 = 0
𝑎 𝑦 − 3 𝑦3 = 0

⟺
⎧{
⎨{⎩

2 𝑎 𝑦 = 0
𝑎 − 3 𝑦2 = 0

  then the there is a subcritical pitchfork at (𝑦, 𝑎) = (0, 0).
Figure 4.3 shows two phase diagrams and the bifurcation diagram.
Exercise: Study the solution for equation ̇𝑦 = 𝑎𝑦 + 𝑦3. Show that point (𝑦, 𝑎) = (0, 0) is also

a bifurcation point called supercritical pitchfork.

Abel’s equation: hysteresis The following ODE

̇𝑦 = 𝑎 + 𝑦 − 𝑦3 (4.5)

  is called an Abel equation of the first kind, in which the following properties hold: 𝑓𝑦𝑦𝑦(⋅) ≠ 0,
𝑓𝑦(⋅) ≠ 0 and 𝑓𝑎 (⋅) ≠ 0.

Although closed form solutions have been found recently 11 they are too cumbersome to report.
If 𝑎 = 0 the Abel’s equation reduces to a particular Bernoulli’s equation (4.4) ̇𝑦 = 𝑦 − 𝑦3.

Equation (4.5) can have one, two or three equilibrium points, which are the real roots of the
polynomial equation 𝑓(𝑦, 𝑎) ≡ 𝑎 + 𝑦 − 𝑦3 = 0.

We can determine bifurcation points in the space Y × Φ by solving for (𝑦, 𝑎)

⎧{
⎨{⎩

𝑓(𝑦, 𝑎) = 0,
𝑓𝑦(𝑦, 𝑎) = 0.

11For known closed form solutions of ODEs see, Zaitsev and Polyanin (2003) or Zwillinger (1998).
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Figure 4.3: Phase diagrams for 𝑎 < 0, 𝑎 = 0, and 𝑎 > 0 and bifurcation diagram for equation (4.3)
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Figure 4.4: Phase diagrams for 𝑎 < −2
3√1

3 , 𝑎 = −2
3√1

3 , −2
3√1

3 < 𝑎 < 2
3√1

3 , 𝑎 = 2
3√1

3 and

𝑎 > 2
3√1

3 and bifurcation diagram for equation (4.5)

  Because
⎧{
⎨{⎩

𝑎 + 𝑦 − 𝑦3 = 0,
1 − 3𝑦2 = 0,

⇔
⎧{
⎨{⎩

3(𝑎 + 𝑦) − 3𝑦3 = 0,
𝑦 − 3𝑦3 = 0,

⇔
⎧{
⎨{⎩

3𝑎 + 2𝑦 = 0
𝑦 = ±√1/3,

we readily find that the ODE (4.5) has two critical points, called hysteresis points:

(𝑦, 𝑎) = {  (−√1
3, 2

3
√1

3) , (√1
3, −2

3
√1

3)} .

 
By looking at figure 4.4 (to the right sub-figure) we see that:

• for 𝑎 > 2
3√1

3 or for 𝑎 < −2
3√1

3 there is one asymptotically stable steady state

• for 𝑎 = 2
3√1

3 there are two steady states: one asymptotically stable equilibrium and a bi-

furcation point for ̄𝑦 = √1
3 , for 𝑎 = −2

3√1
3 there are two steady states: one asymptotically

stable equilibrium and a bifurcation point for ̄𝑦 = −√1
3

• for −2
3√1

3 < 𝑎 < 2
3√1

3 there are three steady states, two asymptotically stable (the extreme
ones) and one unstable (the middle one)

Cubic equation: cusp The next ODE

̇𝑦 = 𝑓(𝑦, 𝑎, 𝑏) ≡ 𝑎 + 𝑏𝑦 − 𝑦3 (4.6)
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Figure 4.5: Bifurcation diagram for equation ̇𝑦 = 𝑎 + 𝑏𝑦 − 𝑦3

is also an Abel equation of the first kind. It has two parameters, 𝑎 and 𝑏, and has the following
properties: 𝑓𝑦𝑦𝑦(⋅) ≠ 0 and 𝑓𝑎 (⋅) ≠ 0 and 𝑓𝑦(⋅) can have any sign depending on the parameter 𝑏.
This last property allow for critical changes on its solution.

This ODE can have one, two or three equilibrium points, depending on the values of the
parameters 𝑎 and 𝑏. We can determine them by solving the cubic polynomial equation 𝑎+𝑏𝑦−𝑦3 = 0
(see appendix section 4.C). The number of real roots of this polynomial depends on the value of

Δ ≡ (𝑎
2)

2
− (𝑏

3)
3

; (4.7)

  which is called the discriminant. It is known that: if Δ < 0 there are three real roots, if Δ = 0
there are two real roots (two are equal), and if Δ > 0 there is one real root and a pair of complex
conjugate roots.

Therefore, regarding our ODE: if Δ < 0 there are three steady states, if Δ = 0 there are two
steady states, and if Δ > 0 there is one steady state.

We already know we can determine critical points (co-dimension one bifurcation points) by
solving the system:

⎧{
⎨{⎩

𝑓(𝑦, 𝑎, 𝑏) = 0
𝑓𝑦(𝑦, 𝑎, 𝑏) = 0.

(4.8)

Applying to equation (4.6) we have

⎧{
⎨{⎩

𝑎 + 𝑏𝑦 − 𝑦3 = 0,
𝑏 − 3𝑦2 = 0,

⇔
⎧{
⎨{⎩

3𝑎 + 2𝑏𝑦 = 0,
𝑏 − 3𝑦2 = 0,

⇔
⎧{
⎨{⎩

3𝑎 + 2𝑏𝑦 = 0
2𝑏2 + 9𝑎𝑦 = 0,

⇔
⎧{
⎨{⎩

27𝑎2 + 18𝑎𝑏𝑦 = 0
4𝑏3 + 18𝑎𝑏𝑦 = 0.

The solutions to the system must verify

18𝑎𝑏𝑦 = −12𝑎2 = −4𝑏3 ⇔ (𝑎
2)

2
− (𝑏

3)
3

= 0
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  that is Δ = 0. Function 𝑓(𝑦, 𝑎, 𝑏) = 0 traces out a surface in the three-dimensional space for
(𝑎, 𝑏, 𝑦) called cusp which is depicted in Figure 4.9 12. Because we have two parameters, the
bifurcation loci, obtained from system (4.8) defines a line in the three-dimensional space (𝑎, 𝑏, 𝑦).
We can see how it changes by imagining horizontal slices in Figure 4.9 and project them in the
(𝑎, 𝑏)-plane. This would convince us that if 𝑎 = 0 we would get the bifurcation diagram for the
pitchfork, for equation (4.4), and if 𝑎 ≠ 0 and 𝑏 = 1 we obtain the hysteresis diagram, for equation
(4.5). This result would be natural because those two equations are a particular case of the cusp
equation.

By solving the system
⎧{{
⎨{{⎩

𝑓(𝑦, 𝑎, 𝑏) = 0
𝑓𝑦(𝑦, 𝑎, 𝑏) = 0
𝑓𝑏(𝑦, 𝑎, 𝑏) = 0

  we find a bifurcation point (𝑦, 𝑎, 𝑏) = (0, 0, 0) corresponding to a bifurcation for a higher level of
degeneracy (co-dimension two bifurcation points).

4.2.2 Planar ODE’s

Next we consider the planar ODE ẏ  = f(y, 𝜑), in vector notation, y ∶ 𝑇 → 𝑌 ⊆ ℝ2, depending on
a vector of parameters, 𝜑 ∈ ℝ𝑛 for 𝑛 ≥ 1. Expanding, we have,

̇𝑦1 = 𝑓1(𝑦1, 𝑦2, 𝜑)
̇𝑦2 = 𝑓2(𝑦1, 𝑦2, 𝜑)

(4.9)

There are a large number of normal forms that have been studied for planar ODEs (see
Kuznetsov (2005)).

In principle, we could consider combining all the previous scalar normal forms to have an idea of
the number of possible cases, and extend the previous method to study the dynamics. That method
consisted in finding critical points, corresponding to steady states and values of the parameters such
that the derivatives of the steady variables would be equal to zero. However, for planar equation,
to fully characterise the dynamics, we may have to study local dynamics in invariant orbits other
than steady states. In general there are, at least, three types of invariant orbits  that do not
exist in planar linear models: homoclinic and heteroclinic orbits and limit cycles.

In the next section we present a general method to finding bifurcation points associated to
steady states. In the rest of this section we presents ODE’s in which those invariant curves exist
and are generic (in the sense that they are verified for any values of a parameter, except for some
particular values) and non-generic. The non-generic cases consist in one-parameter bifurcations for
non-linear planar equations associated to heteroclinic and homoclinic orbits and limit cycles.

12This was one of the famous cases of catastrophe theory very popular in the 1980’s see https://en.wikipedia.
org/wiki/Catastrophe_theory.

https://en.wikipedia.org/wiki/Catastrophe_theory
https://en.wikipedia.org/wiki/Catastrophe_theory
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Heteroclinic orbits We say there is an heteroclinic orbit if, in a planar ODE in which there
are at least two steady states, say ȳ1 and ȳ2, and there are solutions y(𝑡) that entirely lie in a
curve joining ȳ1 to ȳ2 say Het(y). Therefore, if y(0) ∈ Het(y) then y(𝑡) ∈ Het(y) for 𝑡 > 0 and
either lim𝑡→∞ y(𝑡) = ȳ1 and lim𝑡→−∞ y(𝑡) = ȳ2 or lim𝑡→∞ y(𝑡) = ȳ2 and lim𝑡→−∞ y(𝑡) = ȳ1.
Heteroclinics can exist if the stability type of the steady states are different or equal. In the first
case, they connect stable or unstable node and a saddle point or a stable and one unstable node.
In the last case, the only possibility is if the two steady states are saddle points and we say we have
a saddle connection.

Heteroclinic networks can also exist when there are more than two steady states which are
connected.

Generic heteroclinic orbits Although there are several normal forms generating generic hete-
roclinic orbits, we focus next in the following case:

̇𝑦1 = 𝑎𝑦1𝑦2

̇𝑦2 = 1 + 𝑦2
1 − 𝑦2

2
(4.10)

where 𝑎 ≠ 0. This equation has two steady states: ȳ1 = (0, −1) and ȳ2 = (0, 1). Calling,

f(y) = ( 𝑎𝑦1𝑦2
1 + 𝑦2

1 − 𝑦2
2
)

  we have the Jacobian

𝐽(y) ≡ 𝐷yf(y) = (𝑎𝑦2 𝑎𝑦1
2𝑦1 −2𝑦2

) ,

  which has trace and determinant depending on the parameter 𝑎

trace (𝐽(y)) = (𝑎 − 2)𝑦2

det (𝐽(y)) = −2𝑎(𝑦2
1 + 𝑦2

2).

  Then, remembering again that we assumed 𝑎 ≠ 0 and because, for any steady state 𝑦2
1 + 𝑦2

2 > 0
then det (𝐽(y)) > 0 if 𝑎 < 0 and det (𝐽(y)) < 0 if 𝑎 > 0.

Therefore, if 𝑎 < 0, steady state ȳ1 is an unstable node, because trace (𝐽(ȳ1)) > 0 and steady
state ȳ2 is a stable node, because trace(𝐽(ȳ2)) < 0. Then for any trajectory starting from any
element of y ≠ ȳ2 there is convergence to steady state ȳ2 (see the left subfigure in figure 4.6).

If we denote Het(y) the set points connecting ȳ2 to ȳ1 we readily see that Het(y) = Y/{y1},
which means there is an infinite number of heteroclinic orbits, and that this set is coincident with
the stable manifold 𝒲𝑠

ȳ1 (see the left subfigure in Figure 4.6).
However, if 𝑎 > 0 both steady states, ȳ1 and ȳ2 , are saddle points, because det (𝐽(ȳ1)) =

det (𝐽(ȳ2)) < 0. In this case, there is one heteroclinic surface

Het(y) = { (𝑦1, 𝑦2) ∶ 𝑦1 = 0, −1 ≤ 𝑦2 ≤ 1} 
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Figure 4.6: Phase diagrams for equation (4.10) for 𝑎 < 0, and 𝑎 > 0

  which is the locus of points connecting ȳ1 and ȳ2 such that for any initial value y(0) ∈ Het(y)
the solution will converge to ȳ2 (see the right subfigure in figure 4.6). In this case Het(y) is the set
of points belonging to the intersection of the unstable manifold of ȳ1 and to the stable manifold of
ȳ2: Het(y) = 𝒲𝑢

ȳ1 ∩ 𝒲𝑠
ȳ2 .

At last, we should notice that in both cases the heteroclinic orbits are generic, in the sense that
they persist for a wide range of values for parameter 𝑎. This is not the case for the next example.

Heteroclinic saddle connection bifurcation Assuming a related but slightly different normal
form generates an heteroclinic bifurcation meaning we may have a bifurcation parameter that
when it crosses a specific value heteroclinic orbits cease to exist. The following model is studied,
for instance, in (Hale and Koçak, 1991, p.210).

̇𝑦1 = 𝜆 + 2𝑦1𝑦2

̇𝑦2 = 1 + 𝑦2
1 − 𝑦2

2
(4.11)

In this case we have, for 𝜆 = 0, an heteroclinic orbit, connecting the two steady states exists
and we have the second case in the previous model. When 𝜆 is perturbed away from zero we will
have only one steady state which is a saddle point. See Figure 4.10.

Homoclinic orbits We say there is an homoclinic orbit if, in a planar ODE, there is a subset
of points Hom(y) connecting the steady state with itself. This is only possible if the steady state
ȳ is a saddle point in which the stable manifold contains a closed curve, that we call homoclinic
curve. Because of this fact, homoclinic orbits exist jointly with periodic trajectories.

Again, homoclinic orbits can be generic or non-generic. Next we illustrate both cases.
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Figure 4.7: Phase diagrams for equation (4.11) for 𝜆 < 0, 𝜆 = 0, 𝜆 > 0
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Generic homoclinic orbits Consider the non-linear planar ODE depending on one parameter,
𝑎, of type

̇𝑦1 = 𝑦2

̇𝑦2 = 𝑦1 − 𝑎𝑦2
1.

(4.12)

It has two steady states ȳ1 = (0, 0) and ȳ2 = (1/𝑎, 0). The Jacobian

𝐽(y) ≡ 𝐷yf(y) = ( 0 1
1 − 2𝑎𝑦1 0)

  has following the trace and the determinant

trace (𝐽(y)) = 0
det (𝐽(y)) = 2𝑎𝑦1 − 1.

  It is easy to see that steady state ȳ1 is always a saddle point, because det (𝐽(ȳ1)) = −1 < 0, and
the steady state ȳ2 is always locally a center, because det (𝐽(ȳ2)) = 1 > 0 and trace (𝐽(ȳ2)) = 0,
for any value of 𝑎.

Furthermore, we can prove that there is an invariant curve, such that solutions follow a potential
or first integral curve which is constant.

In order to see this we introduce a Lyapunov function which is a differentiable function 𝐻(y)
such that the time derivative is �̇� = 𝐷y𝐻 ⋅ ẏ, that is �̇� = 𝐻𝑦1

̇𝑦1 + 𝐻𝑦2
̇𝑦2. A first integral is a set

of points (𝑦1, 𝑦2) such that �̇� = 0. In this case the orbits passing through those points allow for
a conservation of energy in some sense and 𝐻(y(𝑡)) = constant. For values such that 𝐻(y(𝑡)) = 0
that curve passes through a steady state.

For this case consider the function

𝐻(𝑦1, 𝑦2) = −1
2𝑦2

1 + 1
2𝑦2

2 + 𝑎
3𝑦3

1.

  If we time-differentiate this Lyapunov function and substitute equations (4.13) we have

�̇� = (𝑎𝑦1 − 1)𝑦1 ̇𝑦1 + 𝑦2 ̇𝑦2 =
= (𝑎𝑦1 − 1)𝑦1𝑦2 + 𝑦2𝑦1(1 − 𝑎𝑦1) =
= 0.

  Then �̇� = 0, for any values of y and 𝑎. We call homoclinic surface to the set of points such that
there are homoclinic orbits. In our case, homoclinic orbits converge both for 𝑡 → ∞ and 𝑡 → −∞
to point ȳ1. Therefore the homoclinic surface is the set of points

Hom(ȳ1) = { (𝑦1, 𝑦2) ∶ 𝐻(𝑦1, 𝑦2) = 0, sign( ̄𝑦1) = sign(𝑎)}

  Figure 4.8 depicts phase diagrams for the case in which 𝑎 < 0 (left sub-figure) and 𝑎 > 0 (right
sub-figure).

We see that the homoclinic trajectories are generic, i.e, they exist for different values of the
parameters. This is not always the case as we show next.
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Figure 4.8: Phase diagrams for equation (4.12) for 𝑎 < 0, and 𝑎 > 0

Homoclinic or saddle-loop bifurcation This model is studied, for instance, in (Hale and
Koçak, 1991, p.210) and (Kuznetsov, 2005, ch. 6.2). It is a non-linear ODE depending on one
parameter, 𝑎, of type

̇𝑦1 = 𝑦2

̇𝑦2 = 𝑦1 + 𝑎 𝑦2 − 𝑦2
1.

(4.13)

In this case, we have

f(y, 𝑎) = ( 𝑦2
𝑦1 + 𝑎 𝑦2 − 𝑦2

1.) .
 

The set of equilibrium point is ȳ = { y ∶ f(y, 𝑎) = 0}. For equation (4.13) we have two
equilibrium points,

ȳ1 = ( ̄𝑦1
1
̄𝑦1
2
) = 0, ȳ2 = ( ̄𝑦2

1
̄𝑦2
2
) = ( 1

0 ) .
 

In order to determine the local dynamics we evaluate the Jacobian for any point y = (𝑦1, 𝑦2),

𝐷yf(y, 𝑎) = ( 0 1
1 − 2𝑦1 𝑎) .

  The eigenvalues of the Jacobian are functions of the variables and of the parameter 𝑎,

𝜆±(y, 𝑎) = 𝑎
2 ± [  (𝑎

2)
2

+ 1 − 2𝑦1 ]
1
2

. 

 
If we evaluate the eigenvalues at the steady state ȳ1 = (0, 0), we find it is a saddle point, because

the eigenvalues of the Jacobian 𝐷yf(y1) are

𝜆1
± ≡ 𝜆±(ȳ1, 𝑎) = 𝑎

2 ± [  (𝑎
2)

2
+ 1 ]

1
2
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  yielding 𝜆1
− < 0 < 𝜆1

+. At the steady state ȳ2 = (1, 0) the eigenvalues of the Jacobian 𝐷yf(y2)
are

𝜆2
± = 𝜆±(ȳ2, 𝑎) = 𝑎

2 ± [  (𝑎
2)

2
− 1 ]

1
2

 

  yielding sign(Re(𝜆±(ȳ2, 𝑎)) = sign(𝑎).
Therefore steady state ȳ1 is always a saddle point, and steady state ȳ2 is a stable node or a

stable focus if 𝑎 < 0, it is an unstable node or an unstable focus if 𝑎 > 0, or it is a centre if 𝑎 = 0.
When 𝑎 = 0 another type of dynamics occurs. We introduce the following Lyapunov function

𝐻(𝑦1, 𝑦2) = −1
2𝑦2

1 + 1
2𝑦2

2 + 1
3𝑦3

1.

  and prove that it can only be a first integral if 𝑎 = 0. To show this, if we time-differentiate this
Lyapunov function and substitute equations (4.13) we have

�̇� = (𝑦1 − 1)𝑦1 ̇𝑦1 + 𝑦2 ̇𝑦2 =
= (𝑦1 − 1)𝑦1𝑦2 + 𝑦2𝑦1(1 − 𝑦1) + 𝑎𝑦2

2 =
= 𝑎𝑦2

2.

  Then �̇� = 0, for any values of y, if and only if and only if 𝑎 = 0.
In our case this generates an homoclinic orbit which is a trajectory that exits a steady state

and returns to the same steady state. In this case, a homoclinic orbit exists if 𝑎 = 0 and it does
not exist if 𝑎 ≠ 0.

The next figure shows the phase diagrams for the cases 𝑎 < 0, 𝑎 = 0 and 𝑎 > 0. If 𝑎 < 0 there
is a saddle point and a stable focus, if 𝑎 = 0 there is a saddle point, an infinite number of centres
surrounded by an homoclinic orbit. If 𝑎 > 0 there is a saddle point and an unstable focus.

Planar equation: Andronov-Hopf bifurcation This model is studied, for instance, in (Hale
and Koçak, 1991, p.212).

̇𝑦1 = 𝑓1(𝑦1, 𝑦2) ≡ 𝑦2 + 𝑦1(𝜆 − 𝑦2
1 − 𝑦2

2)
̇𝑦2 = 𝑓2(𝑦1, 𝑦2) ≡ −𝑦1 + 𝑦2(𝜆 − 𝑦2

1 − 𝑦2
2)

(4.14)

It has a single steady state ȳ = (0, 0). However, it has another invariant curve. In order to see
this, we compute the Jacobian

𝐽(y) = (𝜆 − 3𝑦2
1 − 𝑦2

2 1 − 2𝑦1𝑦2
−1 − 2𝑦1𝑦2 𝜆 − 𝑦2

1 − 3𝑦2
2
)  

  which has eigenvalues
𝜆± = 𝜆 − 2(𝑦2

1 + 𝑦2
2) ± (𝑦2

1 + 𝑦2
2)

 
In figure 4.10 we see the following: if 𝜆 < 0 there will be only one steady state which is a stable

node with multiplicity, although the speed of convergence to the steady state increases very much
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Figure 4.9: Phase diagrams for equation (4.13) for 𝑎 < 0, 𝑎 = 0, 𝑎 > 0
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Figure 4.10: Phase diagrams for equation (4.14) for 𝜆 < 0, 𝜆 = 0, 𝜆 > 0
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when 𝜆 converges to zero, if 𝜆 > 0 a limit circle appears and the steady state becomes a unstable
focus. According to the Bendixson-Dulac criterium (see Theorem 3) as

𝜕𝑓1(𝑦1, 𝑦2)
𝜕𝑦1

+ 𝜕𝑓2(𝑦1, 𝑦2)
𝜕𝑦2

= 2𝜆 − (2𝑦1)2 − (2𝑦2)2

  changes sign for 𝜆 > 0, in a subset of y, then a closed curve can exist. This closed curve is a
limit cycle which is a curve such that 𝑦1 + 𝑦2 = 𝜆. To prove this, we transform the system in polar
coordinates (see Appendix to chapter 1) and get 13

̇𝑟 = 𝑟(𝜆 − 𝑟2)
̇𝜃  = −1

  there is thus a periodic orbit with radius ̄𝑟 =
√

𝜆.

Planar equation: Bogdanov-Takens bifurcation The normal form of the Bogdanov-Takens
bifurcation is

̇𝑦1 = 𝑓1(𝑦1, 𝑦2) ≡ 𝑦2

̇𝑦2 = 𝑓2(𝑦1, 𝑦2) ≡ 𝜆1 + 𝜆2 𝑦1 + 𝑦2
1 ± 𝑦1 𝑦2

(4.15)

Has co-dimension one local bifurcations: saddle-node and Andronov-Hopf and a global bifurcation:
homoclinic bifurcation.

4.3 Qualitative theory of ODE

Next we present a short introduction to the qualitative (or geometrical) theory of ODE’s.
We consider a generic ODE

ẏ = f(y), f ∶ Y → Y, y ∶ T → Y (4.16)

where f ∈ 𝐶1(Y), i.e., 𝑓(.) is continuously differentiable up to the first order.
The qualitative theory of ODEs consists in finding a (topological) equivalence between a non-

linear (or even incompletely defined) function f(.) and a linear or a normal form ODE. This allows
us to characterize the dynamics in the neighborhood of a steady state or of a periodic orbit or
other invariant sets (homoclinic and heteroclinic orbits or limit cycles). If there are more than one
invariant orbit or steady state we distinguish between local dynamics (in the neighborhood of a
steady state or invariant orbit) from global dynamics (in all set 𝑦). If there is only one invariant
set then local dynamics is qualitatively equivalent to global dynamics.

13We define 𝑟2 = 𝑦2
1 + 𝑦2

2 and 𝜃 = arctan 𝑦2
𝑦1

, and take time derivatives, obtaining

̇𝑟 = 𝑦1 ̇𝑦1 + 𝑦2 ̇𝑦2
𝑟

̇𝜃 = 𝑦1 ̇𝑦2 − 𝑦2 ̇𝑦1
𝑟2

.
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One important component of qualitative theory is bifurcation analysis, which consists in
describing the change in the dynamics (that is, in the phase diagram) when one or more parameters
take different values within its domain.

4.3.1 Local analysis

We study local dynamics of equation (4.16) by performing a local analysis close to an equilibrium
point or a periodic orbit. There are three important results that form the basis of the local
analysis: the Grobman-Hartmann, the manifold and the Poincaré-Bendixson theorems. The first
two are related to using the knowledge on the solutions of an equivalent linearized ODE to study
the local properties close to the a steady-state for a non-linear ODE and the third introduces a
criterium for finding periodic orbits.

Equivalence with linear ODE’s

Assume there is (at least) one equilibrium point ȳ ∈ { y ∈ 𝑌 ⊆ ℝ𝑛 ∶ f(y) = 0}, for 𝑛 ≥ 1, and
consider the Jacobian of f(.) evaluated at that equilibrium point

𝐽(ȳ) = 𝐷yf(ȳ) =
⎛⎜⎜⎜
⎝

𝜕𝑓1( ̄𝑦)
𝜕𝑦1

…   𝜕𝑓1( ̄𝑦)
𝜕𝑦𝑛

… … …
𝜕𝑓𝑛( ̄𝑦)

𝜕𝑦1
…   𝜕𝑓𝑛( ̄𝑦)

𝜕𝑦𝑛

⎞⎟⎟⎟
⎠

.

  An equilibrium point is hyperbolic if the Jacobian 𝐽 has no eigenvalues with zero real parts.
An equilibrium point is non-hyperbolic if the Jacobian has at least one eigenvalue with zero real
part.

Theorem 1 (Grobman-Hartmann theorem). Let ȳ be a hyperbolic equilibrium point. Then
there is a neighbourhood 𝑈 of ȳ and a neighborhood 𝑈0 of y(0) such that the ODE restricted to 𝑈
is topologically equivalent to the variational equation

ẏ = 𝐽(ȳ)(y − ȳ), y − ȳ ∈ 𝑈0

The original paper are Grobman (1959) and Hartman (1964).
Stability properties of ȳ are characterized from the eigenvalues of Jacobian matrix 𝐽(ȳ) =

𝐷𝑦f(ȳ).
If all eigenvalues 𝜆 of the Jacobian matrix have negative real parts, Re(𝜆) < 0, then ̄𝑦 is

asymptotically stable. If there is at least one eigenvalue 𝜆 such that Re(𝜆) > 0 then ̄𝑦 is unstable.

Example 1 Consider the scalar ODE

̇𝑦 = 𝑓(𝑦) ≡ 𝑦𝛼 − 𝑎 (4.17)

  where 𝑎 and 𝛼 are two constants, with 𝑎 > 0, and 𝑦 ∈ ℝ+. Then there is an unique steady state
̄𝑦 = 𝑎 1

𝛼 . As
𝑓𝑦(𝑦) = 𝛼𝑦𝛼−1
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  then
𝑓𝑦( ̄𝑦) = 𝛼𝑎 𝛼−1

𝛼 .
Set 𝜆 ≡ 𝑓𝑦( ̄𝑦). Therefore the steady state is hyperbolic if 𝛼 ≠ 0 and it is non-hyperbolic if 𝛼 = 0. In
addition, if 𝛼 < 0 the hyperbolic steady state ̄𝑦 is asymptotically stable and if 𝛼 > 0 it is unstable.

If 𝛼 ≠ 0 we can perform a first-order Taylor expansion of the ODE (4.17) in the neighborhood
of the steady state

̇𝑦 = 𝜆(𝑦 − ̄𝑦) + 𝑜((𝑦 − ̄𝑦))
  which means that the solution to (4.17) can be locally approximated by

𝑦(𝑡) = ̄𝑦 + (𝑘 − ̄𝑦)𝑒𝜆𝑡

  for any 𝑘 ∈ ℝ+. In particular, if we fix 𝑦(0) = 𝑦0 then 𝑘 = 𝑦0.

Example 2 Consider the non-linear planar ODE

̇𝑦1 = 𝑦𝛼
1 − 𝑎, 0 < 𝛼 < 1, 𝑎 ≥ 0,

̇𝑦2 = 𝑦1 − 𝑦2
(4.18)

  It has an unique steady state ȳ = ( ̄𝑦1, ̄𝑦2) = (𝑎 1
𝛼 , 𝑎 1

𝛼 ). The Jacobian evaluated at any point y is

𝐽(y) = 𝐷yf(y) = (𝛼𝑦𝛼−1
1 0
1 −1) .

  If we approximate the system in a neighborhood of the steady state, ȳ, we have the linear planar
ODE

ẏ  = 𝐽(ȳ) (y − ȳ)
  where 𝐽(ȳ) is the Jacobian evaluated at the steady state,

𝐽(ȳ) = 𝐷yf(ȳ) = (𝛼𝑎 𝛼−1
𝛼 0

1 −1) .

  We already saw that the solution to this equation is

y(𝑡) = y + Pe𝐽(ȳ)𝑡h.

Because

trace(𝐽(ȳ)) = 𝛼𝑎 𝛼−1
𝛼 − 1

det (𝐽(ȳ)) = −𝛼𝑎 𝛼−1
𝛼

Δ(𝐽(ȳ)) = (𝛼𝑎 𝛼−1
𝛼 + 1
2 )

2

  which implies that the eigenvalues of the Jacobian 𝐽(ȳ) are

𝜆± = 𝛼𝑎 𝛼−1
𝛼 − 1
2 ± 𝛼𝑎 𝛼−1

𝛼 + 1
2 .
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that is 𝜆+ = 𝛼𝑎 𝛼−1
𝛼 and 𝜆− = −1. Therefore, the steady state is hyperbolic if 𝛼 ≠ 0 and non-

hyperbolic if 𝛼 = 0.
Furthermore, the steady state is a saddle point if 𝛼 > 0 and it is a stable node if 𝛼 < 0. We

can also find the eigenvector matrix of 𝐽(ȳ),

P = (P+P−) = (1 + 𝜆+ 0
1 1) .

  Therefore, the approximate solution is

(𝑦1(𝑡)
𝑦2(𝑡)) = ℎ+ (1 + 𝜆+

1 ) 𝑒𝜆+𝑡 + ℎ− (0
1) 𝑒𝜆−𝑡.

  If 𝛼 < 0 the stable eigenspace is ℰ𝑠 = { (𝑦1, 𝑦2) ∶ 𝑦1 = ̄𝑦1},    and, if 𝛼 > 0 the stable eigenspace
is the whole space, ℰ𝑠 = Y.

Local manifolds

Consider a neighbourhood 𝑈 ⊂ Y ⊆ ℝ𝑛 of ȳ: the local stable manifold is the set

𝒲𝑠
𝑙𝑜𝑐(ȳ) = { k ∈ 𝑈 ∶ lim

𝑡→∞
y(𝑡, 𝑘) = ̄𝑦, 𝑦(𝑡, k) ∈ 𝑈, 𝑡 ≥ 0} 

  the local unstable manifold is the set

𝒲𝑢
𝑙𝑜𝑐(ȳ) = { k ∈ 𝑈 ∶ lim

𝑡→∞
y(−𝑡, k) = ȳ, y(−𝑡, k) ∈ 𝑈, 𝑡 ≥ 0} 

  The center manifold is denoted 𝒲𝑐
𝑙𝑜𝑐(ȳ). Let 𝑛−, 𝑛+ and 𝑛0 denote the number of eigenvalues of

the Jacobian evaluated at steady state ȳ with negative, positive and zero real parts.

Theorem 2 (Manifold Theorem). : suppose there is a steady state ȳ and 𝐽(ȳ) is the Jacobian
of the ODE (4.16) . Then there are local stable, unstable and center manifolds, 𝒲𝑠

𝑙𝑜𝑐(ȳ), 𝒲𝑢
𝑙𝑜𝑐(ȳ)

and 𝒲𝑐
𝑙𝑜𝑐(ȳ), of dimensions 𝑛−, 𝑛+ and 𝑛0, respectively, such that 𝑛 = 𝑛− + 𝑛+ + 𝑛0. The local

manifolds are tangent to the local eigenspaces ℰ𝑠, ℰ𝑢, ℰ𝑐 of the (topologically) equivalent linearized
ODE

ẏ = 𝐽(ȳ)(y − ȳ).
 

The first two, eigenspaces ℰ𝑠 and ℰ𝑢, are unique, and ℰ𝑐need not be unique (see (Grass et al.,
2008, ch.2)).

The eigenspaces are spanned by the eigenvectors of the Jacobian matrix 𝐽( ̄𝑦) which are associ-
ated to the eigenvalues with negative, positive and zero real parts.

Example 2 Consider example 2 and let 𝛼 > 0 which implies that the steady state ȳ is a
saddle point. Because the eigenvector associated to eigenvalue 𝜆− is P− = (0, 1)⊤, then the stable
eigenspace is

ℰ𝑠 = {(𝑦1, 𝑦2) ∈ ℝ+ ∶ 𝑦1 = ̄𝑦1 = 𝑎 1
𝛼 }. 

  The local stable manifold 𝒲𝑠
𝑙𝑜𝑐(ȳ) is tangent to ℰ𝑠 in a neighborhood of the steady state.
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4.3.2 Periodic orbits

We saw that solution trajectories can converge or diverge not only as regards equilibrium points
but also to periodic trajectories (see the Andronov-Hopf model).

The Poincaré-Bendixson theorem ((Hale and Koçak, 1991, p.367)) states that if the limit set
is bounded and it is not an equilibrium point it should be a periodic orbit.

In order to determine if there is a periodic orbit in a compact subset of 𝑦 the Bendixson criterium
provides a method ((Hale and Koçak, 1991, p.373)):

Theorem 3 (Bendixson-Dulac criterium). Let 𝐷 be a compact region of 𝑦 ⊆ ℝ𝑛 for 𝑛 ≥ 2. If,

div(f) = 𝑓1,𝑦1
(𝑦1, 𝑦2) + 𝑓2,𝑦2

(𝑦1, 𝑦2)

  has constant sign, for (𝑦1, 𝑦2) ∈ 𝐷, then ̇𝑦 = 𝑓(𝑦) has not a constant orbit lying entirely in 𝐷.

4.3.3 Global analysis

While local analysis consists in studying local dynamics in the neighbourhood of steady states or
periodic orbits, this may not be enough to characterise the dynamics.

We already saw that there are orbits that are invariant and that cannot be determined by local
methods, for instance heteroclinic and homoclinic orbits.

Homoclinic and heteroclinic orbits

There are methods to determine if there are homoclinic or heteroclinic orbits. They essentially
consist in building a trapping area for the trajectories and proving there should exist trajectories
that do not exit the ”trap”.

Global manifolds

There are global extensions of the local manifolds by continuation in time (in the opposite direction)
of the local manifolds: 𝒲𝑠( ̄𝑦), 𝒲𝑢( ̄𝑦), 𝒲𝑐( ̄𝑦).

A trajectory 𝑦(.) of the ODE is called a stable path of ̄𝑦 if the orbit Or(𝑦0) is contained in the
stable manifold Or(𝑦0) ⊂ 𝒲𝑠( ̄𝑦) and lim𝑡→∞ 𝑦(𝑡, 𝑦0) = ̄𝑦.

A trajectory 𝑦(.) of the ODE is called a unstable path of ̄𝑦 if the orbit Or(𝑦0) is contained in
the stable manifold Or(𝑦0) ⊂ 𝒲𝑢( ̄𝑦) and lim𝑡→∞ 𝑦(−𝑡, 𝑦0) = ̄𝑦.

4.3.4 Dependence on parameters

We already saw that the solution of linear ODE’s, ẏ = Ay + B, may depend on the values for the
parameters in the coefficient matrix A.

We can extend this idea to non-linear ODE’s of type

ẏ = f(y, 𝜑), 𝜑 ∈ Φ ⊆ 𝑅𝑞
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  where 𝜑 is a vector of parameters of dimension 𝑞 ≥ 1
We can distinguish two types of parameter change:

• bifurcations when a parameter change induces a qualitative change in the dynamics, i.e, the
phase diagram. By qualitative change we mean change the number or the stability properties
of steady states or other invariants. Close to a bifurcation point, a change in a parameter
changes the qualitative characteristics of the dynamics;

• perturbations when parameter changes do not change the qualitative dynamics, i.e., they
do not change the phase diagram. This is typically the case in economics when one performs
comparative dynamics exercises.

Bifurcations

If a small variation of the parameter changes the phase diagram we say we have a bifurcation. As
you saw, there are local (fixed points) and global bifurcations (heteroclinic connection, etc). Those
bifurcations were associated to particular normal forms of both scalar and planar ODEs. This
fact allows us to find classes of ODE’s which are topologically equivalent to those we have already
presented.

Bifurcations for scalar ODE’s Consider the scalar ODE

̇𝑦 = 𝑓(𝑦, 𝜑), 𝑌 , 𝜑 ∈ ℝ.

 
Fold bifurcation (see (Kuznetsov, 2005, ch. 3.3)): Let 𝑓 ∈ 𝐶2(ℝ) and consider the point

( ̄𝑦, 𝜑0) = (0, 0), such that 𝑓(0, 0) = 0, with 𝑓𝑦(0, 0) = 0 and

𝑓𝑦𝑦(0, 0) ≠ 0, 𝑓𝜑(0, 0) ≠ 0.

  then the ODE is topologically equivalent to

̇𝑦 = 𝜑 ± 𝑦2,

that is to the Ricatti’s model (4.2).
Transcritical bifurcation: Let 𝑓 ∈ 𝐶2(ℝ) and consider the point ( ̄𝑦, 𝜑0) = (0, 0), such that

𝑓(0, 0) = 0, with 𝑓𝑦(0, 0) = 0 and

𝑓𝑦𝑦(0, 0) ≠ 0, 𝑓𝜑𝑦(0, 0) ≠ 0

  then the ODE is topologically equivalent to

̇𝑦 = 𝜑𝑦 ± 𝑦2

that is to the Bernoulli model (4.3).
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Pitchfork bifurcation: Let 𝑓 ∈ 𝐶2(ℝ) and consider ( ̄𝑦, 𝜑0) = (0, 0), such that 𝑓(0, 0) = 0,
with 𝑓𝑦(0, 0) = 0 and

𝑓𝑦𝑦𝑦(0, 0) ≠ 0, 𝑓𝜑𝑦(0, 0) ≠ 0
  then the ODE is topologically equivalent to

̇𝑦 = 𝜑𝑦 ± 𝑦3

that is to the Bernoulli model (4.4).

Bifurcations for planar ODE’s Consider the planar ODE

ẏ = f(y, 𝜑), y ∈ ℝ2, 𝜑 ∈ ℝ

 
Andronov-Hopf bifurcation (see (Kuznetsov, 2005, ch. 3.4)): Let f  ∈ 𝐶2(ℝ) and consider

(ȳ, 𝜑0) = (0, 0) the Jacobian at (0, 0) has eigenvalues

𝜆± = 𝜂(𝜑) ± 𝑖𝜔(𝜑)

  where 𝜂(0) = 0 and 𝜔(0) > 0. If some additional conditions are satisfied then the ODE is locally
topologically equivalent to

( ̇𝑦1
̇𝑦2
) = (𝛽 −1

1 𝛽 ) (𝑦1
𝑦2

) ± (𝑦2
1 + 𝑦2

2) (𝑦1
𝑦2

)

 

4.3.5 Comparative dynamics in economics

As mentioned, comparative dynamics exercises consist in introducing perturbation in a dynamic
system: i.e., a small variation of the parameter that does not change the phase diagram. This kind
of analysis only makes sense if the steady state is hyperbolic, that is if det (𝐷yf(ȳ, 𝜑0))  ≠ 0 or
trace(𝐷yf(ȳ, 𝜑0)) ≠ 0 if det (𝐷yf(ȳ, 𝜑0))  > 0.

In this case let the steady state be for a given value of the parameter 𝜑 = 𝜑0

ȳ0 = { 𝑦 ∈ 𝑌 ∶ f(y, 𝜑0) = 0}.

  If ȳ0 is a hyperbolic steady state, then we can expand the ODE into a linear ODE

ẏ = 𝐷yf(ȳ0, 𝜑0)(y − ȳ0) + 𝐷𝜑f(ȳ0, 𝜑0)(𝜑 − 𝜑0). (4.19)

  This equation can be solved as a linear ODE. Setting 𝜑 = 𝜑0 + 𝛿𝜑 and because ȳ  = ȳ(𝜑) and
ȳ0 = ȳ(𝜑0) we have

𝐷𝜑ȳ(𝜑0) = lim
𝛿𝜑→0

ȳ(𝜑0 + 𝛿𝜑) − ȳ(𝜑0)
𝛿𝜑

= −𝐷−1
y f(ȳ0, 𝜑0)𝐷𝜑f(ȳ0, 𝜑0)

  which are called the long-run multipliers associated to a permanent change in 𝜑. Solving the
linearized system allows us to have a general solution to the problem of finding the short-run or
transition multipliers, 𝑑y(𝑡) ≡ y(𝑡) − ȳ0 for a change in the parameter 𝜑.
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• Kuznetsov (2005) Very complete presentation of bifurcations for planar systems.

• Brock and Malliaris (1989), (Grass et al., 2008, ch.2) has a compact presentation of all the
important results with some examples in economics and management science.
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4.A Solution of Ricatti’s equation (4.2)

Start with the case: 𝑎 = 0. Separating variables, we have

𝑑𝑦
𝑦2 = 𝑑𝑡

  integrating both sides

∫
𝑦(𝑡)

𝑦(0)

𝑑𝑦
𝑦2 = ∫

𝑡

0
𝑑𝑠 ⇔ − 1

𝑦(𝑡) = 𝑡 − 1
𝑦(0) .

Next we set where 𝑘 ≡ 1
𝑦(0) an arbitrary constant.  Then the solution is

𝑦(𝑡) = − 1
𝑡 + 𝑘

  Now let 𝑎 ≠ 0. By using the same method we have

𝑑𝑦
𝑎 + 𝑦2 = 𝑑𝑡. (4.20)

  At this point it is convenient to note that

𝑑 tan−1 (𝑥)
𝑑𝑥 = 1

1 + 𝑥2  , 𝑑 tanh−1 (𝑥)
𝑑𝑥 = 1

1 − 𝑥2 ,   

where
tan (𝑥) = sin (𝑥)

cos (𝑥)  = 𝑒𝑖𝑥 − 𝑒−𝑖𝑥

𝑖(𝑒𝑖𝑥 + 𝑒−𝑖𝑥) ,   tanh (𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥 .

  Then we should deal separately with the cases 𝑎 > 0 and 𝑎 < 0. If 𝑎 > 0 integrating equation
(4.20)

∫ 𝑑𝑦
𝑎 + 𝑦2 = 𝑑𝑡 ⇔ 1√𝑎 ∫ 1

1 + 𝑥2 𝑑𝑥 = 𝑡 + 𝑘 ⇔ 1√𝑎 tan−1(𝑥) = 𝑡 + 𝑘

  where we defined 𝑥 = 𝑦/√𝑎. Solving the last equation for 𝑥 and mapping back to 𝑦 we get

𝑦(𝑡) = √𝑎 (tan (√𝑎(𝑡 + 𝑘))) .

  If 𝑎 < 0 we integrate equation (4.20) by using a similar transformation, but instead with 𝑥 =
𝑦/√−𝑎 to get

∫ 𝑑𝑦
𝑎 + 𝑦2 = 𝑑𝑡 ⇔ − 1√−𝑎 ∫ 1

1 − 𝑥2 𝑑𝑥 = 𝑡 + 𝑘 ⇔ − 1√−𝑎 tanh−1(𝑥) = 𝑡 + 𝑘.

  Then
𝑦(𝑡) = −√−𝑎 (tanh (√−𝑎(𝑡 + 𝑘))) .
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4.B Solution for a general Bernoulli equation

Consider the Bernoulli equation

̇𝑦 = 𝑎𝑦 + 𝑏𝑦𝜂, 𝑎 ≠ 0, 𝑏 ≠ 0 (4.21)

where 𝑦 ∶ 𝑇 → ℝ. We intoduce a first transformation 𝑧(𝑡) = 𝑦(𝑡)1−𝜂, which leads to a linear ODE

̇𝑧 = (1 − 𝜂)(𝑎𝑧 + 𝑏) (4.22)

  beause

̇𝑧 = (1 − 𝜂)𝑦−𝜂 ̇𝑦 =
= (1 − 𝜂)(𝑎𝑦1−𝜂 + 𝑏) =
= (1 − 𝜂)(𝑎𝑧 + 𝑏).

To solve equation (4.22) we introduce a second transformation 𝑤(𝑡) = 𝑧(𝑡) + 𝑏
𝑎 . Observing that

�̇� = ̇𝑧 we obtain a homogeneous ODE �̇� = 𝑎(1 − 𝜂)𝑤 which has solution

𝑤(𝑡) = 𝑘𝑤𝑒𝑎(1−𝜂)𝑡.

Then the solution to equation (4.22) is

𝑧(𝑡) = − 𝑏
𝑎 + (𝑘𝑧 + 𝑏

𝑎)𝑒𝑎(1−𝜂)𝑡

  because 𝑘𝑤 = 𝑘𝑧 + 𝑏
𝑎 .

We finally get the solution for the Bernoulli equation (4.21)

𝑦(𝑡) = (− 𝑏
𝑎 + (𝑘1−𝜂 + 𝑏

𝑎)𝑒𝑎(1−𝜂)𝑡)
1

1−𝜂
(4.23)

 

4.C Solution to the cubic polynomial equation

In this section we present the solutions to the cubic polynomial equation 14 

𝑥3 + 𝛼2 𝑥2 + 𝛼1 𝑥 + 𝛼0 = 0.

  By performing a Tschirnhausen transformation (see King (1996)) we can transform into a simpler,
irreducible, equation. Defining 𝑦 = 𝑥 − 𝛼2

3 we obtain the polynomial

𝑦3 + (𝛼1 − 𝛼2
2

3 ) 𝑦 + 𝛼0 − 𝛼1 𝛼2
3 + 2 𝛼3

2
27   = 0

14See cubicpolynomialhistory for the history of this equation.

cubic polynomial history
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  This equation is a (monic) cubic polynomial equation, of type

𝑦3 − 𝑏𝑦 − 𝑎 = 0. (4.24)

  If 𝑎 = 0 we have 𝑦 (𝑦2 − 𝑏 𝑦) = 0 and the solutions are 𝑦 = 0 and the solutions of the quadratic
equation are 𝑦 = ±

√
𝑏.

If 𝑎 ≠ 0 we prove that the solutions of the monic cubic equation are

𝑦𝑗 = 𝑤𝑗−1𝜃 1
3 + 𝑏

3 (𝜔𝑗−1𝜃 1
3 )−1 , 𝑗 = 1, 2, 3. (4.25)

  where 𝜔 and 𝜃 are presented next.
Write 𝑦 = 𝑢 + 𝑣. Then we get the equivalent representation

𝑢3 + 𝑣3 + 3 (𝑢𝑣 − 𝑏
3) (𝑢 + 𝑣) − 𝑎 = 0.

  As 𝑦 = 𝑢 + 𝑣 ≠ 0, 𝑢 and 𝑣 solve simultaneously

⎧{
⎨{⎩

𝑢3 + 𝑣3 = 𝑎
𝑢𝑣 = 𝑏

3
⇔

⎧{
⎨{⎩

𝑢3𝑢3 + 𝑢3𝑣3 − 𝑢3𝑎 = 0

𝑢3𝑣3 = (𝑏
3)

3 ⇔
⎧{
⎨{⎩

𝑢6 − 𝑎𝑢3 + (𝑏
3)

3
= 0

𝑢𝑣 = 𝑏
3 .

  The first equation is a quadratic polynomial in 𝑢3 which has roots

𝑢3 = 𝑎
2 ±

√
Δ, where Δ ≡ (𝑎

2)
2

− (𝑏
3)

3

  where Δ is the discriminant in equation (4.7). We can take any solution of the previous equation
and set 𝜃 ≡ 𝑎

2 +
√

Δ.
At this stage it is useful to observe that the solutions of equation 𝑥3 = 1 are

𝑥1 = 1, 𝑥2 = 𝜔, 𝑥3 = 𝜔2.

  where 𝜔 = 𝑒 2𝜋𝑖
3 = −1

2(1 −
√

3𝑖) and 𝜔2 = 𝑒 4𝜋𝑖
3 = −1

2(1 +
√

3𝑖). Therefore 𝑢3 = 𝜃 has also three
solutions

 𝑢1 = 𝜃 1
3 , 𝑢2 = 𝜔𝜃 1

3 , 𝑢3 = 𝜔2𝜃 1
3

  and because 𝑣 = 𝑏
3𝑢 , we finally obtain equation (4.25), which are the solutions to equation (4.24).



Chapter 5

Applications to economics

5.1 The optimality conditions of the Ramsey model

The Ramsey (1928) model (see also Cass (1965) and Koopmans (1965)) is the workhorse of modern
macroeconomics and growth theory. It is a normative model (but can also be seen as a positive
model if its behavior fits the data) on the optimal choice of consumption and where savings leads to
the accumulation of capital, and therefore to future consumption. Therefore, the optimal trade-off
between present and future consumption guides the accumulation of capital.

We will derive the optimality conditions when we study optimal control. In this section we
assume that there are two primitives for the model related with technology and preferences: (1)
the production function, 𝑓(𝑘) and (2) the elasticity of intertemporal substitution 𝜂(𝑐) and the rate
of time preference 𝜌.

The first order conditions for an optimum take the form of two non-linear differential equations.
Let 𝑘 and 𝑐 denote per-capita physical capital and consumption, respectively, and let the two
variables be non-negative. That is (𝑘, 𝑐) ∈ ℝ2

+. The Ramsey model is the planar ODE

�̇� = 𝑓(𝑘) − 𝑐 (5.1)
̇𝑐 = 𝜂(𝑐) 𝑐 (𝑓 ′(𝑘) − 𝜌) , (5.2)

supplemented with an initial value for 𝑘, 𝑘(0) = 𝑘0 and the transversality condition lim𝑡→∞ 𝑢′(𝑐)𝑘(𝑡)𝑒−𝜌𝑡 =
0, where 𝑢(𝑐) is the utility function from which we determine the elasticity of intertemporal sub-
stitution. For this section we will be concerned with trajectories that are bounded asymptotically,
that is converging to a steady state.

The ODE system (also called modified Hamiltonian dynamic system MHDS) is non-linear when
the two primitive functions are not completely specified, as is the case with system (5.1)-(5.2). Next
we assume a smooth case and the following assumptions

1. preferences are specified by a constant elasticity of intertemporal substitution, 𝜂(𝑐) = 𝜂 > 0
is constant;

2. the rate of time preference is positive 𝜌 > 0;

34
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3. the production function is of the Inada type: it is positive for positive levels of capital, it
is monotonously increasing and globally concave. Formally: 𝑓(0) = 0, 𝑓(𝑘) > 0 for 𝑘 > 0,
𝑓 ′(𝑘) > 0, lim𝑘→0 𝑓 ′(𝑘) = +∞, lim𝑘→+∞ 𝑓 ′(𝑘) = 0, and 𝑓″(𝑘) < 0 for all 𝑘 ∈ ℝ+. 1

Given the smoothness of the vector field, i.e, of functions 𝑓1(𝑘, 𝑐) ≡ 𝑓(𝑘) − 𝑐 and 𝑓2(𝑘, 𝑐) ≡
𝜂𝑐(𝑓 ′(𝑘) − 𝜌), we know that a solution exists and it is unique. Therefore, in order to characterize
the dynamics we can use the qualitative theory of ODE’s presented previously in this section.

In particular we will

1. determine the existence and number of steady states

2. characterize them regarding hyperbolicity and local dynamics, performing, if necessary, a
local bifurcation analysis

3. try to find other invariant trajectories of a global nature

4. conduct comparative dynamics analysis in the neigborhood of relevant hyperbolic steady
states.

Steady states Any steady-state, (�̄�, ̄𝑐), belongs to the set

(�̄�, ̄𝑐) = { (𝑘, 𝑐) ∈ ℝ2
+ ∶ �̇� = ̇𝑐 = 0}  = { (0, 0), (𝑘∗, 𝑐∗)} 

  where 𝑘∗ = 𝑔(𝜌), where 𝑔(.) = (𝑓 ′)−1(.) and 𝑐∗ = 𝑓(𝑘∗) = 𝑓(𝑔(𝜌)).
To prove the existence and uniqueness of a positive steady state level for 𝑘 we use the Inada

and global concavity properties of the production function: first, ̇𝑐 = 0 if there is a value 𝑘 that
solves the equation 𝑓 ′(𝑘) = 𝜌; second, because 𝜌 > 0 is finite and 𝑓 ′(𝑘) ∈ (0, ∞) then there is at
least one value for 𝑘 that solves that equation; at last, because the function 𝑓(.) is globally strictly
concave then 𝑓 ′(𝑘) is monotonously decreasing which implies that the solution is unique.

Characterizing the steady states In order to characterize the steady states, we find the Ja-
cobian of system (5.1)-(5.2), is

𝐷(𝑘,𝑐)F(𝑘, 𝑐) = ( 𝑓 ′(𝑘) −1
𝜂𝑐𝑓″(𝑘) 𝜂 (𝑓 ′(𝑘) − 𝜌) .) (5.3)

The eigenvalues of 𝐷(𝑘,𝑐)F(𝑘, 𝑐) evaluated at steady state (�̄�, ̄𝑐) = (0, 0) are

𝜆0
𝑠 = 𝜂(𝑓 ′(0) − 𝜌) = +∞, 𝜆0

𝑢 = 𝑓 ′(0) = +∞,

  which means that this steady state is singular (see chapter 8). This is a consequence of the fact
that 𝑓(𝑘) is not locally Lipschitz close to 𝑘 = 0.

1Observe that 𝑓(𝑘) is locally but not globally Lipschitz, i.e, a small change in 𝑘 close to zero induces a large
change in 𝑓(𝑘).
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For steady state (�̄�, ̄𝑐) = (𝑘∗, 𝑐∗), the trace and the determinant of the Jacobian are

trace(𝐷(𝑘,𝑐)F(𝑘∗, 𝑐∗)) = 𝜌 > 0, det(𝐷(𝑘,𝑐)𝐹(𝑘∗, 𝑐∗)) = 𝜂𝑐∗𝑓″(𝑘∗) < 0

  and the eigenvalues are

𝜆∗
𝑠 = 𝜌

2 − ((𝜌
2)

2
−  𝜂𝑐∗𝑓″(𝑘∗))

1
2

< 0, 𝜆∗
𝑢 = 𝜌

2 + ((𝜌
2)

2
−  𝜂𝑐∗𝑓″(𝑘∗))

1
2

> 0

  satisfy the relationships
𝜆∗

𝑠 + 𝜆∗
𝑢 = 𝜌, 𝜆∗

𝑠𝜆∗
𝑢 = 𝜂𝑐∗𝑓″(𝑘∗) < 0.

  The steady state (𝑘∗, 𝑐∗) is also hyperbolic and it is a saddle-point. The intuition behind this
property is transparent when we look at the expression for the determinant: the mechanism gen-
erating stability is related to the existence of decreasing marginal returns in producion. Because
capital accumulation is equal to savings, and savings sustains future increases in consumption by in-
creasing production, the existence of decreasing marginal returns implies that the marginal increase
in production will tend to zero thus stopping the incentives for future capital accumulation.

As the Jacobians of system (5.1)-(5.2), evaluated at every steady state, does not have eigenvalues
with zero real parts both steady states are hyperbolic and there are no local bifurcation points.

In addition, from the Grobman-Hartmann theorem the system (5.1)-(5.2) can be approximated
by a (topologically equivalent) linear system in the neighborhood of every steady state.

Let us consider the steady state (𝑘∗, 𝑐∗). As the Jacobian in this case is

𝐷(𝑘,𝑐)F(𝑘∗, 𝑐∗) = ( 𝜌 −1
𝜂𝑐∗𝑓″(𝑘∗) 0 )

 we can consider the variational system

(�̇�
̇𝑐) = ( 𝜌 −1

𝜂𝑐∗𝑓″(𝑘∗) 0 ) (𝑘 − 𝑘∗

𝑐 − 𝑐∗ )

as giving the approximated dynamics in the neighborhood of the steady state  (𝑘∗, 𝑐∗).
Because

𝐷(𝑘,𝑐)F(𝑘∗, 𝑐∗) − 𝜆∗
𝑠I2 = ( 𝜌 − 𝜆∗

𝑠 −1
𝜂𝑐∗𝑓″(𝑘∗) −𝜆∗

𝑠
) = ( 𝜆∗

𝑢 −1
𝜆∗

𝑠𝜆∗
𝑢 −𝜆∗

𝑠
)

  we get the eigenvector associated to 𝜆∗
𝑠

P∗
𝑠 = (1, 𝜆∗

𝑢)⊤.

  This implies that the stable eigenspace of the linearized ODE,

ℰ𝑠 = { (𝑘, 𝑐) ∈ 𝑁 ∗ ∶ 𝑐 = 𝜆∗
𝑢𝑘} 

  gives the locus of points in the domain, wich are tangent to the local stable manifold for the
original ODE (5.1)-(5.2)

𝒲𝑠
𝑙𝑜𝑐 = { (𝑘, 𝑐) ∈ 𝑁 ∗ ∶ lim

𝑡→∞
(𝑘(𝑡), 𝑐(𝑡)) = (𝑘∗, 𝑐∗)} 

  where 𝑁 ∗ = { (𝑘, 𝑐) ∈ ℝ2
+ ∶ ||(𝑘, 𝑐) − (𝑘∗, 𝑐∗)|| < 𝛿} for a small 𝛿.
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Global invariants We can prove that there is an heteroclinic orbit connecting steady states
(0, 0) and (𝑘∗, 𝑐∗). Furthermore, the points in that orbit belong to the stable manifold

𝒲𝑠 = { (𝑘, 𝑐) ∈ ℝ2
+ ∶ lim

𝑡→∞
(𝑘(𝑡), 𝑐(𝑡)) = (𝑘∗, 𝑐∗)},  

  and take the form 𝑐 = ℎ(𝑘). Although we cannot determine explicitly the function ℎ(.) we can
prove that it exists (see Figure 5.1.

We already know that the steady state (0, 0) is an unstable node, which means that any small
deviation will set a diverging path, and, because steady state (𝑘∗, 𝑐∗) is a saddle point there is one
unique path converging to it. There is an heteroclinic orbit if this path starts from from (0, 0). In
order to prove this is the case we can consider a ”trapping area” 𝑇 = { (𝑘, 𝑐) ∶ 𝑐 ≤ 𝑓(𝑘), 0 ≤ 𝑘 ≤ 𝑘∗},
where the isoclines �̇� = 0 and ̇𝑐 = 0 define the boundaries 𝑆1 = { (𝑘, 𝑐) ∶ 𝑐 = 𝑓(𝑘), 0 ≤ 𝑘 ≤ 𝑘∗} and
𝑆2 = {(𝑘, 𝑐) ∶ 0 ≤ 𝑐 ≤ 𝑐∗, 𝑘 = 𝑘∗}. We can see that all the trajectories coming from inside will
exit 𝑇 : first, the trajectories that cross 𝑆1 will exit 𝑇 because �̇�|𝑆1

= 0 and ̇𝑐|𝑆1
= 𝜂𝑐(𝑓 ′(𝑘) − 𝜌) =

𝜂𝑓(𝑘)(𝑓 ′(𝑘) − 𝑓 ′(𝑘∗)) > 0 because 𝑓 ′(𝑘) > 𝑓 ′(𝑘∗) for 𝑘 < 𝑘∗, second all trajectories that cross 𝑆2
will exit 𝑇 because �̇�|𝑆2

= 𝑓(𝑘∗) − 𝑐 = 𝑐∗ − 𝑐 > 0 and ̇𝑐|𝑆2
= 0.

Comparative dynamics Let us consider the steady state (𝑘∗, 𝑐∗). As we saw that it is an
hyperbolic point, small perturbations by a parameter will not change the local dynamic properties
of the steady state, only its quantitative level. Therefore, we can perform a comparative dynamics
exercise in its neighborhood.

Assume we start at a steady state and introduce a small change in 𝜌. As the steady state is a
function of 𝜙, this means that, after the change, the steady state will move and the initial point
is not a steady state. That is we can see it as an arbitrary initial point out of the (new) steady
state. From hyperbolicity, the new steady state is still a saddle point, which means that the small
perturbation will generate unbounded orbits unless there is a ”jump” to the new stable manifold
associated to the new steady state. This is the intuition behind the comparative dynamics exercise
in most perfect foresight macro models (see Blanchard and Khan (1980) and Buiter (1984)) that
we illustrate next. We basically assume that variable 𝑘 is continuous in time (it is pre-determined)
and that 𝑐 is piecewise continuous in time (it is non-predetermined).

Formally, as we also saw that it is a function of the rate of time preference, let us introduce a
permanent change in its value from 𝜌 to 𝜌 + 𝑑𝜌. This will introduce a time-dependent change in
the two variables, from (𝑘∗, 𝑐∗) to (𝑘(𝑡), 𝑐(𝑡)) where 𝑘(𝑡) = 𝑘∗ +𝑑𝑘(𝑡) and 𝑐(𝑡) = 𝑐∗ +𝑑𝑐(𝑡). In order
to find (𝑑𝑘(𝑡), 𝑑𝑐(𝑡)) we make a first-order Taylor expansion on (𝑘, 𝑐) generated by 𝑑𝜌 to get

(�̇�
̇𝑐) = 𝐷(𝑘,𝑐)F(𝑘∗, 𝑐∗) (𝑑𝑘(𝑡)

𝑑𝑐(𝑡)) + 𝐷𝜌F(𝑘∗, 𝑐∗)𝑑𝜌 (5.4)

  where 𝐷𝜌F(𝑘∗, 𝑐∗) = (0, −𝜂𝑐∗)⊤. This is a linear planar non-homogeneous ODE.
From �̇� = ̇𝑐 = 0 we can find the long-run multipliers

(𝜕𝜌𝑘∗

𝜕𝜌𝑐∗) = ⎛⎜⎜⎜
⎝

𝑑𝑘∗

𝑑𝜌
𝑑𝑐∗

𝑑𝜌

⎞⎟⎟⎟
⎠

= −(𝐷(𝑘,𝑐)F(𝑘∗, 𝑐∗))
−1

𝐷𝜌F(𝑘∗, 𝑐∗),
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Figure 5.1: Heteroclinic orbit in the Ramsey mode. Comparative dynamics for a permanent increase
in 𝜌
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  that is

(𝜕𝜌𝑘∗

𝜕𝜌𝑐∗) = ( 𝜌 −1
𝜂𝑐∗𝑓″(𝑘∗) 0 )

−1

( 0
𝜂𝑐∗) .

Then 𝜕𝜌𝑘∗ = 1
𝑓″(𝑘∗) < 0 and 𝜕𝜌𝑐∗ = 𝜌𝜕𝜌𝑘∗ < 0. A permanent unanticipated change in 𝜌 will

reduce the long run capital stock and consumption level.
We are only interested in the trajectories that converge to the new steady state after a pertur-

bation, 𝑘∗ + 𝜕𝜌𝑘∗𝑑𝜌 and 𝑐∗ + 𝜕𝜌𝑐∗𝑑𝜌, that is a saddle point. In order to make sure this is the case,
we solve the variational system for the saddle path to get

(𝜕𝜌𝑘(𝑡)
𝜕𝜌𝑐(𝑡)) = (𝜕𝜌𝑘∗

𝜕𝜌𝑐∗) + 𝑥 ( 1
𝜆∗

𝑢
) 𝑒𝜆∗

𝑠𝑡,

  where 𝑥 is a positive arbitrary element. If we assume that the variable 𝑘 is pre-determined, that is
it can only be changed in a continuous way from the initial steady state value 𝑘∗, we set 𝜕𝜌𝑘(0) = 0.
Then, from

𝜕𝜌𝑘(0) = 𝜕𝜌𝑘∗ + 𝑥 = 0 ⇒ 𝑥 = −𝜕𝜌𝑘∗

  At last we obtain the short-run multipliers

𝜕𝜌𝑘(𝑡) = 1
𝑓″(𝑘∗) (1 − 𝑒𝜆∗

𝑠𝑡)

𝜕𝜌𝑐(𝑡) = 1
𝑓″(𝑘∗) (𝜌 − 𝜆𝑢 𝑒𝜆∗

𝑠𝑡)

  for 𝑡 ∈ [0, ∞). In particular we get the impact multipliers, for 𝑡 = 0

𝜕𝜌𝑘(0) = 0
𝜕𝜌𝑐(0) = 𝜕𝜌𝑘∗𝜆𝑠 > 0

  which quantify the ”jump” to the new stable eigenspace, and the long-run multipliers

lim
𝑡→∞

𝜕𝜌𝑘(𝑡) = 𝜕𝜌𝑘∗ < 0
lim

𝑡→∞
𝜕𝜌𝑐(𝑡) = 𝜌𝜕𝜌𝑘∗ = 𝜕𝜌𝑐∗ < 0.

  Therefore, on impact consumption increases, which reduces capital accumulation, which reduces
again consumption through time. The process stops because the reduction in the per-capita stock
will increase marginal productivity which reduces the incentives for further reduction in consump-
tion.

Add figure

Observe also that we should have a ”jump” to the stable manifold to have convergence towards
the new steady state. As we have determined convergence to the steady state within the stable
eigenspace of the variational system, the trajectory we have determined is qualitatively but not
quantitatively exact.
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5.2 Bifurcation in a growth model with externalities

 
Next we consider an extension of Romer (1986). This is an endogenous growth model with

externalities.
We introduce two externalities a (flow) externality on preferences and a (stock) production

externality.
Preference externalities are introduced by assuming that the utility function is 𝑢 = 𝑢(𝑐, 𝐶),

where 𝑐 household’s cosumption and 𝐶 represents aggregate consumption. This means that the
value of consuming 𝑐, at the household level, depends on the. aggregate consumption. This

encompasses two cases: (i) the case in which 𝐶 decreases utility, 𝑢𝑐𝐶(𝑐, 𝐶) = 𝜕2𝑢
𝜕𝑐𝜕𝐶 < 0, which

is typical the case of function going along with the Joneses in which the utility depends on the
difference between the household consumption and the aggregate; (ii) the case in which 𝐶 decreases

utility, 𝑢𝑐𝐶(𝑐, 𝐶) = 𝜕2𝑢
𝜕𝑐𝜕𝐶 > 0 where aggregate consumption is a public good 𝐶, in particular if 𝐶

is directly or indirectly dependent of natural resources or the level of some infrastructures which
can be accessed by households.

Technological externalities are introduced by assuming that the production function is 𝑦 =
𝑓(𝑘, 𝐾) where 𝑘 is the capital stock at the firm’s level and 𝐾 is the aggregate capital stock. We can
assume that both the level of production and the marginal productivity of capital depend on the size
of the economy which is measured by 𝐾. This also encompasses two cases: (i) the case in which

𝐾 increases marginal productivity, 𝑓𝑘𝐾(𝑘, 𝐾) = 𝜕2𝑓
𝜕𝑘𝜕𝐾 > 0, in which agglomeration generates

external economies to the firm with capital 𝑘, which is the case studied in Romer (1986); (ii) the

case in which 𝐾 decreases marginal productivity, 𝑓𝑘𝐾(𝑘, 𝐾) = 𝜕2𝑓
𝜕𝑘𝜕𝐾 < 0 where the aggregate size

of 𝐾 generates congestion.
Furthermore we assume that households are homogeneous and have a mass equal to one.

Behavior of the representative household

The problem for the representative household is

max
𝑐

∫
+∞

0

(𝑐𝐶𝑏)1−𝜃 − 1
1 − 𝜃 𝑒−𝜌𝑡𝑑𝑡

subject to

�̇� = 𝐴 𝑘𝛼 𝐾𝛽 − 𝑐
𝑘(0) = 𝑘0,

lim
𝑡→∞

𝑘(𝑡)𝑒−𝜌𝑡  ≥ 0,

where 𝜃 > 0, 0 < 𝛼 < 1 and 𝑏 and 𝛽 can be any real number.
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Observe that both the utility function 𝑢(⋅) and the production function 𝑓(⋅) are increasing and
concave as regards the households decision variables 𝑐 and 𝑘. Furthermore, because

𝑢𝑐𝐶 = 𝑏(1 − 𝜃)𝑐−𝜃 𝐶𝑏(1−𝜃)−1, and 𝑓𝑘𝐾 = 𝛼 𝛽 𝑘𝛼−1 𝐾𝛽−1,

  if 𝑏(1 − 𝜃) > 0 (𝑏(1 − 𝜃) < 0) there is a positive (negative) consumption externality, and if 𝛽 > 0
(𝛽 < 0) there is a positive (negative) production externality.

The Hamiltonian, at the household level, is

𝐻 = 𝑐1−𝑎𝐶𝑏

1 − 𝑎 + 𝑞 (𝐴𝑘𝛼𝐾𝛽 − 𝑐),

where 𝑞 is the co-state variable, and the necessary (and sufficient) first order conditions are

𝑐−𝑎𝐶𝑏 = 𝑞
̇𝑞 = 𝑞 (𝜌 − 𝛼𝐴𝑘𝛼−1𝐾𝛽)

lim
𝑡→+∞

𝑞(𝑡) 𝑘(𝑡) 𝑒−𝜌𝑡 = 0

  together with the constraints.
We can represent the solution by the system of ODE  

�̇� = 𝐴 𝑘𝛼 𝐾𝛽 − 𝑐  (5.5a)

̇𝑐 = 𝑐
𝜃(𝛼𝐴𝑘𝛼−1𝐾𝛽 + 𝑏(1 − 𝜃)

̇𝐶
𝐶 − 𝜌)  (5.5b)

General equilibrium

The general equilibrium is defined by the path (𝐶(𝑡), 𝐾(𝑡))𝑡∈ℝ+
such that: (1) the representative

consumer solves his problem, (2) there are micro-macro consistency conditions and (3) market
clearing.

In this economy the micro-macro consistency conditions are 𝐶 = 𝑐 e 𝐾 = 𝑘. This means that,
although agents do not decide on the macro variables, the level of the macro variables should be
consistent with the aggregation of individual agents. As we assume agents are homogeneous then
the macro variables should be equal to the household level variables if we assume that the mass of
agents is equal to one.

Therefore the DGE is defined by the trajectories {𝑐(𝑡), 𝑘(𝑡)}+∞
𝑡=0 which solve the system  

�̇� = 𝐴 𝑘𝛼+𝛽 − 𝑐  (5.6a)

̇𝑐 = 𝑐
𝜃 + 𝑏 (𝜃 − 1)(𝛼𝐴𝑘𝛼+𝛽−1 − 𝜌)  (5.6b)

Steady state and local dynamics

Depending on the value of the parameters, we have two cases:

1. if 𝛼 + 𝛽 = 1 there is not a steady state. In this case the solution is a balanced growth path
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2. if 𝛼 + 𝛽 ≠ 1 there is only a steady state such that both variables are positive.

 
If 𝛼 + 𝛽 ≠ 1 then there is a unique steady state in R2

++

�̄� = (𝛼𝐴
𝜌  )

1
1−(𝛼+𝛽)

̄𝑐 = 𝐴𝑘𝛼+𝛽.

The Jacobian of system (5.6a)-(5.6b), evaluated at the steady state (again we are assuming that
𝛼 + 𝛽 ≠ 1) is

𝐽 ∶=
⎛⎜⎜⎜
⎝

𝜌 (𝛼 + 𝛽)
𝛼 −1

𝜌2 (𝛼 + 𝛽 − 1)
𝛼 (𝜃 + 𝑏(𝜃 − 1) 0

⎞⎟⎟⎟
⎠

which has trace, determinant

trace(𝐽) = 𝜌(𝛼 + 𝛽)
𝛼

det (𝐽) = 𝜌2 (𝛼 + 𝛽 − 1)
𝛼 (𝜃 + 𝑏(𝜃 − 1)

 
Comparing to a Ramsey model we see that the trace is different from 𝜌 and both the trace and

the determinant can have any sign:

1. the trace can have any sign and is different, if 𝛽 ≠ 0 from the trace of the Jacobian in a
Ramsey-like model: trace(𝐽) > 0 if 𝛽 > −𝛼 and trace(𝐽) ≤ 0 if 𝛽 > −𝛼

2. the determninant can have any sign: in particular det (𝐽) > 0 if sign(𝛼 + 𝛽 − 1) = sign(𝜃 +
𝑏(𝜃 − 1), det (𝐽) < 0 if sign(𝛼 + 𝛽 − 1) ≠ sign(𝜃 + 𝑏(𝜃 − 1) and det (𝐽) = 0 if 𝛼 + 𝛽 = 1, which
is a case in which there is a BGP.

Characterization of equilibrium dynamics

 
The following cases are possible (see Figure 5.2):
Determinate equilibrium: this is associated to a steady state which is a saddle point, because

there is a unique trajectory converging to the steady state. This case occurs if 𝑏(𝜃 − 1) > −𝜃 and
𝛽 < 1 − 𝛼 or 𝑏(𝜃 − 1) < −𝜃 and 𝛽 > 1 − 𝛼. This means that determinacy can exist with several
types of combinations of externalities: (1) congestion in production, mild negative externalities in
consumption or positive externalities in consumption; (2) positive externalities in production and
negative externalities in consumption;

Indeterminate equilibrium: there is an infinite number of trajectories converging to the
steady state if the steady state is a stable node or a stable focus. In this case expectations are
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Figure 5.2: Bifurcation diagram in (𝑏, 𝛽) for and 0 < 𝛼 < 1, 𝜃 > 1. The red lines separate negative
from positive externalities at the consumption level (the vertical line) and at the production level
(horizontal line).

self-fulfilling, in which, even when expectations are not coordinated the economy converges to the
steady state. This case occurs only if 𝛼 + 𝛽 < 0 and 𝑏(𝜃 − 1) < −𝜃 < 0, which means there should
be congestion in production and negative externalities in consumption.

Balanced growth path: if 𝛼 + 𝛽 = 1, this case can occur with or without externalities in
consumption

Overdeterminate equilibrium: if the steady state is an unstable node or focus the equi-
librium will be reduced to the steady state. Any deviation from it will violate the transversality
condition and, therefore, cannot be an equilibrium (in the economic sense). This case would occur,
for instance, with high positive externalities in both consumption and production.

The Ramsey model will be a particular case in which the two red lines meet.
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