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Chapter 10

Scalar parabolic partial differential
equations

 

10.1 Introduction

Parabolic partial differential equations involve a known function 𝐹 depending on two independent
variables (𝑡, 𝑥), an unknown function of them 𝑢(𝑡, 𝑥), the first partial derivative as regards 𝑡 and
first and second partial derivatives as regards the ”spatial” variable 𝑥:

𝐹(𝑡, 𝑥, 𝑢, 𝑢𝑡, 𝑢𝑥, 𝑢𝑥𝑥) = 0

  where 𝑢 ∶ T × X → ℝ, where T ⊆ ℝ+ and X ⊆ ℝ.
In its simplest form, 𝐹(𝑢𝑡, 𝑢𝑥𝑥) = 0, the equation models the dynamics (in time) of a cross

section distribution driven by dispersion. Dispersion if generated by spatial contact (think about
the change in the distribution of a pollutant spreading within a lake where the water is com-
pletely still). Equation 𝐹(𝑢𝑡, 𝑢𝑥, 𝑢𝑥𝑥) = 0 features both dispersion and advection behaviors (think
about the change in the distribution of a pollutant spreading within a flowing river). Equation
𝐹(𝑢𝑡, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥) = 0 jointly displays dispersion, advection and growth or decay behaviors (think
about the change in the distribution of a pollutant spreading within a flowing river, in which there
is a permanent inflow or outflow of new pollutants). The independent terms, 𝑡 and 𝑥, appear in
function 𝐹(.) if there are some time or spatial specific components.

We will also see in the next chapter that there is a close connection between partial differ-
ential equations and stochastic differential equations. This is the reason explaining the fact that
continuous-time finance has been using parabolic PDE’s since the beginning of the 1970’s.

In economics and finance applications it is important to distinguish between forward (FPDE)
and backward (BPDE) parabolic PDE’s. While the first are complemented with an initial distri-
bution and generate a flow of distributions forward in time, the latter are complemented with a
terminal distribution and its solution generate a flow of distributions consistent with that terminal
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constraint. While for FPDE the terminal distribution is unknown, for BPDE the distribution at
time 𝑡 = 0 is unknown. For planar systems, we may have forward, backward or forward-backward
(FBPDE) parabolic PDE’s. The last case can be seen as a generalization of the saddle-path dy-
namics for ODE’s.

In mathematical finance most applications, such as the Black and Scholes (1973) model, are
PDE’s of the backward type. In economics there is recent interest in PDE’s related to the topi-
cal importance of distribution issues, and, in particular to spatial dynamics modelled by BPDE.
Optimal control of PDE’s and mean-field games usually lead to FBPDE’s.

The body of theory and application of parabolic PDE’s is huge. We only present next some
very introductory results and applications. In particular, we deal with linear PDE’s having explicit
solutions, and which can be useful for studying the dynamics of the distributions for stochastic
differential equations.

The rest of this chapter presents an overview for linear scalar PDEs in section 10.2. Section
10.3 contains the solutions for the simplest FPDEs  

10.2 A general overview of linear scalar parabolic PDE’s

 
Consider function 𝑢(𝑡, 𝑥) where (𝑡, 𝑥) ∈ T×X ⊆ ℝ×ℝ+ and assume it is an at least 𝐶1,2(ℝ+, ℝ)

function1. We define

• linear  parabolic PDE the equation

𝑢𝑡 = 𝑎(𝑡, 𝑥)𝑢𝑥𝑥 + 𝑏(𝑡, 𝑥)𝑢𝑥 + 𝑐(𝑡, 𝑥)𝑢 + 𝑑(𝑡, 𝑥)

if 𝐹(.) is linear in 𝑢 and all its derivatives,  and the coefficients are independent from 𝑢

• a semi-linear  parabolic PDE

𝑢𝑡 = 𝑎(𝑡, 𝑥)𝑢𝑥𝑥 + 𝑏(𝑡, 𝑥)𝑢𝑥 + 𝑐(𝑥, 𝑡, 𝑢)

  it 𝐹(.) is linear in the derivatives of 𝑢, and the coefficients are independent from 𝑢

• a quasi-linear  parabolic PDE

𝑢𝑡 = 𝑎(𝑥, 𝑡, 𝑢)𝑢𝑥𝑥 + 𝑏(𝑥, 𝑡, 𝑢)𝑢𝑥 + 𝑐(𝑥, 𝑡, 𝑢)

  if 𝐹(.) is linear in the derivatives of 𝑢, but the coefficients can be non-linear functions of 𝑢.

A linear equation having constant coefficient, which are independents of (𝑡, 𝑥), is called an
autonomous PDE.

For instance the following linear parabolic equation with constant coefficients

𝑢𝑡 = 𝑎𝑢𝑥𝑥 + 𝑏𝑢𝑥 + 𝑐𝑢 + 𝑑,
1It is, at least, differentiable to the second order as regards 𝑥 and to the first order as regards 𝑡.
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is sometimes called diffusion equation with advection and growth. This is because, the time-
behavior of 𝑢 depends on three terms: a diffusion term, 𝑎𝑢𝑥𝑥, a transport term, 𝑏𝑢𝑥, and a growth
term 𝑐𝑢 + 𝑑. If 𝑎 > 0 (𝑎 < 0) the equation is a forward PDE - FPDE (backward PDE - BPDE)
because the diffusion operator works forward (backward) in time. The second term introduces
a behavior similar to the first-order PDE: it involves a transportation of the solution along the
direction 𝑥. The third term generates a time behavior of the whole distribution 𝑢(𝑥, .) in a way
similar to a solution of a ordinary differential equation, that is, it involves stability or instability
properties.

In the case of a parabolic PDE the stability or instability properties are related to the whole
distribution: we have stability in a distributional sense if there is a solution 𝑢(𝑡, 𝑥) = 𝑢(𝑥)
such that

lim
𝑡→∞

𝑢(𝑡, 𝑥) = 𝑢(𝑥)
  where 𝑢(𝑥) is a stationary distribution.

An important element regarding the existence and characterization of the solution of PDE’s
is related to the characteristics of the support of the distribution X. We can distinguish between
three main cases:

• unbounded or infinite case X = (−∞, ∞)

• the semi-bounded of semi-infinite case X = [0, ∞) or X = (−∞, 0], where 0 can be substituted
by any finite number

• the bounded case X = (𝑥, 𝑥) where both limits are finite.

In order to define problems involving parabolic PDE’s we have to supplement it with a
distribution referred to a point in time (an initial distribution for the forward PDE or terminal
distribution for a backward PDE), and possibly conditions involving known values for the values of
𝑢(𝑡, 𝑥) at the boundaries of X (called boundary conditions), i.e, values for 𝑢(𝑥, ⋅) for points 𝑥 ∈ 𝜕X,
where 𝜕X denotes the boundary of X.

A problem is said to be well-posed if there is a solution to the PDE that satisfies jointly the
initial (or terminal) conditions refering to time, and the ”spatial” boundary conditions, and that
is continuous at those points. In this case we say we have a classic solution. If a problem is not
well-posed it is ill-posed. In this case there are no solutions or classic solutions do not exist (but
generalized or weak solutions can exist).

A necessary condition for a problem involving a FPDE to be well posed is that it is supplemented
with an initial condition in time, and a necessary condition for a problem BPDE to be well-posed
is that it involves a terminal condition in time.

Next we will present the solutions for some simple equations and problems.

10.3 The simplest linear forward equation

 



Paulo Brito Advanced Mathematical Economics 2021/2022 5

10.3.1 The heat equation

The simplest linear parabolic PDE is the heat equation, where 𝑢(𝑡, 𝑥) and is formalized by the
linear forward parabolic PDE2

𝑢𝑡 − 𝑢𝑥𝑥 = 0. (10.1)

 
It describes the dynamics of the temperature distribution when spatial differences in temper-

ature drive the change in spatial distribution of temperature. Consider a homogeneous rod with
infinite width and let 𝑢(𝑡, 𝑥) be the temperature at point 𝑥 ∈ (−∞, ∞) at time 𝑡 ≥ 0. Consider
a small segment of the rod between points 𝑥 and 𝑥 + Δ𝑥, where Δ𝑥 > 0. The difference in the
temperature between the two boundaries of the segment

𝑢(𝑡, 𝑥 + Δ𝑥) − 𝑢(𝑡, 𝑥) = ∫
𝑥+∆𝑥

𝑥
𝑢𝑥(𝑡, 𝑧) 𝑑𝑧

is a measure of the average temperature in the segment at time 𝑡. The instantaneous change in
average temperature in the segment is

𝑑
𝑑𝑡( ∫

𝑥+∆𝑥

𝑥
𝑢(𝑡, 𝑧) 𝑑𝑧) = ∫

𝑥+∆𝑥

𝑥
𝑢𝑡(𝑡, 𝑧) 𝑑𝑧

  If there is a hotter spot located outside the segment, for instance in a leftward region, and because
the heat flows from hot to colder regions, then temperature in the segment Δ𝑥 is lower then in
the leftward region, implying 𝑢𝑥(𝑡, 𝑥) < 0, and it is higher than in the rightward region, implying
𝑢𝑥(𝑡, 𝑥 + Δ𝑥) < 0, and the gradient in the leftward boundary is higher in absolute terms that the
rightward 𝑢𝑥(𝑡, 𝑥) − 𝑢𝑥(𝑡, 𝑥 + Δ𝑥) < 0. Therefore, the temperature flow is

𝑢𝑥(𝑡, 𝑥 + Δ𝑥) − 𝑢𝑥(𝑡, 𝑥) = ∫
𝑥+∆𝑥

𝑥
𝑢𝑥𝑥 (𝑡, 𝑧) 𝑑𝑧.

If we assume that the instantaneous change in the segment’s temperature is equal to the heat that
flows through the segment, that is

𝜕
𝜕𝑡(𝑢(𝑡, 𝑥 + Δ𝑥) − 𝑢(𝑡, 𝑥)) = 𝜕

𝜕𝑥𝑢(𝑡, 𝑥 + Δ𝑥) − 𝜕
𝜕𝑥𝑢(𝑡, 𝑥)

  then

∫
𝑥+∆𝑥

𝑥
𝑢𝑡(𝑡, 𝑧) 𝑑𝑧 = ∫

𝑥+∆𝑥

𝑥
𝑢𝑥𝑥 (𝑡, 𝑧) 𝑑𝑧.

  which is equivalent to

∫
𝑥+∆𝑥

𝑥
𝑢𝑡(𝑡, 𝑧) − 𝑢𝑥𝑥 (𝑡, 𝑧) 𝑑𝑧 = 0,

  which is holds if and only if equation (10.1) is satisfied.
2The first formulation of the heat equation is attributed to Fourier in a presentation to the Institut de France,

and in a book with title Theorie de la Propagation de la Chaleur dans les Solides both in 1807.
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Next we define and solve the simplest linear scalar parabolic partial differential equation
𝑢𝑡(𝑡, 𝑥) = 𝑎 𝑢𝑥𝑥(𝑡, 𝑥) to address the differences in the solution when we consider the domain of
𝑥, X, the existence of side conditions and the sign of 𝑎.

We start with the forward equation, where 𝑎 > 0, in subsection 10.3.3 and deal next with the
backward equation 10.3.5

10.3.2 Fourier transforms

 
There are several methods for solving linear parabolic PDE’s. When the domain of the inde-

pendent variable 𝑥 is (−∞, ∞), the most direct method to find a solution is by using Fourier and
inverse Fourier transforms (see Appendix 10.8).

The method of obtaining a solution follows three steps: first, we transform function 𝑢(𝑡, 𝑥) such
that the PDE is transformed into a parameterized ordinary differential equation; second we solve
this ODE; and finally we transform back to the original function. When the domain of 𝑥 is not the
double-infinite we may have to adapt this method.

There are several possible transformations: sine, cosine, Laplace, Mellin or Fourier transforms.
Next we use the Fourier transform approach.

The Fourier transform of 𝑢(𝑡, 𝑥), taking 𝑡 as a parameter, is 3

𝑈(𝑡, 𝜔) = ℱ[𝑢(𝑡, 𝑥)](𝜔) ≡ ∫
∞

−∞
𝑢(𝑡, 𝑥)𝑒−2𝜋𝑖𝜔𝑥𝑑𝑥 (10.2)

  where 𝑖2 = −1 and the inverse Fourier transform  is

𝑢(𝑡, 𝑥) = ℱ−1[𝑈(𝑡, 𝜔)](𝑥) ≡ ∫
∞

−∞
𝑈(𝑡, 𝜔)𝑒2𝜋𝑖𝜔𝑥𝑑𝜔. (10.3)

  Time derivatives can also have Fourier transform representations: first derivative representations
are

𝑢𝑡(𝑡, 𝑥) = 𝜕
𝜕𝑡  ∫

∞

−∞
𝑈(𝑡, 𝜔)𝑒2𝜋𝑖𝜔𝑥𝑑𝜔 = ∫

∞

−∞
𝑈𝑡(𝑡, 𝜔)𝑒2𝜋𝑖𝜔𝑥𝑑𝜔,

  and
𝑢𝑥(𝑡, 𝑥) = 𝜕

𝜕𝑥  ∫
∞

−∞
𝑈(𝑡, 𝜔)𝑒2𝜋𝑖𝜔𝑥𝑑𝜔 = ∫

∞

−∞
2𝜋𝜔𝑖 𝑈(𝑡, 𝜔)𝑒2𝜋𝑖𝜔𝑥𝑑𝜔,

  and the second derivative is

𝑢𝑥𝑥(𝑡, 𝑥) = ∫
∞

−∞
(2𝜋𝜔𝑖)2𝑈(𝑡, 𝜔)𝑒2𝜋𝑖𝜔𝑥𝑑𝜔 = − ∫

∞

−∞
(2𝜋𝜔)2𝑈(𝑡, 𝜔)𝑒2𝜋𝑖𝜔𝑥𝑑𝜔.

  Next we prove the relationship between a convolution of functions and the multiplication of
Fourier transforms. The function 𝑢(𝑡, 𝑥) is a convolution if it can bewritten as

𝑢(𝑡, 𝑥) = 𝑣(𝑡, 𝑥) ∗ 𝑦(𝑡, 𝑥) ≡ ∫
∞

−∞
𝑣(𝑡, 𝜉)𝑦(𝑡, 𝑥 − 𝜉)𝑑𝜉,

3There are different definitions of Fourier transforms, we use the definition by, v.g., Kammler (2000).
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  where 𝑣(𝑡, 𝑥) and 𝑦(𝑡, 𝑥) are integrable functions in the domain ℝ+ × ℝ. Let Fourier transform of
𝑢(𝑡, 𝑥) be written as a product of two Fourier transforms,

𝑈(𝑡, 𝜔) = ℱ[𝑢(𝑡, 𝑥)](𝜔) = 𝑉 (𝑡, 𝜔)𝑌 (𝑡, 𝜔)

  where 𝑉 (𝑡, 𝜔) = ℱ[𝑣(𝑡, 𝑥)](𝜔) and 𝑌 (𝑡, 𝜔) = ℱ[𝑦(𝑡, 𝑥)](𝜔). Then 𝑢(𝑡, 𝑥) is the inverse Fourier
transform of 𝑈(𝑡, 𝜔) if and only if 𝑢(𝑡, 𝑥) is the convolution

𝑢(𝑡, 𝑥) = ℱ−1[𝑈(𝑡, 𝜔)](𝑥) = ℱ−1[𝑉 (𝑡, 𝜔)𝑌 (𝑡, 𝜔)](𝑥) = 𝑣(𝑡, 𝑥) ∗ 𝑦(𝑡, 𝑥).

 

10.3.3 The forward heat equation in the infinite domain

In this subsection we solve the slightly more general version of equation (10.1) in the infinite
domain for an arbitrary bounded initial condition and for a given initial conditions. The last two
are versions of Cauchy problems in which the side conditions refer to 𝑡 = 0.

Free but bounded initial condition

The simplest linear PDE for an infinite domain 𝑋 = ℝ

𝑢𝑡 − 𝑎𝑢𝑥𝑥 = 0, (𝑡, 𝑥) ∈ ℝ+ × ℝ (10.4)

where 𝑎 > 0.

Proposition 1. Let 𝑘(𝑥) be an arbitrary but bounded function, i.e. satisfying ∫∞
−∞ |𝑘(𝑥)|𝑑𝑥 < ∞.

Then the solution to PDE (10.4) is

𝑢(𝑡, 𝑥) =
⎧{
⎨{⎩

𝑘(𝑥), (𝑡, 𝑥) ∈ {𝑡 = 0}  × ℝ
1

2
√

𝜋𝑎𝑡 ∫
∞

−∞
𝑘(𝜉)𝑒− (𝑥−𝜉)2

4𝑎𝑡  𝑑𝜉, (𝑡, 𝑥) ∈ ℝ++ × ℝ
(10.5)

 

Proof.  The proof proceeds in three steps. First step: transform PDE (10.4) into a parameterized
ODE. Appling the previous definition of Fourier transform to

𝑢𝑡 − 𝑎𝑢𝑥𝑥 = ∫
∞

−∞
(𝑈𝑡(𝑡, 𝜔) + 𝑎(2𝜋𝜔)2𝑈(𝑡, 𝜔)) 𝑒2𝜋𝑖𝜔𝑥𝑑𝜔 = 0.

Defining 𝜆(𝜔) ≡ −𝑎 (2𝜋𝜔)2 (called an eigenfunction) this is equivalent to the characteristic equation
over 𝑈(⋅, 𝜔)

𝑈𝑡(𝑡, 𝜔) = 𝜆(𝜔) 𝑈(𝑡, 𝜔).

Second step: solve the characteristic equation. The solution for the characteristic ODE is

𝑈(𝑡, 𝜔) = 𝐾(𝜔) 𝐺(𝑡, 𝜔)
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  where function 𝐾(𝜔) is arbitrary and 𝐺(.) is called the Gaussian kernel 

𝐺(𝜔, 𝑡) ≡
⎧{
⎨{⎩

1, 𝑡 = 0
𝑒𝜆(𝜔) 𝑡, 𝑡 > 0.

  Third step: transform back from 𝑈(𝑡, 𝜔) to 𝑢(𝑡, 𝑥). Using the inverse Fourier transform

𝑢(𝑡, 𝑥) = ℱ−1[𝑈(𝑡, 𝜔)](𝑥) = ℱ−1[𝐾(𝜔) 𝐺(𝑡, 𝜔)] = 𝑘(𝑥) ∗ 𝑔(𝑡, 𝑥)

  where 𝑘(𝑥) ∗ 𝑔(𝑡, 𝑥) is a convolution, that is

𝑘(𝑥) ∗ 𝑔(𝑡, 𝑥) = ∫
∞

−∞
𝑘(𝜉)𝑔(𝑡, 𝑥 − 𝜉)𝑑𝜉.

  Using the tables in the Appendix, for 𝑔(𝑥, 𝑡) = ℱ−1[𝐺(𝑡, 𝜔)](𝑥) the Gaussian kernel in the initial
variable is

𝑔(𝑡, 𝑥) =
⎧{
⎨{⎩

𝛿(𝑥), 𝑡 = 0
𝑒− 𝑥2

4𝑎𝑡

2
√

𝜋 𝑎 𝑡, 𝑡 > 0

  where 𝛿(.) is the Dirac’s delta function.
Therefore, because and 𝑘(𝑥) = ℱ−1[𝐾(𝑡𝜔)](𝑥),

𝑢(𝑡, 𝑥) =
⎧{
⎨{⎩

𝑘(𝑥), 𝑡 = 0
1

2
√

𝜋𝑎𝑡 ∫
∞

−∞
𝑘(𝜉)𝑒− (𝑥−𝜉)2

4𝑎𝑡  𝑑𝜉, 𝑡 > 0
(10.6)

  where 𝑘(𝑥) is an arbitrary but bounded function, i.e. satisfying ∫∞
−∞ |𝑘(𝑥)|𝑑𝑥 < ∞, and

because ∫∞
−∞ 𝑘(𝜉)𝛿(𝑥 − 𝜉)𝑑𝜉 = 𝑘(𝑥).

Two observations can be made concerning the solution of this PDE.
First, applying the Fourier transform, we change from a distribution in the original variables 𝑥

to a frequency distribution 𝜔.
The transformed PDE becomes a linear ODE the coefficient is eigenfunction

𝜆(𝜔) = −𝑎 (2𝜋𝜔)2 

  which is real and non-positive for any 𝜔 ∈ ℝ: 𝜆(0) = 0 and 𝜆(𝜔) < 0 for 𝜔 ≠ 0 and,
lim𝜔→±∞ 𝜆(𝜔) = −∞. This means that lim𝜔→±∞ 𝑈(𝑡, 𝜔) = 0 for any 𝑡 if 𝐾(𝜔) is bounded.

Second, associated to the previous property is the solution of 𝑢(𝑡, 𝑥) is an expected value of the
arbitrary function where the density function is a Gaussian density function with average 0 and
variance 2 𝑎 𝑡.
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Figure 10.1: Solution for the initial value problem for the heat equation with 𝑎 = 1 and 𝜙(𝑥) = 𝑒−𝑥2

√𝜋 .

Initial value problem Now we consider a well-posed linear FPDE. Assume we know the distri-
bution at time 𝑡 = 0, then we have an initial value problem

⎧{
⎨{⎩

𝑢𝑡 = 𝑎𝑢𝑥𝑥, (𝑡, 𝑥) ∈ (0, ∞) × (−∞, ∞)
𝑢(0, 𝑥) = 𝜙(𝑥) (𝑡, 𝑥) ∈ {𝑡 = 0}  × (−∞, ∞)

(10.7)

  where 𝑎 > 0 and 𝜙(𝑥) is a known bounded function. Applying (10.6), the solution is

𝑢(𝑡, 𝑥) =
⎧{{
⎨{{⎩

𝜙(𝑥), (𝑡, 𝑥) ∈ {𝑡 = 0}  × ℝ

∫
∞

−∞

𝜙(𝜉)
2
√

𝜋 𝑎 𝑡  𝑒−
(𝑥 − 𝜉)2

4𝑎𝑡  𝑑𝜉, (𝑡, 𝑥) ∈ ℝ++  × ℝ

  because ∫∞
−∞ 𝜙(𝜉)𝛿(𝑥 − 𝜉)𝑑𝜉 = 𝜙(𝑥).

Example Figure 10.1 illustrates the behavior of the solution for 𝑎 = 1 and 𝜙(𝑥) = 𝑒−𝑥2

√𝜋 , which
is simplified to

𝑢(𝑡, 𝑥) = 1
√𝜋(1 + 4 𝑡)

𝑒
−

𝑥2

1 + 4 𝑡 .

 
As can be seen, the solution decays through time and converges to a homogeneous distribution

lim
𝑡→∞

𝑢(𝑡, 𝑥) = 0, ∀𝑥 ∈ (−∞, ∞)

 
However, a conservation law holds,

∫
∞

−∞
𝑢(𝑡, 𝑥) 𝑑𝑥 = 1, for each 𝑡 ≥ 0

 

Piecewise-constant initial condition We consider the heat equation with the initial condition

𝜙(𝑥) =
⎧{
⎨{⎩

𝜙0, if 𝑥 ∈ [𝑥, 𝑥] 
0 if 𝑥 ∉ [𝑥, 𝑥)
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Figure 10.2: Solution for the initial value problem for the heat equation with 𝑎 = 1 and piecewise
initial condition.

  where 𝑥 < 𝑥 are both finite and 𝜙0 is a constant. In this case, the solution to the problem is

𝑢(𝑡, 𝑥) = 𝜙0 [ Φ ( 𝑥 − 𝑥√
2𝑎𝑡  ) − Φ ( 𝑥 − 𝑥√

2𝑎𝑡  )]   (10.8)

  where Φ(𝑧) is the standard normal distribution function

Φ(𝑦) = 1√
2𝜋 ∫

𝑦

−∞
𝑒− 𝑧2

2 𝑑𝑧 ∈ (0, 1).

  Observe that ∫∞
−∞ 𝑒− 𝑧2

2 𝑑𝑧 = (2𝜋) 1
2 .

The solution of equation (10.8) is illustrated in Figure 10.2.
In order to prove this result, with apply the general solution, presented in equation (10.6). This

yields the solution of the initial-value problem

𝑢(𝑡, 𝑥) = 𝜙0
2
√

𝜋𝑎𝑡  ∫
𝑥

𝑥
𝑒− (𝑥−𝜉)2

4𝑎𝑡 𝑑𝜉.

To simplify the expression, we make the transformation of variables 𝑧 ≡ (𝑥 − 𝜉)/
√

2𝑎𝑡, and denote
𝑧 ≡ (𝑥 − 𝜉)/

√
2𝑎𝑡 and 𝑧 ≡ (𝑥 − 𝜉)/

√
2𝑎𝑡. Then, because 𝑑𝑧 = −1/

√
2𝑎𝑡𝑑𝜉 the solution simplifies 4

1√
4𝜋𝑎𝑡

∫
𝑥

𝑥
𝑒−(𝑥−𝜉)2/4𝑎𝑡𝑑𝜉 = −

√
2𝑎𝑡√

4𝜋𝑎𝑡
∫

(𝑥−𝑥)/
√

2𝑎𝑡

(𝑥−𝑥)/
√

2𝑎𝑡
𝑒−𝑧2/2𝑑𝑧

= 1√
2𝜋 (∫

(𝑥−𝑥)/
√

2𝑎𝑡

−∞
𝑒−𝑧2/2𝑑𝑧 − ∫

(𝑥−𝑥)/
√

2𝑎𝑡

−∞
𝑒−𝑧2/2𝑑𝑧) =

= Φ ( 𝑥 − 𝑥√
2𝑎𝑡  ) − Φ ( 𝑥 − 𝑥√

2𝑎𝑡  ) .

 
4Recalling the formula for integration by substitution of variables, if we set 𝑧 = 𝜑(𝜉) and 𝜉 ∈ (𝑎, 𝑏) then

∫
𝜑(𝑏)

𝜑(𝑎)
𝑓(𝑧)𝑑𝑧 = ∫

𝑏

𝑎
𝑓(𝜑(𝜉)) 𝜑′ (𝜉) 𝑑𝜉.
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10.3.4 The forward linear equation in the semi-infinite domain

Now consider the equation defined on the semi-infinite domain for 𝑥, that is X = ℝ+. This case is
more interesting for economic applications in which the independent variable can only take non-
negative values, for instance when 𝑥 refers to a stock.

The FPDE we consider is
𝑢𝑡 − 𝑎𝑢𝑥𝑥 = 0, (𝑡, 𝑥) ∈ ℝ2

+ (10.9)

where 𝑎 > 0.

Proposition 2. The solution to equation (10.11) is

𝑢(𝑡, 𝑥) = 1
2
√

𝜋 𝑎 𝑡 ∫
∞

0
𝑘 (𝜉) (𝑒− (𝑥−𝜉)2

4 𝑎 𝑡 − 𝑒− (𝑥+𝜉)2
4 𝑎 𝑡 )  𝑑𝜉, 𝑡 > 0. (10.10)

where 𝑘(𝑥) ∶ X → ℝ is an arbitrary bounded function.

Proof. We solve this equation by using the method of images. It consists in introducing the
following extension to the arbitrary function 𝑘(𝑥)

�̃�(𝑥) =
⎧{
⎨{⎩

𝑘(𝑥), if 𝑥 ≥ 0
−𝑘(−𝑥) if 𝑥 < 0

  where 𝑘(.) is an odd function satisfying 𝑘(−𝑥) = −𝑘(𝑥). Using the solution (10.6) for 𝑡 > 0 we
have

𝑢(𝑡, 𝑥) = 1
2
√

𝜋𝑎𝑡 ∫
∞

−∞
�̃� (𝜉)𝑒− (𝑥−𝜉)2

4𝑎𝑡  𝑑𝜉 =

= 1
2
√

𝜋𝑎𝑡 (∫
0

−∞
�̃� (𝜉)𝑒− (𝑥−𝜉)2

4𝑎𝑡  𝑑𝜉 + ∫
∞

0
�̃� (𝜉)𝑒− (𝑥−𝜉)2

4𝑎𝑡  𝑑𝜉) =

= 1
2
√

𝜋𝑎𝑡 (− ∫
∞

0
𝑘 (𝜉)𝑒− (𝑥+𝜉)2

4𝑎𝑡  𝑑𝜉 + ∫
∞

0
𝑘 (𝜉)𝑒− (𝑥−𝜉)2

4𝑎𝑡  𝑑𝜉)

where the last step involves integration by substitution: i.e., if we define 𝑢 = −𝑥 for 𝑥 ∈ [0, ∞)
then ∫0

−∞ 𝑓(𝑢)𝑑𝑢 = − ∫0
∞ 𝑓(−𝑥)𝑑𝑥 = ∫∞

0 𝑓(−𝑥)𝑑𝑥. Then the solution of equation (10.11) is equation
(10.11).

The solution to the initial-value problem

⎧{
⎨{⎩

𝑢𝑡 − 𝑎𝑢𝑥𝑥 = 0, for 𝑎 > 0, (𝑡, 𝑥) ∈ ℝ2
+

𝑢(0, 𝑡) = 𝑢0(𝑥), for (𝑡, 𝑥) ∈ {𝑡 = 0} × ℝ+
(10.11)

is
𝑢(𝑡, 𝑥) = 1

2
√

𝜋 𝑎 𝑡 ∫
∞

0
𝑢0(𝜉) (𝑒− (𝑥−𝜉)2

4 𝑎 𝑡 − 𝑒− (𝑥+𝜉)2
4 𝑎 𝑡 )  𝑑𝜉, 𝑡 > 0. (10.12)

  We obtain this result by direct application of equation (10.12).
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Example Consider the initial-value problem in which the initial distribution is log-normal

𝑢0(𝑥) = 𝑒−
(ln 𝑥  − 𝜇)2

2𝜎2

2
√

𝜋 𝑥2 𝜎2

  if we substitute in equation (10.12) we have the solution depicted in Figure 10.4 for several
moments in time.

We observe that the solution is not conservative, i.e. the integral 𝑈(𝑡) = ∫∞
0 𝑢(𝑡, 𝑥) 𝑑𝑥  decays

in time such that lim𝑡→∞  𝑈(𝑡) = 0.

  5 10 15 20

0.05

0.10

0.15

0.20

0.25

0.30

Figure 10.3: Solution for the initial value problem for the heat equation in the semi-infinite line
with 𝑎 = 1 and an initial log-normal density.

10.3.5 The backward heat equation

In finance applications and associated to Euler equation in optimal control problems, we sometimes
need to solve backward parabolic PDE.

The simplest parabolic BPDE equation in the infinite domain for 𝑥 and for the semi-infinite
domain for 𝑡 is

𝑢𝑡 + 𝑎𝑢𝑥𝑥 = 0, (𝑡, 𝑥) ∈ [0, 𝑇 ] × (−∞, ∞) (10.13)

where 𝑎 > 0.

Proposition 3. Consider the BPDE equation (10.13). The solution is

𝑢(𝑡, 𝑥) =
⎧{
⎨{⎩

𝑘(𝑥), 𝑡 = 𝑇
1

√4𝜋𝑎(𝑇 −𝑡) ∫
∞

−∞
𝑘(𝜉)𝑒− (𝑥−𝜉)2

4𝑎(𝑇−𝑡)  𝑑𝜉, 𝑡 ∈ (0, 𝑇 )

 

Proof. In order to solve it we introduce a change in variables 𝜏 = 𝑇 − 𝑡 and denote 𝑣(𝜏, 𝑥) =
𝑢(𝑡(𝜏), 𝑥) where 𝑡(𝜏) = 𝑇 − 𝜏 . As

𝑣𝜏(𝜏, 𝑥) = −𝑢𝑡(𝑡(𝜏), 𝑥), and 𝑣𝑥𝑥(𝜏, 𝑥) = 𝑢𝑥𝑥(𝑡(𝜏), 𝑥)
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  Then 𝑢𝑡(𝑡, 𝑥) = −𝑎𝑢𝑥𝑥(𝑡, 𝑥) is equivalent to

𝑣𝜏(𝜏, 𝑥) = 𝑎𝑣𝑥𝑥(𝜏, 𝑥).

  Using the solution already found in equation (10.6) we get

𝑣(𝜏, 𝑥) =
⎧{
⎨{⎩

𝑘(𝑥), 𝜏 = 0

∫
∞

−∞
𝑘(𝜉) (4𝜋𝑎𝜏)−1/2 𝑒− (𝑥−𝜉)2

4𝑎𝜏  𝑑𝜉, 𝜏 ∈ (0, 𝑇 ).

Transforming back to 𝑢(𝑡, 𝑥) we have solution.

A problem involving a backward PDE is only well posed if together with the PDE we have a
terminal condition, for example 𝑢(𝑇 , 𝑥) = 𝜙𝑇 (𝑥). In this case the value of the variable at time
𝑡 = 0 becomes endogenous.

Consider the terminal-value problem

⎧{
⎨{⎩

𝑢𝑡 = −𝑎𝑢𝑥𝑥, (𝑡, 𝑥) ∈ (−∞, ∞) × (0, 𝑇 ]
𝑢(𝑇 , 𝑥) = 𝜙𝑇 (𝑥) (𝑡, 𝑥) ∈ (−∞, ∞) × { 𝑡 = 𝑇 }. 

  The solution is

𝑢(𝑡, 𝑥) =
⎧{
⎨{⎩

𝜙𝑇 (𝑥), (𝑡, 𝑥) ∈ {𝑡 = 𝑇 }  × ℝ 
1

√4𝜋𝑎(𝑇 − 𝑡)
∫

∞

−∞
𝜙𝑇 (𝜉)𝑒− (𝑥−𝜉)2

4𝑎(𝑇−𝑡)  𝑑𝜉, (𝑡, 𝑥) ∈ (0, 𝑇 ) × ℝ

The initial distribution can be obtained by setting 𝑡 = 0

𝑢(0, 𝑇 ) = 1
√4𝜋𝑎(𝑇 − 𝑡)

∫
∞

−∞
𝜙𝑇 (𝜉)𝑒− (𝑥−𝜉)2

4𝑎𝑇  𝑑𝜉.

 

10.4 The homogeneous linear PDE

 
The general forward linear parabolic PDE in the infinite domain is

𝑢𝑡 = 𝑎 𝑢𝑥𝑥 + 𝑏 𝑢𝑥 + 𝑐 𝑢, (𝑡, 𝑥) ∈ ℝ+ × ℝ

  where 𝑎 > 0. The dynamics of 𝑢(𝑡, 𝑥) contains three terms: a diffusion term, if 𝑎 ≠ 0, a transport
term, if 𝑏 ≠ 0, and a growth or decay term if 𝑐 > 0 or 𝑐 < 0.

In order to solve the equation, we can follow one of two alternative methods:

1. transform the equation into a heat equation, solve the heat equation and transform back to
the initial variables.

2. apply the Fourier transform method to transform the PDE into a parameterized ODE, solve
it, and apply inverse Fourier transforms.
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10.4.1 Equation without transport term

If the linear forward PDE does not contain a transport term, we have

𝑢𝑡 = 𝑎 𝑢𝑥𝑥 + 𝑐 𝑢, (𝑡, 𝑥) ∈ (0, ∞) × (−∞, ∞) (10.14)

  where 𝑎 > 0 and 𝑐 ≠ 0, which has solution, for an arbitrary bounded function 𝜙(𝑥)

𝑢(𝑡, 𝑥) =
⎧{{
⎨{{⎩

∫
∞

−∞
𝜙(𝜉)𝛿(𝑥 − 𝜉)𝑑𝜉 = 𝜙(𝑥), (𝑡, 𝑥) ∈ {𝑡 = 0}  × ℝ

𝑒𝑐 𝑡  ∫
∞

−∞
𝜙(𝜉) 1√

4 𝜋 𝑎 𝑡
𝑒− (𝑥−𝜉)2

4 𝑎 𝑡  𝑑𝜉, (𝑡, 𝑥) ∈ ℝ+  × ℝ.

  To find the solution, we use the first method. First, define 𝑣(𝑡, 𝑥) = 𝑒−𝑐 𝑡𝑢(𝑡, 𝑥), which has
derivatives 𝑣𝑡 = −𝑐𝑒−𝑐 𝑡𝑢 + 𝑒−𝑐 𝑡𝑢𝑡 and 𝑣𝑥𝑥 = 𝑒−𝑐𝑡𝑢𝑥𝑥. Second, equation (10.14) is equivalent to
the simplest linear equation 𝑣𝑡 = 𝑎𝑣𝑥𝑥 which has solution (10.6). Third, as 𝑢(𝑡, 𝑥) = 𝑒𝑐 𝑡 𝑣(𝑡, 𝑥) we
obtain the solution

The dynamics of the solution depends crucially on the sign of 𝑏:

lim
𝑡→∞

𝑢(𝑡, 𝑥) =
⎧{
⎨{⎩

0 if 𝑐 < 0
∞ if 𝑐 > 0

 
Figure 10.4 illustrates the cases in which 𝑐 < 0 and 𝑐 > 0. In both cases we see that the

long-time behavior of the solution is commanded by 𝑒𝑐 𝑡: if 𝑐 < 0 then lim𝑡→∞ 𝑢(𝑡, 𝑥) = 0, for any
𝑥 ∈ ℝ, and if 𝑐 > 0 then lim𝑡→∞ 𝑢(𝑡, 𝑥) ∝ lim𝑡→∞ 𝑒𝑐 𝑡 = ∞, for any 𝑥 ∈ ℝ.

This means that the diffusion equation display asymptotic stability if 𝑐 < 0 and instability if
𝑐 > 0, both in a distributional sense. In the first case the solution 𝑢(𝑡, 𝑥) is bounded and in the
second case it is unbounded.

Figure 10.4: Solution for the initial value problem for the heat equation with 𝑎 = 1 and 𝜙(𝑥) = 𝑒−𝑥2

√𝜋
and 𝑐 = −0.5 and 𝑐 = 0.5.
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10.4.2 The general homogeneous diffusion equation

The initial value problem for a a general linear homogeneous (forward) diffusion equation is

⎧{
⎨{⎩

𝑢𝑡(𝑡, 𝑥) = 𝑎 𝑢𝑥𝑥(𝑡, 𝑥) + 𝑏 𝑢𝑥(𝑡, 𝑥) + 𝑐 𝑢(𝑡, 𝑥), (𝑡, 𝑥) ∈ (0, ∞) × (−∞, ∞)
𝑢(0, 𝑥) = 𝜙(𝑥), (𝑡, 𝑥) ∈ {𝑡 = 0} × (−∞, ∞),

(10.15)

  where 𝑎 > 0, 𝑏 ≠ 0 and 𝑐 ≠ 0 and 𝜙(𝑥) is a bounded function over 𝑋 = ℝ.

Proposition 4. The solution to problem (10.15) is

𝑢(𝑡, 𝑥) = ∫
∞

−∞
𝜙(𝑠) 1√

4𝜋𝑎𝑡
exp (−(𝑥 − 𝑠)2 + 2 𝑏 (𝑥 − 𝑠) 𝑡 + (𝑏2 − 4𝑎𝑐) 𝑡2

4 𝑎 𝑡 ) 𝑑𝑠 (10.16)

 

Proof. We will solve this problem using the Fourier transform representation of equation 𝑢𝑡 −
(𝑎𝑢𝑥𝑥 + 𝑏𝑢𝑥 + 𝑐𝑢) = 0. Using inverse Fourier transforms yields

𝑢𝑡(𝑡, 𝑥) − 𝑎𝑢𝑥𝑥(𝑡, 𝑥) − 𝑏𝑢𝑥 − 𝑐𝑢(𝑡, 𝑥) = ∫
∞

−∞
𝑒2𝜋𝑖𝜔𝑥 [ 𝑈𝑡(𝑡, 𝜔) + 𝜆(𝜔)𝑈(𝑡, 𝜔)]  𝑑𝜔 = 0.

  where the eigenfunction is a complex-valued function of 𝜔 5 

𝜆(𝜔) ≡ 𝑎(2𝜋𝜔)2 − 𝑐 − 2𝜋 𝑏 𝜔 𝑖, 𝑖 ≡
√

−1

  Therefore, the PDE (10.15) has the characteristic equation

𝑈𝑡(𝑡, 𝜔) = −𝜆(𝜔)𝑈(𝑡, 𝜔), (𝑡, 𝜔) ∈ ℝ+ × ℝ,

  which has the explicit solution

𝑈(𝑡, 𝜔) = Φ(𝜔) 𝐺(𝑡, 𝜔), for𝑡 ∈ [0, ∞)

  where Φ(𝜔) = ℱ[ 𝜙(𝑥)] (𝜔) is the Fourier transform of the initial distribution, and 𝐺(𝑡, 𝜔) is the
Gaussian kernel

𝐺(𝑡, 𝜔) = 𝑒−𝜆(𝜔)𝑡, for 𝑡 > 0.

  We obtain the solution of problem (10.15) by applying the inverse Fourier transform

𝑢(𝑡, 𝑥) = ℱ−1 [𝑈(𝑡, 𝜔)]  (𝑥) = ℱ−1 [Φ(𝜔) 𝐺(𝑡, 𝜔)]  (𝑥) = ∫
∞

−∞
𝜙(𝑠)𝑔(𝑡, 𝑥 − 𝑠)𝑑𝑠

  where (see the Appendix 10.8 )

𝑔(𝑡, 𝑦) = ℱ−1 [ 𝑒−𝜆(𝜔)𝑡]   = 1√
4𝜋𝑎𝑡

exp (−𝑦2 + 2𝑏𝑡𝑦 + (𝑏2 − 4𝑎𝑐)𝑡2

4𝑎𝑡 ), (10.17)

  because 𝑎𝑡 > 0.
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Figure 10.5: Solution for the initial value problem linear PDE for 𝑎 = 1, 𝑏 = 1 and 𝑏 = −1 and
𝑐 = −0.5 and 𝑏 = 1 and 𝑏 = −1 and 𝑐 = 0.5.

Figure 10.5 illustrates the solution (10.16) for negative (left figures) and positive (right figures)
values for 𝑏 and negative (upper figures) and positive (lower figures) values of 𝑐. It is clear that
while 𝑏 introduces a transportation in the positive direction, if 𝑏 < 0, or in the negative direction,
if 𝑏 > 0, 𝑐 is associated to the time stability of the whole distribution.

10.5 Non-autonomous linear equations

Next we consider two non-autonomous equations in which there is one term depending on the
independent variables (𝑡, 𝑥)

Non-autonomous diffusion equation

A non-autonomous linear PDE in which the independent term is dependent on the ”spatial” variable
can be

𝑢𝑡 = 𝑎𝑢𝑥𝑥 + 𝑏𝑢 + 𝑑(𝑥), (𝑡, 𝑥) ∈ (−∞, ∞) × (0, ∞)
5The advection term, involving the first derivative has a complex-valued Fourier transform representation

𝑢𝑥(𝑡, 𝑥) = 𝜕
𝜕𝑥 (∫

∞

−∞
𝑈(𝑡, 𝜔)𝑒2𝜋𝑖𝑥𝜔𝑑𝜔) = ∫

∞

−∞
2𝜋𝜔𝑖 𝑈(𝑡, 𝜔)𝑒2𝜋𝑖𝑥𝜔𝑑𝜔.

. 
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  where 𝑎 > 0. It can be proved (see Exercise 1) that the solution for 𝑡 > 0 is

𝑢(𝑡, 𝑥) = 𝑒𝑏𝑡
√

4𝜋𝑎𝑡
∫

∞

−∞
𝜙(𝜉)𝑒− (𝑥−𝜉)2

4𝑎𝑡  𝑑𝜉 + 1
√4𝜋𝑎(𝑡 − 𝜏)

  ∫
𝑡

0
𝑒𝑏(𝑡−𝜏) ∫

∞

−∞
𝑑(𝜉)𝑒− (𝑥−𝜉)2

4𝑎(𝑡−𝜏)  𝑑𝜉𝑑𝜏

 

Non-homogeneous heat equation A non-homogeneous and non-autonomous (forward) heat
equation in which the independent term is dependent on (𝑡, 𝑥) can be

𝑢𝑡 − 𝑎𝑢𝑥𝑥 − 𝑏(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ (0, ∞) × (−∞, ∞) (10.18)

  this equation has a component which is not affected by 𝑢, although it changes with (𝑡, 𝑥).
In order to solve it, we again use inverse Fourier transforms to get an equivalent ODE in

transformed variables 𝑈(𝑡, 𝜔),

𝑈(𝑡, 𝜔) = −𝜆(𝜔)𝑈(𝑡, 𝜔) + 𝐵(𝑡, 𝜔)

  where 𝐵(𝑡, 𝜔) = ℱ[𝑏(𝑡, 𝑥)](𝜔) and 𝜆(𝜔) = (2 𝜋 𝜔)2 𝑎. The solution to equation (10.18)is

𝑈(𝑡, 𝜔) = 𝐾(𝜔)𝐺(𝑡, 𝜔) + ∫
𝑡

0
𝐵(𝑠, 𝜔) 𝐺(𝑡 − 𝑠, 𝜔)𝑑𝑠,

  where 𝐺(𝑡, ⋅) is a Gaussian kernel. Applying inverse Fourier transforms yields

𝑢(𝑡, 𝑥) = 𝑘(𝑥) ∗ 𝑔(𝑡, 𝑥) + ∫
𝑡

0
𝑏(𝑠, 𝑥) ∗ 𝑔(𝑡 − 𝑠, 𝑥)𝑑𝑠.

  Therefore, the solution to the parabolic PDE (10.18) is, for 𝑡 > 0,

𝑢(𝑡, 𝑥) = 1√
4𝜋𝑎𝑡

∫
∞

−∞
𝑘(𝜉)𝑒− (𝑥−𝜉)2

4𝑎𝑡 𝑑𝜉 + ∫
𝑡

0

1
√4𝜋𝑎(𝑡 − 𝑠)

∫
∞

−∞
𝑒− (𝑥−𝜉)2

4𝑎(𝑡−𝑠) 𝑏(𝑠, 𝜉)𝑑𝜉𝑑𝑠.

The solution can converge to a spatially non-homogenous distribution.

10.6 Fokker-Planck-Kolmogorov equation

 
We will see in the chapter on stochastic differential equations, that the probability distribution

of a diffusion  process follows a particular parabolic PDE, called the Fokker-Planck-Kolmogorov
equation. This equation is having an increase attention, also in economics, as a model for processes
satisfying a conservation law.

Assume a process (𝑝(𝑡, 𝑥))(𝑡,𝑥)∈T×X such where 𝑝(𝑡, 𝑥) ∶ 𝑇 × 𝑋 → (0, 1), and

∫
𝑋

𝑝(𝑡, 𝑥)𝑑𝑥 = 1, for every  𝑡 ∈ 𝑇 ,
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  which is a conservation law. The Fokker-Planck-Kolmogorov equation for this process can have
the form

𝜕𝑡𝑝(𝑡, 𝑥) = 1
2𝜕𝑥𝑥 (𝑎(𝑡, 𝑥)2 𝑝(𝑡, 𝑥)) − 𝜕𝑥(𝑏(𝑡, 𝑥) 𝑝(𝑡, 𝑥)) (10.19)

  where we assume 𝑝(0, 𝑥) is known and satisfies

∫
𝑋

𝑝(0, 𝑥)𝑑𝑥 = 1.

  In applications resulting from stochastic differential equations, the initial state is known 𝑥 = 𝑥0
and the dynamics of a probability distribution is given by Kolmogorov forward equation (or Fokker-
Planck equation) and the initial condition 𝑝(0, 𝑥) = 𝛿(𝑥−𝑥0) where 𝛿(⋅) is Dirac’s delta generalized
function.

10.6.1 The simplest problem

The simplest model has constant coefficients 𝑏(𝑡, 𝑥) = 𝜇 and 𝑎(𝑡, 𝑥) = 𝜎 and a Dirac delta initial
function:

⎧{
⎨{⎩

𝜕𝑡𝑝(𝑡, 𝑥) = 𝜎2

2  𝜕𝑥𝑥𝑝(𝑡, 𝑥) − 𝜇𝜕𝑥𝑝(𝑡, 𝑥), (𝑡, 𝑥) ∈ ℝ+ × ℝ
𝑝(0, 𝑥) = 𝛿(𝑥 − 𝑥0) (𝑡, 𝑥) ∈ { 𝑡 = 0}  × ℝ

(10.20)

The solution is a Gamma probability density

𝑝(𝑡, 𝑥) = 1√
2 𝜋 𝜎2 𝑡

exp −(𝑥 − 𝑥0 − 𝜇 𝑡
2 𝜎2 𝑡 )

2
  

= Γ( − 𝜇𝑡; 𝜎2

2 , 𝑥 − 𝑥0) (𝑡, 𝑥) ∈ ℝ+ × ℝ.

This equation is a particular case of equation (10.15).
Figure 10.6  presents an illustration of the solution

 

Figure 10.6: Solution for (10.20)  for 𝑥0 = 5, 𝜇 = 1 and 𝜎 = 0.5.
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10.6.2 The distribution associated to the Ornstein Uhlenbeck equation

An important stochastic process has a probability distribution represented by a linear PDE with
(non-autonomous) coefficients 𝑏(𝑡, 𝑥) = 𝜇0 + 𝜇1 𝑥 and 𝑎(𝑡, 𝑥) = 𝜎 and a Dirac delta initial distribu-
tion:

⎧{
⎨{⎩

𝜕𝑡𝑝(𝑡, 𝑥) = −𝜕𝑥((𝜇0, +𝜇1𝑥) 𝑝(𝑡, 𝑥)) + 1
2 𝜕𝑥𝑥(𝜎2 𝑝(𝑡, 𝑥)), (𝑡, 𝑥) ∈ ℝ+ × ℝ

𝑝(0, 𝑥) = 𝛿(𝑥 − 𝑥0) (𝑡, 𝑥) ∈ { 𝑡 = 0}  × ℝ
(10.21)

The solution is a Gaussian density function

𝑝(𝑡, 𝑥) ∼ 𝑁(𝜇0
𝜇1

− (𝜇0
𝜇1

+  𝑥0) 𝑒𝜇1𝑡 , 𝜎2

2 𝜇1
(𝑒2𝜇1𝑡 − 1 )),

because

𝑝(𝑡, 𝑥) = (𝜋 𝜎2

𝜇1
(𝑒2 𝜇1 𝑡 − 1))

− 1
2

exp { −
(𝑥 + 𝜇0

𝜇1
− (𝜇0

𝜇1
+  𝑥0))

2

𝜎2

𝜇1
(𝑒2 𝜇1 𝑡 − 1)

}  (𝑡, 𝑥) ∈ ℝ+ × ℝ (10.22)

    Exercise: To prove function (10.22) is the solution of problem (10.21) we follow the following
steps. First, apply Fourier transforms. Using the results in the appendix, we find

ℱ[𝜕𝑡𝑝(𝑡, 𝑥)] (𝜔) = 𝜕𝑡𝑃(𝑡, 𝜔),  

 

ℱ[ −𝜕𝑥((𝜇0, +𝜇1𝑥) 𝑝(𝑡, 𝑥))+1
2 𝜕𝑥𝑥(𝜎2 𝑝(𝑡, 𝑥))] (𝜔) = −𝜇02𝜋𝜔𝑖 𝑃(𝑡, 𝜔)+𝜇1𝜔𝜕𝑤𝑃(𝑡, 𝜔)−2(𝜋𝜎𝜔)2𝑃(𝑡, 𝜔)

  and
 ℱ[𝑝(0, 𝑥)] (𝜔) = 𝑒−2𝜋𝜔𝑖𝑥0 .

  Therefore, the characteristic equation is a first-order PDE in the Fourier transforms

⎧{
⎨{⎩

𝜕𝑡𝑃(𝑡, 𝜔) − 𝜇1𝜔 𝜕𝑤𝑃(𝑡, 𝜔) = 𝜆(𝜔) 𝑃(𝑡, 𝜔) (𝑡, 𝜔) ∈ ℝ+  × ℝ
𝑃(0, 𝜔) = 𝑒−2𝜋𝜔𝑖𝑥0 (𝑡, 𝜔) ∈ {𝑡 = 0}  × ℝ

  where the eigenfunction 𝜆(𝜔) is a complex function of 𝜔

𝜆(𝜔) = −(2(𝜋𝜔𝜎)2 + 2𝜋𝜔𝜇0𝑖).

  Second, we can solve this PDE by using the method of characteristics: along a characteristic let
𝜔 = 𝑊(𝑡), for any 𝑡 ∈ [0, ∞) and write ̂𝑃 (𝑡) = 𝑃(𝑡, 𝑊(𝑡)) and Γ(𝑡) = 𝜆(𝑊(𝑡)). Taking the time
derivative to ̂𝑃 (𝑡) we have

𝑑 ̂𝑃 (𝑡)
𝑑𝑡   = 𝜕𝑡𝑃(𝑡, 𝑊(𝑡)) + 𝜕𝑤𝑃(𝑡, 𝑊(𝑡))𝑑𝑊(𝑡)

𝑑𝑡
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  which is consistent with PDE in the transformed variables along a characteristic if it is the solution
of the ODE system

⎧{
⎨{⎩

 𝑑𝑊(𝑡)
𝑑𝑡 = −𝜇1 𝑊(𝑡),

𝑑 ̂𝑃 (𝑡)
𝑑𝑡   = Γ(𝑡) ̂𝑃 (𝑡), for ̂𝑃 (0) = 𝑃(0, 𝑊(0)) = 𝑒−2𝜋𝑊(0)𝑖𝑥0 .

  Solving the first ODE yields 𝑊(𝑡) = 𝑊(0)𝑒−𝜇1𝑡, and as 𝑊(𝑡) = 𝜔, we have, along a characteristic,
𝑊(0) = 𝜔 𝑒𝜇1𝑡.

Solving the second initial-value problem, and because 𝑃(𝑡, 𝜔) = ̂𝑃 (𝑡) then

𝑃(𝑡, 𝜔) = ̂𝑃 (0) 𝑒∫𝑡
0 Γ(𝑠)𝑑𝑠

= exp { − 2 𝜋 𝑖 𝑥0 𝑊(0) − 2 (𝜋 𝜎 𝑊(0))2 ∫
𝑡

0
𝑒−2𝜇1𝑠𝑑𝑠 − 2 𝜋 𝑖 𝜇0 𝑊(0) ∫

𝑡

0
𝑒−𝜇1𝑠𝑑𝑠}

= exp { − (𝜋𝜎)2

𝜇1
𝑊(0)2 (1 − 𝑒−2𝜇1𝑡) + 2 𝜋 𝑖 𝑊(0) (𝜇0

𝜇1
(𝑒−𝜇1𝑡 − 1) − 𝑥0)}

  substituting 𝑊(0) = 𝜔 𝑒𝜇1𝑡 yields the function

𝑃(𝑡, 𝜔) = exp { − 𝑎 (2 𝜋 𝜔)2 + 𝑏 (2 𝜋 𝑖 𝜔)} 

  where
𝑎 ≡ 𝜎2

4𝜇1
(𝑒2𝜇1𝑡 − 1) and 𝑏 ≡ 𝜇0

𝜇1
− (𝜇0

𝜇1
+ 𝑥0) 𝑒𝜇1𝑡.

  Transforming back (using the inverse Fourier transform in Appendix 10.8) , that is making
𝑝(𝑡, 𝑥) = ℱ−1[𝑃 (𝑡, 𝜔)] (𝑥) we find function (10.22).

Characterizing the solution:  We see that if 𝜇1 < 0 then

lim
𝑡→∞

𝑝(𝑡, 𝑥) ∼ 𝑁( − 𝜇0
𝜇1

, − 𝜎2

2𝜇1
)

  this means that the distribution is ergodic: for any initial value 𝑥0 it tends asymptotically to a
normal distribution (see Figure 10.7).

10.7 Economic applications

 

10.7.1 The distributional Solow model

 
In Brito (2004) we prove that in an economy in which the capital stock is distributed in an

heterogeneous way between regions, 𝐾(𝑡, 𝑥), if there is an infinite support, and there are free
capital flows between regions, the budget constraint for the location 𝑥 can be represented by the
parabolic PDE.
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Figure 10.7: Solution for (10.20)  for 𝑥0 = 5, 𝜇0 = 1, 𝜇1 = −1 and 𝜎 = 0.5.

Consider the accounting balance between savings and internal and external investment for a
region 𝑥 at time 𝑡

𝐼(𝑡, 𝑥) + 𝑇 (𝑡, 𝑥) = 𝑆(𝑡, 𝑥)

  where 𝐼(𝑡, 𝑥) and 𝑆(𝑡, 𝑥) is investment and domestic savings of location 𝑥 at time 𝑡 and 𝑇 (𝑡, 𝑥) is
the savings flowing to other regions.

Assume that the capital flow for a region of length Δ𝑥 is symmetric to the capital distribution
gradient to neighboring regions:

𝑇 (𝑡, 𝑥)Δ𝑥 = − (𝐾𝑥(𝑥 + Δ𝑥, 𝑡) − 𝐾𝑥(𝑡, 𝑥))

  that is capital flows proportionaly and in a reverse direction to the ”spatial gradient” of the
capital distribution: regions with high capital intensity will tend to ”leak” capital to other regions.
If Δ𝑥 → 0 leads to 𝑇 (𝑡, 𝑥) = −𝐾𝑥𝑥(𝑡, 𝑥).

If there is no depreciation then 𝐼(𝑡, 𝑥) = 𝐾𝑡(𝑡, 𝑥). If the technology is 𝐴𝐾 and the savings rate
is determined as in the Solow model then 𝑆(𝑡, 𝑥) = 𝑠𝐴𝐾(𝑡, 𝑥) where 0 < 𝑠 < 1 and 𝐴 is assume to
be spatially homogeneous.

Therefore we obtain a distributional Solow equation for an economy composed by heterogenous
regions

𝐾𝑡 = 𝐾𝑥𝑥 + 𝑠𝐴𝐾, (𝑡, 𝑥) ∈ (−∞, ∞) × (0, ∞)

  We can define a spatially-homogenous balanced growth path (BGP) as

𝐾(𝑡) = 𝐾𝑒𝛾𝑡

  where 𝛾 = 𝑠𝐴.
Then, if we define the deviations as regards the BGP as 𝑘(𝑡, 𝑥) = 𝐾(𝑡, 𝑥)𝑒−𝛾𝑡, we observe that

the transitional dynamics is given by the solution of the equation

𝑘𝑡 = 𝑘𝑥𝑥
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  which is the heat equation. Therefore, given the initial distribution of the capital stock 𝐾(𝑥, 0) =
𝑘0(𝑥) the solution for this spatial 𝐴𝐾 model is

𝐾(𝑡, 𝑥) =
⎧{
⎨{⎩

𝑘0(𝑥), 𝑡 = 0

𝑒𝛾𝑡 ∫
∞

−∞
𝑘0(𝜉) (4𝜋𝑡)−1/2 𝑒− (𝑥−𝜉)2

4𝑡  𝑑𝜉, 𝑡 > 0

  and the solution is similar to the case depicted in Figure 10.2 when 𝑏 > 0.
The main conclusion is that: (1) there is long run growth; (2) , if there are homogenous

technologies and preferences the asymptotic distribution will become spatially homogeneous. That
is: the so-called 𝛽- and 𝜎- convergences can be made consistent !

10.7.2 The option pricing model

 
The Black and Scholes (1973) model is a case in which a research paper had an immense impact

on the operation of the economy. It is related to the onset of derivative markets and basically gave
birth to stochastic finance6.

It provides a formula (the so called Black-Scholes formula) for the value of an European call
option when there are two assets, a riskless asset with interest rate 𝑟 and a underlying asset whose
price, 𝑆 which follows a diffusion process (in a stochastic sense): 𝑑𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝐵 where 𝑑𝐵 is
the standard Brownian motion (see next chapter). An European call option offers the right to buy
the underlying asset at time 𝑇 for a price 𝐾 fixed at time 𝑡 = 0, which is conventioned to be the
moment of the contract.

Under the assumption that there are no arbitrage opportunities Black and Scholes (1973) proved
that the price of the option 𝑉 = 𝑉 (𝑡, 𝑆) is a a function of time, 𝑡 ∈ (0, 𝑇 ) and the price of an
underlying asset 𝑆 ∈ (0, ∞) follows the backward parabolic PDE and has a terminal constraint

⎧{
⎨{⎩

𝑉𝑡(𝑡, 𝑆) = −𝜎2𝑆2
2  𝑉𝑆𝑆(𝑡, 𝑆) − 𝑟𝑆𝑉𝑆(𝑡, 𝑆) + 𝑟𝑉 (𝑡, 𝑆), (𝑡, 𝑆) ∈ [0, 𝑇 ] × (0, ∞)

𝑉 (𝑇 , 𝑆) = max{ 𝑆 − 𝐾, 0} , (𝑡, 𝑆) ∈ {𝑡 = 𝑇 } × (0, ∞).
(10.23)

The first equation is valid for any financial option having the same underlying asset dynamics, and
the terminal constraint is characteristic of the European call option: because the writer sells the
right, but not the obligation, to purchase the underlying asset at the price 𝐾 at time 𝑡 = 𝑇 , the
buyer is only interested in that purchase if he can sell it at the prevailing market price 𝑆 = 𝑆(𝑇 )
when that price is higher than the exercise price 𝐾. In this case the payoff will be 𝑆(𝑇 ) − 𝐾.
Otherwise he will not execute the option and the terminal payoff will be zero.

The two boundary constraints

𝑉 (𝑡, 0) = 0, (𝑡, 𝑆) ∈ [0, 𝑇 ] × {𝑆 = 0} 
lim

𝑆→∞
𝑉 (𝑡, 𝑆) = 𝑆, (𝑡, 𝑆) ∈ [0, 𝑇 ] × {𝑆 → ∞},

6Myron Scholes was awarded the Nobel prize in 1997, together with Robert Merton another important contributer
to stochastic finance, precisely for this formula. Fisher Black was deceased at the time.
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are sometimes referred to, but they are redundant.
The same structure occurs in the Merton’s model (see Merton (1974)) which is a seminal paper

on the pricing of default bonds. It was the first model on the so-called structural approach to
modelling credit risk.7 In essence, this model assumes that the value of the firm follows a linear
diffusion process and it considers the issuance of a bond with an expiring date 𝑇 whose indenture
gives it absolute priority on the value of the firm at the expiry date. This means that either if the
value of the firm is smaller that the face value of the bond the creditor takes possession of the firm
and in the opposite case it recovers the face value. In this case, we can interpret the position of the
equity owner as holding an European call option over the value of the firm with strike price equal
to the face value of the debt and the creditor as having an European put option security.

The price of the European call option 8, given the former assumptions is given by

𝑉 (𝑡, 𝑆) = 𝑆Φ(𝑑1) − 𝐾𝑒−𝑟(𝑇 −𝑡)Φ(𝑑2), 𝑡 ∈ [0, 𝑇 ] (10.24)

where Φ(.) is cumulative Gaussian density function such that Φ(𝑑) = ℙ(𝑥 ≤ 𝑑) where

𝑑1 =
ln (𝑆/𝐾) + (𝑇 − 𝑡) (𝑟 + 𝜎2

2 )

𝜎
√

𝑇 − 𝑡
(10.25)

𝑑2 =
ln (𝑆/𝐾) + (𝑇 − 𝑡) (𝑟 − 𝜎2

2 )

𝜎
√

𝑇 − 𝑡
(10.26)

Figure 10.8: Solution for the Black and Scholes model, for 𝑟 = 0.02, 𝑇 = 20, 𝜎 = 0.2, and 𝐾 = 10.

Proof. In order to solve the B-S PDE, which is a non-linear backward parabolic PDE, we transform
it to to a quasi-linear parabolic forward PDE, by applying the transformations: 𝑡(𝜏) = 𝑇 − 𝜏 and
𝑆 = 𝐾𝑒𝑥 and setting 𝑢(𝜏, 𝑥) = 𝑉 (𝑡(𝜏), 𝑆(𝑥)). We can transform the option-pricing problem to the

7 This model is the inspiration of credit risk models used by rating agencies (see Duffie and Singleton (2003)).
8For the credit risk model 𝑆 would be the value of assets of a firm, 𝐾 would be the face value of loan, and 𝑇 the

term of the loan.
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equivalent initial-value problem PDE equivalent to (10.23)

⎧{
⎨{⎩

𝑢𝜏 = 𝜎2

2 𝑢𝑥𝑥 + (𝑟 − 𝜎2

2 ) 𝑢𝑥 − 𝑟𝑢, (𝜏, 𝑥) ∈ [0, 𝑇 ] × (−∞, ∞)

𝑢(0, 𝑥) = 𝑢0(𝑥)
(10.27)

where

𝑢0(𝑥) =
⎧{
⎨{⎩

0, if 𝑥 ≤ 0
𝐾 (𝑒𝑥 − 1) , if 𝑥 > 0

  The PDE is a particular example of equation (10.15), which implies that the solution is

𝑢(𝜏, 𝑥) = ∫
0

−∞
0 𝑔(𝜏, 𝑥 − 𝑠)𝑑𝑠 + 𝐾 ∫

∞

0
(𝑒𝑠 − 1) 𝑔(𝜏, 𝑥 − 𝑠)𝑑𝑠

= 𝐾√
2𝜋𝜎2𝜏

∫
∞

0
(𝑒𝑠 − 1) 𝑒ℎ(𝜏,𝑥−𝑠)𝑑𝑠

  where (from equation (10.17))

ℎ(𝜏, 𝑦) ≡ −
𝑦2 + 2𝜏 (𝑟 − 𝜎2

2 ) 𝑦 + (𝑟 + 𝜎2

2 )
2

𝜏2

2𝜏𝜎2 . 

  Then

𝑢(𝜏, 𝑥) = 𝐾√
2𝜋𝜎2𝜏

(∫
∞

0
𝑒𝑠+ℎ(𝜏,𝑥−𝑠)𝑑𝑠 − ∫

∞

0
𝑒ℎ(𝜏,𝑥−𝑠)𝑑𝑠)

= 𝐾√
2𝜋𝜎2𝜏

(𝐼1 − 𝐼2) .

  In order to simplify the integrals, it is useful to remember the formulas for the error function,
erf(𝑥), and of the Gaussian cumulative distribution Φ(𝑥),

erf(𝑥) = 2√𝜋 ∫
𝑥

−∞
𝑒−𝑧2𝑑𝑧, Φ(𝑥) = 1√

2𝜋 ∫
𝑥

−∞
𝑒−

1
2  𝑧2

𝑑𝑧

  which are related as
Φ(𝑥) = 1

2 [ 1 + erf ( 𝑥√
2

 )] . 

  After some algebra we obtain

𝑠 + ℎ(𝜏, 𝑥 − 𝑠) = 𝑥 − 1
2(𝛿1(𝑠))2

ℎ(𝜏, 𝑥 − 𝑠) = −𝑟𝜏 − 1
2(𝛿2(𝑠))2

  where

𝛿1(𝑠) ≡
𝑥 − 𝑠 + (𝑟 + 𝜎2

2 )

𝜎√𝜏 , and 𝛿2(𝑠) ≡
𝑥 − 𝑠 + (𝑟 − 𝜎2

2 )

𝜎√𝜏 .
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  Then 9

𝐼1 = 𝑒𝑥 ∫
∞

0
𝑒−

1
2 (𝛿1(𝑠))2

𝑑𝑠 =

= −𝜎√𝜏𝑒𝑥 ∫
−∞

𝑑1

𝑒−
1
2 𝛿2

1𝑑𝛿1 =

=
√

𝜎2𝜏𝑒𝑥 ∫
𝑑1

−∞
𝑒−

1
2 𝛿2

1𝑑𝛿1 =

=
√

2𝜋𝜎2𝜏𝑒𝑥Φ(𝑑1)

  where 𝑑1 = 𝛿1(0) as in equation (10.25) for 𝜏 = 𝑇 − 𝑡 , and also, writing that 𝑑2 = 𝛿2(0), as in
equation (10.26) for 𝜏 = 𝑇 − 𝑡,

𝐼2 = 𝑒−𝑟𝜏 ∫
∞

0
𝑒−

1
2 (𝛿2(𝑠))2

𝑑𝑠 =

= −𝜎√𝜏𝑒−𝑟𝜏 ∫
−∞

𝑑2

𝑒−
1
2 𝛿2

2𝑑𝛿2 =

=
√

𝜎2𝜏𝑒−𝑟𝜏 ∫
𝑑2

−∞
𝑒−

1
2 𝛿2

2𝑑𝛿2 =

=
√

2𝜋𝜎2𝜏𝑒−𝑟𝜏Φ(𝑑2)

,

  Thus
𝑢(𝜏, 𝑥) = 𝐾 (𝑒𝑥Φ(𝑑1) − 𝑒−𝑟𝜏Φ(𝑑2))

  and transforming back 𝑉 (𝑡, 𝑆) = 𝑢 (𝑇 − 𝑡, ln (𝑆/𝐾)) we get equation (10.24).

Observe this is a backward parabolic PDE, which implies that the terminal condition determines
the particular solution.

10.8 Bibiography

• Mathematics of PDE’s: introductory Olver (2014), Salsa (2016) and (Pinsky, 2003, ch 5).
Advanced (Evans, 2010, ch 3).

• Applications to economics (with more advanced material) : Achdou et al. (2014)

• Applications to growth theory Brito (2004) and Brito (2011) and the references therein.

9We use integration by transformation of variables: if we define 𝑧 = 𝜑(𝑠) where 𝜑 ∶ [𝑎, 𝑏] → ℐ and 𝑓 ∶ ℐ → ℝ we
have that

∫
𝜑(𝑏)

𝜑(𝑎)
𝑓(𝑧)𝑑𝑧 = ∫

𝑏

𝑎
𝑓 (𝜑(𝑠)) 𝜑′ (𝑠)𝑑𝑠.
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10.A Appendix: Fourier transforms

Consider a function 𝑓(𝑥) such that 𝑥 ∈ ℝ and ∫∞
−∞ |𝑓(𝑥)|𝑑𝑥 < ∞. We can define a pair of generalized

functions, the Fourier transform of 𝑓(𝑥), 𝐹(𝑠) = ℱ[𝑓(𝑥)](𝑠) and the inverse Fourier transform
ℱ−1[𝐹 (𝑠)] (𝑥) = 𝑓(𝑥) (using the definition of Kammler (2000) ), where

𝐹(𝑠) = ℱ[𝑓(𝑥)] ≡ ∫
∞

−∞
𝑓(𝑥) 𝑒−2 𝜋 𝑖 𝑠 𝑥 𝑑𝑥

  where 𝑖2 = −1 and
𝑓(𝑥) = ℱ−1[𝐹 (𝑠)] ≡ ∫

∞

−∞
𝐹(𝑠)𝑒2𝜋𝑖𝑠𝑥𝑑𝑠.

Table 10.1: Fourier and inverse Fourier transforms: properties

𝑓(𝑥) for −∞ < 𝑥 < ∞ 𝐹(𝑠) for −∞ < 𝑠 < ∞ obs
𝑎 𝑓(𝑥) 𝑎 𝐹(𝑠) 𝑎ℂ complex number

𝑎 𝑓(𝑥) + 𝑏 𝑔(𝑥) 𝑎 𝐹(𝑠) + 𝑏 𝐺(𝑠) 𝑎, 𝑏ℂ complex numbers
𝑓(𝑥) ∗ 𝑔(𝑥) 𝐹(𝑠) 𝐺(𝑠) 𝑓(𝑥) ∗ 𝑔(𝑥) is a convolution

𝑥 −𝛿′(𝑠)
2 𝜋 𝑖 𝛿′(⋅) is the first derivative of 𝛿(⋅)

𝑥2 𝛿″(𝑠)
2 𝜋 𝛿″(⋅) is the second derivative of 𝛿(⋅)

𝑥 𝑓(𝑥) −𝐹 ′(𝑠)
2 𝜋 𝑖

𝑓(𝑡, 𝑥) 𝐹(𝑡, 𝑠) 𝑡 is a real number
𝑓 ′(𝑥) 2 𝜋, 𝑖 𝑠 𝐹(𝑠)

𝑥 𝑓 ′(𝑥) −(𝐹(𝑠) + 𝑠 𝐹 ′(𝑠)) if 𝑠 ∈ ℝ
𝑓″(𝑥) - (2 � s)2 𝐹(𝑠)

𝑥 𝑓″(𝑥) 2 𝜋 𝑠 (2 𝐹(𝑠) + 𝑠 𝐹 ′(𝑠))
𝑖

𝑥2 𝑓″(𝑥) - s2 𝐹 ″(𝑠)

There are some useful properties of the Fourier transform that we use in the main text:

1. the Fourier transform preserves multiplication by a complex number 𝑎 ∈ ℂ:

 ℱ[𝑎 𝑓(𝑥)]  = 𝑎 𝐹(𝑠), and ℱ−1[𝑎𝐹(𝑠)]  = 𝑎𝑓(𝑥),
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Proof.

ℱ[𝑎 𝑓(𝑥)]  = ∫
∞

−∞
𝑎 𝑓(𝑥) 𝑒−2 𝜋 𝑖 𝑠 𝑥 𝑑𝑥

= 𝑎 ∫
∞

−∞
𝑓(𝑥) 𝑒−2 𝜋 𝑖 𝑠 𝑥 𝑑𝑥

= 𝑎 𝐹(𝑠)

 

and

ℱ−1[𝑎 𝐹(𝑠)] ≡ ∫
∞

−∞
𝑎 𝐹(𝑠)𝑒2𝜋𝑖𝑠𝑥𝑑𝑠

= 𝑎 ∫
∞

−∞
𝐹(𝑠)𝑒2𝜋𝑖𝑠𝑥𝑑𝑠 =

= 𝑎 𝑓(𝑥);

 

2. the Fourier transform preserves linearity:

ℱ[𝑎 𝑓(𝑥) + 𝑏 𝑔(𝑥)]  = 𝑎 𝐹(𝑠) + 𝑏 𝐺(𝑠), and ℱ−1[𝑎 𝐹(𝑠) + 𝑏 𝐺(𝑠)]  = 𝑎 𝑓(𝑥) + 𝑏 𝑔(𝑥)

 

3. the Fourier transform does not preserve multiplication of two functions. However, there is
a relationship between convolution of functions and multiplication of Fourier transforms. A
convolution  between two functions 𝑓(𝑥) and 𝑔(𝑥) is defined as

𝑓(𝑥) ∗ 𝑔(𝑥) = ∫
∞

−∞
𝑓(𝑦) 𝑔(𝑥 − 𝑦) 𝑑𝑦.

  The inverse Fourier transform of a product of two Fourier transforms is a convolution,

𝑓(𝑥) ∗ 𝑔(𝑥) = ℱ−1[𝐹 (𝑠) 𝐺(𝑠)]  = ∫
∞

−∞
𝐹(𝑠) 𝐺(𝑠) 𝑒2𝜋𝑖𝑠𝑥𝑑𝑠

 

4. ℱ[𝑥] = − 1
2 𝜋 𝑖𝛿′(𝑠), where 𝛿(𝑥) is Dirac’s delta

Proof.   Observe that

∫
∞

−∞
𝑒2𝜋𝑖𝑠𝑥𝛿(𝑠)𝑑𝑠 = 1

and
∫

∞

−∞
𝑒2 𝜋 𝑖 𝑠 𝑥 𝛿(𝑠) = 0.
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  Then

𝑥 = 𝑥 ∫
∞

−∞
𝑒2𝜋𝑖𝑠𝑥𝛿(𝑠)𝑑𝑠

= − 1
2 𝜋 𝑖 ( ∫

∞

−∞
𝑒2 𝜋 𝑖 𝑠 𝑥 𝛿(𝑠) − ∫

∞

−∞
2 𝜋 𝑖 𝑥 𝑒2 𝜋 𝑖 𝑠 𝑥𝛿(𝑠) 𝑑𝑠 )

= − 1
2 𝜋 𝑖 ∫

∞

−∞
𝑒2 𝜋 𝑖 𝑠 𝑥𝛿′(𝑠) 𝑑𝑠

= − 1
2 𝜋 𝑖ℱ−1[  1

2 𝜋 𝑖 𝛿′(𝑠)] 

5. ℱ[𝑥2] = 1
(2 𝜋)2 𝛿″(𝑠)

6. ℱ[𝑥 𝑓(𝑥)]  = − 1
2 𝜋 𝑖 𝐹 ′(𝑠)

Proof.

ℱ[𝑥 𝑓(𝑥)]  = ∫
∞

−∞
𝑥 𝑓(𝑥) 𝑒−2 𝜋 𝑖 𝑠 𝑥 𝑑𝑥

= − 1
2 𝜋 𝑖  ∫

∞

−∞
−2𝜋 𝑖 𝑥 𝑓(𝑥) 𝑒−2 𝜋 𝑖 𝑠 𝑥 𝑑𝑥

= − 1
2 𝜋 𝑖  ∫

∞

−∞
𝑓(𝑥) 𝑑

𝑑𝑠(𝑒−2 𝜋 𝑖 𝑠 𝑥) 𝑑𝑥

= − 1
2 𝜋 𝑖  𝑑

𝑑𝑠𝐹(𝑠) = 𝑑
𝑑𝑠[  ∫

∞

−∞
𝑓(𝑥) 𝑒−2 𝜋 𝑖 𝑠 𝑥 𝑑𝑥] 

= − 1
2 𝜋 𝑖 𝐹 ′(𝑠)

  Alternative proof:

ℱ[𝑥 𝑓(𝑥)]  = ℱ[𝑥] ∗ ℱ[𝑓(𝑥)] = ∫
∞

−∞
− 1

2 𝜋 𝑖 𝛿′(𝑦) 𝐹(𝑠 − 𝑦)𝑑𝑦 = − 1
2 𝜋 𝑖 𝐹 ′(𝑠)

 

if 𝑓 = 𝑓(𝑥, 𝑡) where 𝑡 is a real variable then 𝐹(𝑠, 𝑡) = ℱ[𝑓(𝑥, 𝑡)] and 𝑓(𝑥, 𝑡) =  ℱ−1[𝐹 (𝑠, 𝑡)].
Also 𝐹𝑡(𝑠, 𝑡) = ℱ[𝑓𝑡(𝑥, 𝑡)] and 𝑓𝑡(𝑥, 𝑡) =  ℱ−1[𝐹𝑡(𝑠, 𝑡)]

7. ℱ[𝑓 ′(𝑥)]  = 2 𝜋 𝑖 𝑠 𝐹(𝑠)
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Proof.

ℱ[𝑓 ′(𝑥)]  = ∫
∞

−∞
𝑓 ′(𝑥) 𝑒−2 𝜋 𝑖 𝑠 𝑥 𝑑𝑥

integration by parts 

= ∫
∞

−∞
𝑓(𝑥) 𝑒−2 𝜋 𝑖 𝑠 𝑥 − ∫

∞

−∞
𝑓(𝑥) 𝜕

𝜕𝑥(𝑒−2 𝜋 𝑖 𝑠 𝑥) 𝑑𝑥 

because 𝑒−2 𝜋 𝑖 𝑠 𝑥 is symmetric the first integral is equal to zero

= 2 𝜋 𝑖 𝑠 ∫
∞

−∞
𝑓(𝑥) 𝑒−2 𝜋 𝑖 𝑠 𝑥 𝑑𝑥 

= 2 𝜋 𝑖 𝑠 𝐹(𝑠)

8. ℱ[𝑥𝑓 ′(𝑥)]  = −(𝐹(𝑠) + 𝑠𝐹 ′(𝑠)) if 𝑠 ∈ ℝ

Proof.

 

 ℱ[𝑥 𝑓 ′(𝑥)]  = ℱ[𝑥] ∗ ℱ[𝑓 ′(𝑥)]

= ∫
∞

−∞
( − 1

2 𝜋 𝑖 𝛿′(𝑦)) (2 𝜋 𝑖 (𝑠 − 𝑦) 𝐹(𝑠 − 𝑦))𝑑𝑦

= − ∫
∞

−∞
𝛿′(𝑦) (𝑠 − 𝑦) 𝐹(𝑠 − 𝑦)𝑑𝑦

= −𝑠 ∫
∞

−∞
𝛿′(𝑦) 𝐹(𝑠 − 𝑦)𝑑𝑦 + ∫

∞

−∞
𝛿′(𝑦) 𝑦 𝐹(𝑠 − 𝑦)𝑑𝑦

= −𝑠𝐹 ′(𝑠) + ∫
∞

−∞
𝛿(𝑦) 𝑦 𝐹(𝑠 − 𝑦) − ∫

∞

−∞
𝛿(𝑦) 𝐹(𝑠 − 𝑦)𝑑𝑦

= 𝑠𝐹 ′(𝑠) − 𝐹(𝑠)

 

9. ℱ[𝑓″(𝑥)]  = −4 𝜋2 𝑠2 𝐹(𝑠)

10. ℱ[𝑥 𝑓″(𝑥)]  = 2 𝜋 𝑠
𝑖  (2 𝐹(𝑠) + 𝑠 𝐹 ′(𝑠))

11. ℱ[𝑥2 𝑓″(𝑥)]  = −𝑠2 𝐹 ″(𝑠)

References: https://dlmf.nist.gov/1.14

https://dlmf.nist.gov/1.14


Paulo Brito Advanced Mathematical Economics 2021/2022 30

Table 10.2: Fourier and inverse Fourier transforms of some functions

𝑓(𝑥) for −∞ < 𝑥 < ∞ 𝐹(𝑠) for −∞ < 𝑠 < ∞ obs
𝑘𝛿(𝑥) 𝑘 𝑘 constant

𝑘 𝑘 𝛿(𝑠) 𝑘 constant
𝛿(𝑥 − 𝑎) 𝑒−2 𝜋 𝑖 𝑠 𝑎

1√
4𝜋𝑎𝑒− 𝑥2

4𝑎 𝑒−𝑎(2𝜋𝑠)2 𝑎 > 0
1√
4𝜋𝑎𝑒− (𝑥+𝑏)2

4𝑎 𝑒−𝑎(2𝜋𝑠)2+𝑏(2𝜋𝑖𝑠) 𝑎 > 0, 𝑏 ∈ ℝ
1√
4𝜋𝑎𝑒𝑐− 𝑥2

4𝑎 𝑒−𝑎(2𝜋𝑠)2+𝑐 𝑎 > 0, 𝑐 ∈ ℝ
1√
4𝜋𝑎𝑒𝑐− (𝑥+𝑏)2

4𝑎 𝑒−𝑎(2𝜋𝑠)2+𝑏(2𝜋𝑖𝑠)+𝑐 𝑎 > 0, (𝑏, 𝑐) ∈ ℝ2



Chapter 11

Optimal control of parabolic partial
differential equations

 

11.1 Introduction

The optimal control of parabolic PDE is sometimes called optimal control of distributions.
Similarly to the optimal control of ODE’s, the first order conditions include a system of forward-

backward parabolic PDE’s together with boundary conditions. The requirements for the existence
of solutions are clearly very strong, because the general solutions of the PDE system may not allow
for the boundary conditions to be satisfied. Ill-posedness is, therefore, an important issue here.

Next we present the necessary conditions for three different optimal control of parabolic PDE’s:
a simple infinite horizon problem in section 11.2, an average optimal control problem in subsection
11.2.1, and the optimal control of a Fokker-Planck-Kolmogorov equation in section 11.3.

11.2 A simple optimal control problem

Next we consider a simple optimal control problem for a system governed by a parabolic PDE.
We have two independent variables, time 𝑡 ∈ ℝ+ and another independent variable 𝑥 ∈ ℝ and

two dependent functions, the control 𝑢 = 𝑢(𝑡, 𝑥), mapping 𝑢 ∶ ℝ+ × ℝ → ℝ and a state 𝑦 = 𝑦(𝑡, 𝑥),
mapping 𝑢 ∶ ℝ+ × ℝ → ℝ.

The system to be controlled is given by a semi-linear parabolic partial differential equation
𝑦𝑡 = 𝑦𝑥𝑥 + 𝑔(𝑡, 𝑥, 𝑢, 𝑦) where 𝑔(⋅, 𝑢, 𝑦) is smooth, by an initial condition 𝑦(0, 𝑥) = 𝑦0(𝑥), where
function 𝑦0 ∶ ℝ → ℝ is and bounded, and a Neumann boundary condition lim𝑥→±∞ 𝑦𝑥(𝑡, 𝑥) = 0 is
given for every 𝑡. The boundary condition means that the state variable should be ”flat” for very
large absolute values of variable 𝑥.

31
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The utility functional involves both integration in time and in the other independent variable

𝐽[𝑢, 𝑦]  = ∫
∞

0
∫

∞

−∞
𝑓(𝑡, 𝑥, 𝑢(𝑡, 𝑥), 𝑦(𝑡, 𝑥)) 𝑑𝑥 𝑑𝑡

  where we assume that 𝑓(⋅, 𝑢, 𝑦) is smooth and measurable, in the sense 1

∫
ℝ+×ℝ

|𝑓(𝑡, 𝑥)|𝑑(𝑡, 𝑥) < ∞.

 
Therefore our problem is to find the optimal 𝑢∗ = (𝑢∗(𝑡, 𝑥))(𝑡,𝑥)∈ℝ+×ℝ and 𝑦∗ = (𝑦∗(𝑡, 𝑥))(𝑡,𝑥)∈ℝ+×ℝ

that solve the problem:

max
𝑢(⋅)

∫
∞

0
∫

∞

−∞
𝑓(𝑡, 𝑥, 𝑢(𝑡, 𝑥), 𝑦(𝑡, 𝑥))𝑑𝑥𝑑𝑡 (11.1)

  subject to the constraints

⎧{{
⎨{{⎩

𝜕𝑦
𝜕𝑡 = 𝜕2𝑦

𝜕𝑥2 + 𝑔(𝑡, 𝑥, 𝑢(𝑡, 𝑥), 𝑦(𝑡, 𝑥)), for (𝑡, 𝑥) ∈ ℝ+ × ℝ
𝑦(0, 𝑥) = 𝑦0(𝑥), for (𝑡, 𝑥) ∈ { 𝑡 = 0}  × ℝ
lim𝑥→±∞

𝜕𝑦(𝑡, 𝑥)
𝜕𝑥 = 0 for (𝑡, 𝑥) ∈ ℝ+ × {(𝑥 = −∞), (𝑥 = ∞) } 

  (11.2)

Next we find the optimality conditions for this problem applying a distributional Pontriyagin
maximum principle.

We define the Hamiltonian

𝐻(𝑡, 𝑥, 𝑢, 𝑦, 𝜆) = 𝑓(𝑡, 𝑥, 𝑢, 𝑦) + 𝜆(𝑡, 𝑥)𝑔(𝑡, 𝑥, 𝑢, 𝑦)

  and call 𝜆 = 𝜆(𝑡, 𝑥) the co-state variable.

Proposition 1 (Necessary first-order conditions ). Let (𝑢∗, 𝑦∗) be a solution to problem (11.1)-
(11.2). Then there is a co-state variable 𝜆 such that the following necessary conditions hold

𝜕𝐻∗(𝑡, 𝑥)
𝜕𝑢 = 0  (11.3)

𝜕𝜆(𝑡, 𝑥)
𝜕𝑡 = −𝜕2𝜆(𝑡, 𝑥)

𝜕𝑥2 − 𝜕𝐻∗(𝑡, 𝑥)
𝜕𝑦 (11.4)

lim
𝑡→∞

𝜆(𝑡, 𝑥) = 0 (11.5)

lim
𝑥→±∞

𝜕𝜆(𝑡, 𝑥)
𝜕𝑥 = 0. (11.6)

together with equations (11.2)
1This condition requires that the function is bounded for every value of 𝑢(.) and 𝑦(.) and allow for the use of

Fubini’s theorem, i.e, for the interchange of the integration for 𝑡 and 𝑥. Intuitively, we should consider functions such
that the order of integration does not matter.
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See the proof in the appendix. Equation (11.3) is a static optimality condition, that if function
𝐻(𝑢, .) is sufficiently smooth, allows for the determination of the optimal control 𝑢∗ as a function of
the co-state variable, and the state variable. Equation (11.4) is a Euler-equation. In this case it is a
backward parabolic PDE which encodes the incentives for changing the control variable. Equations
(11.5) and (11.6) are transversality conditions, which are dual to the boundary conditions in (11.2)
related to the asymptotic properties of the solution.

If functions 𝑓(⋅) and 𝑔(⋅) are sufficiently smooth in (𝑢, 𝑦) , we can use the implicit function
theorem to obtain from equation (11.3) 

𝑢∗ = 𝑈(𝑡, 𝑥, 𝑦(𝑡, 𝑥), 𝜆(𝑡, 𝑥)),

  yielding
𝐺(𝑡, 𝑥, 𝑦(𝑡, 𝑥), 𝜆(𝑡, 𝑥)) = 𝑔(𝑡, 𝑥, 𝑢∗(𝑡, 𝑥), 𝑦(𝑡, 𝑥))

  and

𝐿(𝑡, 𝑥, 𝑦(𝑡, 𝑥), 𝜆(𝑡, 𝑥)) = 𝑓𝑦(𝑡, 𝑥, 𝑢∗(𝑡, 𝑥), 𝑦(𝑡, 𝑥)) + 𝜆(𝑡, 𝑥) 𝑔𝑦(𝑡, 𝑥, 𝑢∗(𝑡, 𝑥), 𝑦(𝑡, 𝑥))

  we have a distributional MHDS system

⎧{
⎨{⎩

𝜕𝑦
𝜕𝑡 = 𝜕2𝑦

𝜕𝑥2 + 𝐺(𝑡, 𝑥, 𝑦, 𝜆), for (𝑡, 𝑥) ∈ ℝ+ × ℝ
𝜕𝜆
𝜕𝑡 = −𝜕2𝜆

𝜕𝑥2 − 𝐿(𝑡, 𝑥, 𝑦, 𝜆) for (𝑡, 𝑥) ∈ ℝ+ × ℝ.

  This system has two semi-linear parabolic PDE’s: a forward parabolic PDE for the state variable
and a backward parabolic PDE for the co-state variable. It is a distributional generalization of the
MHDS for an optimal control problem of ODE’s.

11.2.1 Average optimal control problem

Next we consider a particular case of the previous problem in which the planner maximizes the
present-value of an average utility function

𝐽(𝑦, 𝑢) = lim
𝑥→∞

1
2𝑥  ∫

𝑥

−𝑥
∫

∞

0
𝑓(𝑦(𝜉, 𝑡), 𝑢(𝜉, 𝑡))𝑒−𝜌𝑡𝑑𝑡𝑑𝜉 (11.7)

  where 𝜌 > 0 and 𝑓(.) is continuous and differentiable. We assume the same semi-linear parabolic
constraint.

The problem is

max
𝑢

lim
𝑥→∞

1
2𝑥  ∫

𝑥

−𝑥
∫

∞

0
𝑓(𝑦(𝜉, 𝑡), 𝑢(𝜉, 𝑡))𝑒−𝜌𝑡𝑑𝑡𝑑𝜉

  subject to

 𝑦𝑡 = 𝜎2𝑦𝑥𝑥 + 𝑔(𝑦, 𝑢), (𝑡, 𝑥) ∈ ℝ+ × ℝ (11.8)
𝑦(𝑥, 0) = 𝜙(𝑥), 𝑥 ∈ ℝ (11.9)

lim
𝑡→∞

𝑅(𝑡)𝑦(𝑡, 𝑥) ≥ 0, 𝑥 ∈ ℝ (11.10)

lim
𝑥→±∞

𝑦(𝑡, 𝑥)
𝑥 = 0, 𝑡 ∈ ℝ+. (11.11)



Paulo Brito Advanced Mathematical Economics 2021/2022 34

  where 𝑅(𝑡) ≤ 𝑅0𝑒−𝜌𝑡, where ℎ0 is a constant.
The (current-value) Hamiltonian function is

𝐻(𝑦, 𝑢, 𝑞) ≡ 𝑓(𝑦, 𝑢) + 𝑞𝑔(𝑦, 𝑢)

  where 𝑞(𝑡, 𝑥) is the current value co-state variable.
The necessary first order conditions, according to the Pontryagin’s maximum principle are the

following.

Proposition 2 (Necessary conditions for the optimal average problem). Assume there are optimal
processes for the state and the control variable, 𝑦∗ = (𝑦∗(𝑡, 𝑥))(𝑡,𝑥)∈ℝ×ℝ+

and 𝑢∗ = (𝑢∗(𝑡, 𝑥))(𝑡,𝑥)∈ℝ×ℝ+

then there is a (current-value) co-state variable 𝑞(𝑡, 𝑥) such that the following conditions hold:

• the optimality condition  

 𝜕𝐻
𝜕𝑢  (𝑦∗(𝑡, 𝑥), 𝑢∗(𝑡, 𝑥), 𝑞(𝑡, 𝑥) ) = 0, (𝑡, 𝑥) ∈ (𝑡, 𝑥) ∈ ℝ++ × ℝ

 

• the distributional Euler equation

𝑞𝑡 = −𝜎2𝑞𝑥𝑥 + 𝑞 (𝜌 − 𝜕𝐻
𝜕𝑦  (𝑦∗(𝑡, 𝑥), 𝑢∗(𝑡, 𝑥), 𝑞(𝑡, 𝑥) ))), (𝑡, 𝑥) ∈ (𝑡, 𝑥) ∈ ℝ++ × ℝ

 

• the boundary condition, dual to equation (11.11)

lim
𝑥→±∞

𝑒−𝜌𝑡 𝑞(𝑡, 𝑥)
𝑥 = 0, 𝑡 ∈ ℝ++

 

• the transversality condition

lim
𝑡→∞

𝑒−𝜌𝑡 lim
𝑥→∞

∫
𝑥

−𝑥
𝑞(𝜉, 𝑡)𝑦(𝜉, 𝑡) = 0, {𝑡 = ∞} 

 

See the proof in the Appendix

11.2.2 Application: the distributional 𝐴𝐾 model

As application consider a simple model in which there is a central planner in a dynastic economy who
wants to maximize the average (un-weighted) utility of an economy composed with heterogeneous
agents, distributed in space from a central point 𝑥 = 0. Assume that the heterogeneity is only
given by their initial asset position, 𝑘0(𝑥). Each agent produces a different quantity of a good,
depending only on their endowment of capital and the central planner assigns consumption which
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varies between consumers and can be different from their production (given the capital endowment).
Therefore there is a distribution of savings in the economy allowing some agents to use more (less)
capital than they have at the beginning of every (infinitesimal) period. This section draws upon
Brito (2004) and Brito (2011), which present this model with more detail.

Consider agents located at 𝑟 and having the capital stock 𝐾(𝑡, 𝑟) and having savings 𝑆(𝑡, 𝑟) at
time 𝑡. Savings is equal to income minus consumption, where we assume that income is generated
by a linear production function

𝑌 (𝑡, 𝑟) = 𝐴 𝐾(𝑡, 𝑟).

  Savings can be applied in the own region, 𝐼(𝑡, 𝑟), or in other regions 𝑇 (𝑡, 𝑟) : therefore 𝑆(𝑡, 𝑟) =
𝐼(𝑡, 𝑟) + 𝑇 (𝑡, 𝑟) where is trade balance. If there is no depreciation then 𝐼(𝑡, 𝑠) = 𝜕𝐾

𝜕𝑡 . We order the
regions according to their capital endowment then 𝑥 can be used as a index for the regions. If, in
addition, we consider that: first, the flow of capital runs from regions with high capital intensity
to regions to low capital intensity and, second, that the flow is proportional to the gradient of the
capital intensity at the boundary of region 𝑟 = [𝑥, 𝑥 + Δ𝑥], then flow

𝑇 (𝑡, 𝑟) = 𝜏2 ∫
∆𝑥

𝑥

𝜕𝐾
𝜕𝑥 (𝑡, 𝑠) 𝑑𝑠.

  If we let Δ𝑥 → 0 then we find distributional capital accumulation constraint for every location 𝑥
𝜕𝐾(𝑡, 𝑥)

𝜕𝑡 = 𝜏2 𝜕2𝐾(𝑡, 𝑥)
𝜕𝑥2 + 𝐴𝐾(𝑡, 𝑥) − 𝐶(𝑡, 𝑥) ∀(𝑡, 𝑥) ∈ ℝ+ × ℝ (11.12)

The problem is to maximize the average intertemporal discounted utility of consumption, 𝐶,

𝐽(𝐶, 𝐾) ≡ max
[𝐶]

lim
𝑥→∞

1
2𝑥 ∫

𝑥

−𝑥
∫

∞

0

𝐶(𝜉, 𝑡)1−𝜃

1 − 𝜃  𝑒−𝜌𝑡𝑑𝑡𝑑𝜉. (11.13)

subject to the distributional capital accumulation equation (11.12) and the terminal, the boundary
and the initial conditions

lim
𝑡→∞

𝑒− ∫𝑡
0 𝑟(𝑥,𝑠)𝑑𝑠𝐾(𝑡, 𝑥) ≥ 0, ∀𝑥 ∈ ℝ (11.14)

lim
𝑥→∓∞

𝐾(𝑡, 𝑥)
𝑥 = 0, ∀𝑡 ∈ ℝ+ (11.15)

𝐾(𝑥, 0) = 𝜙(𝑥), ∀𝑥 ∈ ℝ given. (11.16)

According to the distributional Pontriyagin maximum principle (see the Appendix) the distri-
butional MHDS is

𝜕𝐾
𝜕𝑡 = 𝜏2 𝜕2𝐾

𝜕𝑥2 + 𝐴𝐾 − 𝐶, 𝑥 ∈ ℝ, 𝑡 > 0 (11.17)

𝜕𝐶
𝜕𝑡 = −𝜏2 [𝜕2𝐶

𝜕𝑥2 − 1 + 𝜃
𝐶 (𝜕𝐶

𝜕𝑥 )
2
] + 𝛾𝐶, 𝑥 ∈ ℝ, 𝑡 > 0 (11.18)

where the endogenous growth rate i s
𝛾 ≡ 𝐴 − 𝜌

𝜃 , (11.19)
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the transversality condition

lim
𝑡→∞

lim
𝑥→∞

1
2𝑥 ∫

𝑥

−𝑥
𝑒−𝜌𝑡𝐾(𝜉, 𝑡)𝐶(𝜉, 𝑡)−𝜃𝑑𝜉 = 0, (11.20)

and the dual boundary conditions

lim
𝑥→±∞

(𝑒𝜌𝑡𝐶(𝑡, 𝑥)𝜃𝑥)−1 = 0, 𝑡 ≥ 0. (11.21)

In system (11.18)-(11.17), 𝐴 is the net total factor productivity and 𝛾 is equal to the endogenous
growth rate in the benchmark homogeneous 𝐴𝐾 model. The initial condition 𝐾(𝑥, 0) = 𝜙(𝑥) and
the boundary condition (11.15) should also hold.

The coupled system (11.18)-(11.17) has the closed form solution

𝐾(𝑡, 𝑥) = 𝑒𝛾𝑡𝑘(𝑡, 𝑥), 𝐶(𝑡, 𝑥) = 𝑒𝛾𝑡𝑐(𝑡, 𝑥), 𝑡 ≥ 0, 𝑥 ∈ ℝ (11.22)

where
𝑘(𝑡, 𝑥) = 1

2𝜏
√

𝜋𝜃𝑡
∫

∞

−∞
𝜙(𝜉)𝑒−( 𝑥−𝜉

2𝜏 )2 1
𝜃𝑡 𝑑𝜉,  𝑡 > 0, 𝑥 ∈ ℝ

  and

𝑐(𝑡, 𝑥) = 1
2𝜏

√
𝜋𝜃𝑡

∫
∞

−∞
𝜙(𝜉) [𝑟 − 𝛾 + (𝜃 − 1) ( 1

2𝜃𝑡 − (𝑥 − 𝜉
2𝜏𝜃𝑡  )

2
)]  𝑒−( 𝑥−𝜉

2𝜏  )2 1
𝜃𝑡  𝑑𝜉,  𝑡 > 0, 𝑥 ∈ ℝ.

 
A necessary condition for the existence of a solution of the centralized problem is that 𝐴 >

𝛾. This model displays convergence to a time-unbounded balanced growth path similar to the
homogeneous-agent 𝐴𝐾 model: capital will be equalized among regions. Figure ?? presents a
graphic depiction of the detrended-solution for 𝜙(𝑥) = 𝑒−|𝑥|. We observe that the initial hetero-
geneity is eliminated along the transition

Figure 11.1: Convergence to a homogeneous asymptotic: local dynamics for the detrended 𝑘(𝑡, 𝑥)
and 𝑐(𝑡, 𝑥) for the case 𝐴𝐾.
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11.3 Optimal control of the Fokker-Planck-Kolmogorov equation

In this section we address a problem in which the PDE constraint of the economy is represented
by a Fokker-Planck-Kolmogorov equation, which, as we saw models probabilities of distributions
across time.

This problem has two particularities: first, the transport and the diffusion terms are controled
endogeneously by the. control variable, second, the state variable enters in the objective functional
as a weighting variable.

In principle, this problem has other particular properties that should be highlighted:

1. the boundary conditions (11.25) introduce an initial condition which is a density function
satisfying

∫
𝑋

𝑦0(𝑥) 𝑑𝑥 = 1
 

2. and for every point in time the density is equal to zero in the extremes of the support.

  
This implies that the a conservation law should hold for every 𝑡 ∈ 𝑇 ,

∫
𝑋

𝑦(𝑡, 𝑥) 𝑑𝑥 = 1

  and that the state variable is bounded in 𝑋 for every point in time (it is a 𝐿2 function);
However, in order to have this conservative property several technical problems have to be

solved. Although first-order PDE’s satisfy a conservation law for 𝑡 > 0 if the initial condition, for
𝑡 = 0 does satisfy it, this property does not hold generally for parabolic PDE’s. Some normalization
has to be introduced in the solution for single equations. We are not aware of the effect of this on
the solution to optimal control problem.

Therefore, the version we present next does not necessary satisfy a conservation law.
Let 𝑇 = [𝑡,̲ 𝑡] and 𝑋 = [�̲̲̲̲�, 𝑥], the state variable 𝑦 ∶ 𝑇 × 𝑋 → ℝ and the control variable

𝑢 ∶ 𝑇 × 𝑋 → ℝ.
We consider the optimal control problem of a Fokker-Planck equation

max
𝑢(⋅)

∫
𝑇

∫
𝑋

𝑓(𝑡, 𝑥, 𝑢(𝑡, 𝑥)) 𝑦(𝑡, 𝑥) 𝑑𝑥 𝑑𝑡 (11.23)

subject to

𝜕𝑡𝑦(𝑡, 𝑥) + 𝜕𝑥(𝑔(𝑥, 𝑢(𝑡, 𝑥)) 𝑦(𝑡, 𝑥)) − 𝜕𝑥𝑥(ℎ(𝑥, 𝑢(𝑡, 𝑥)) 𝑦(𝑡, 𝑥)) = 0, a.e.  (𝑡, 𝑥) ∈ 𝑇 × 𝑋 (11.24)

and the boundary constraints

⎧{
⎨{⎩

𝑦(𝑡,̲ 𝑥) = 𝑦0(𝑥), (𝑡, 𝑥) ∈ {𝑡 = 𝑡}̲  × 𝑋
𝑦(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ 𝑇   × {𝑥 = �̲̲̲̲�, 𝑥 = 𝑥}

  (11.25)

We assume that functions 𝑓(⋅), 𝑔(⋅) and ℎ(⋅) are continuous and continuously differentiable as
regards the control variable 𝑢(⋅).
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Proposition 3 (Optimal control of the FPK equation).  
Let 𝑢∗(⋅) and 𝑦∗(⋅) be the solution of problem (11.23)-(11.24)-(11.25). Then there is a function
𝜆 ∶ 𝑇 × 𝑋 → ℝ such that:

1. the optimality condition

𝜕𝑢𝑔(𝑥, 𝑢∗(𝑡, 𝑥))𝜕𝑥𝜆(𝑡, 𝑥) + 𝜕𝑢ℎ(𝑥, 𝑢∗(𝑡, 𝑥))𝜕𝑥𝑥𝜆(𝑡, 𝑥) + 𝜕𝑢𝑓(𝑡, 𝑥, 𝑢∗(𝑡, 𝑥)) = 0 a.e (𝑡, 𝑥) ∈ 𝑇 × 𝑋
(11.26)

2. the distributional Euler equation

𝜕𝑡𝜆(𝑡, 𝑥)+𝑔(𝑥, 𝑢∗(𝑡, 𝑥))𝜕𝑥𝜆(𝑡, 𝑥)+ℎ(𝑥, 𝑢∗(𝑡, 𝑥))𝜕𝑥𝑥𝜆(𝑡, 𝑥)+𝑓(𝑡, 𝑥, 𝑢∗(𝑡, 𝑥)) = 0 a.e (𝑡, 𝑥) ∈ 𝑇 ×𝑋
(11.27)

3. the transversality condition

𝜆(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ {𝑡 = 𝑡}  × 𝑋

 

4. and the admissibility constraints (11.24) and (11.25) evaluated at the optimum.

 

11.3.1 Application: optimal distribution of capital with stochastic redistribu-
tion

Consider an economy with heterogeneous households and that the household with capital stock
𝑘(𝑡), at time 𝑡 has the accumulation equation

𝑑𝑘(𝑡) = (𝐴𝑘(𝑡) − 𝑐(𝑡)) 𝑑𝑡 + 𝜎𝑘(𝑡)𝑑𝑊(𝑡)

  where 𝑑𝑊 is a Wiener process. We assume that 𝑘 ∈ [0, ∞). If 𝑛(𝑡, 𝑘) is the density of households
with capital 𝑘 at time 𝑡 the distribution function for households satisfies

∫
∞

0
𝑛(𝑡, 𝑘)𝑑𝑡 = 1, for every 𝑡 ∈ [0, ∞).

  Therefore, the distribution of households satisfies the FPK equation

𝜕𝑛(𝑡, 𝑘) + 𝜕𝑘((𝐴𝑘 − 𝑐) 𝑛(𝑡, 𝑘)) − 1
2𝜕𝑘𝑘 ((𝜎𝑘)2 𝑛(𝑡, 𝑘)) = 0

  where 𝑛(0, 𝑘) = 𝜙(𝑘) is given and 𝑛(𝑡, 0) = lim𝑘→∞ 𝑛(𝑡, 𝑘) = 0.
We assume a central planer wants to allocate consuming among households, and through time,

in order to maximize a social welfare functional. We assume the social welfare functional is

∫
∞

0
∫

∞

0
ln (𝑐(𝑘, 𝑡)) 𝑛(𝑘, 𝑡)𝑒−𝜌𝑡 𝑑𝑘 𝑑𝑡, 𝜌 > 0
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  Applying Proposition 3 the necessary first order conditions lead to the forward-backward parabolic
PDE-system

𝜕𝑡𝑞(𝑡, 𝑘) + 𝐴𝑘 𝜕𝑘 𝑞(𝑡, 𝑘) + ln ((𝜕𝑘𝑞(𝑡, 𝑘))−1) + 1
2 𝜎2𝑘2𝜕𝑘𝑘𝑞(𝑡, 𝑘) − 𝜌𝑞(𝑡, 𝑘) − 1 = 0(11.28)

𝜕𝑡𝑛(𝑡, 𝑘) + ((𝐴𝑘 − (𝜕𝑘𝑞(𝑡, 𝑘))−1) 𝑛(𝑡, 𝑘))𝑘 − 𝜎2

2 𝜕𝑘𝑘 (𝑘2𝑛(𝑡, 𝑘)) = 0 (11.29)

together with a transversality condition

lim
𝑡→∞

𝑒−𝜌𝑡𝑞(𝑡, 𝑘) = 0.

  where 𝑞(𝑡, 𝑘) = 𝑒𝜌𝑡𝜆(𝑡, 𝑘) is the current distributional co-state variable.
Because the system is recursive, we can solve the Euler equation together with the transversality

condition for 𝑞(𝑡, 𝑘). Substituting in the constraint (11.29) we obtain a linear parabolic PDE for
the optimal dynamics of the distribution

𝜕𝑡𝑛(𝑘, 𝑡) + 𝜕𝑘 (𝛾𝑘𝑛(𝑘, 𝑡)) − 𝜎2

2 𝜕𝑘𝑘 (𝑘2𝑛(𝑘, 𝑡)) = 0.

  Solving the Cauchy problem with 𝑛(0, 𝑘) = 𝜙(𝑘) a closed form solution can be obtained

𝑛∗(𝑡, 𝑥) = ∫
∞

0
𝜙(𝜉) 𝑔 (𝑡, ln (𝑘

𝜉 )) 1
𝜉 𝑑𝜉. (11.30)

where

𝑔(𝑡, 𝑦) = (2𝜋𝜎2𝑡)− 1
2 exp [(𝛾 − 𝜎2)𝑡 − (𝑦 − 𝑡(𝛾 − 3

2  𝜎2))2

2𝜎2𝑡  ], 𝑥 ∈ ℝ. . (11.31)

 
This solution contains both a transport mechanism, which tends to generate growth at a rate

𝛾 ≡ 𝐴 − 𝜌 > 0 and a diffusion mechanism, with strength 𝜎2. We can show that the average capital
stock is

𝑀𝑘(𝑡) = ∫
∞

0
𝑘 𝑛(𝑡, 𝑘) 𝑑𝑘 = 𝑀𝑘(0) 𝑒(𝛾−𝜎2)𝑡, 𝑡 ∈ [0, ∞)

  meaning that there is long run growth if 𝛾 −𝜎2 > 0, that is if the stochastic distribution of growth
is not too volatile.

11.4 References

• Optimal control problem of partial differential equations or an optimal distributed control
problem Butkovskiy (1969), Lions (1971), Derzko et al. (1984) or ? present optimality results
with varying generality. We draw mainly upon the last two references. See also the textbooks:
Fattorini (1999) and Tröltzsch (2010).  

• Applications in economics Carlson et al. (1996, chap.9)
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11.A Proofs

Next we present heuristic proofs of the three versions of the distributional PMP presented in the
main text.

Proof of Proposition 1. The value functional is

𝑉 [𝑢, 𝑦] = ∫
∞

0
∫

∞

−∞
𝑓(𝑡, 𝑥, 𝑢(𝑡, 𝑥), 𝑦(𝑡, 𝑥))𝑑𝑥𝑑𝑡,

  considering the constraint we have

𝑉 [𝑢, 𝑦] = ∫
∞

0
∫

∞

−∞
[𝑓(𝑡, 𝑥, 𝑢(𝑡, 𝑥), 𝑦(𝑡, 𝑥)) + 𝜆(𝑡, 𝑥) (𝑔(𝑡, 𝑥, 𝑢(𝑡, 𝑥), 𝑦(𝑡, 𝑥)) − 𝜕𝑦

𝜕𝑡 + 𝜕2𝑦
𝜕𝑥2 )] 𝑑𝑥 𝑑𝑡 =

= ∫
∞

0
∫

∞

−∞
[𝐻(𝑡, 𝑥, 𝑢(𝑡, 𝑥), 𝑦(𝑡, 𝑥), 𝜆(𝑡, 𝑥)) − 𝜆(𝑡, 𝑥) 𝜕𝑦

𝜕𝑡 + 𝜆(𝑡, 𝑥) 𝜕2𝑦
𝜕𝑥2 ]   𝑑𝑥 𝑑𝑡

= ∫
∞

0
∫

∞

−∞
[𝐻(𝑡, 𝑥, 𝑢(𝑡, 𝑥), 𝑦(𝑡, 𝑥), 𝜆(𝑡, 𝑥)) + (𝜕𝜆(𝑡, 𝑥)

𝜕𝑡 + 𝜕2𝜆(𝑡, 𝑥)
𝜕𝑥2 (𝑡, 𝑥)) 𝑦(𝑡, 𝑥)]   𝑑𝑥 𝑑𝑡+

− ∫
∞

−∞
𝜆(𝑡, 𝑥)𝑦(𝑡, 𝑥) 𝑑𝑥 ∣

∞

𝑡=0
+ ∫

∞

0
(𝜆(𝑡, 𝑥)𝜕𝑦(𝑡, 𝑥)

𝜕𝑥 − 𝜕𝜆(𝑡, 𝑥)
𝜕𝑥 𝑦(𝑡, 𝑥)) 𝑑𝑡 ∣

∞

𝑥=−∞

  for any control and state variables.
Let us assume we know the optimal control and state variables 𝑢∗(𝑡, 𝑥) and 𝑦∗(𝑡, 𝑥) then

𝑉 [𝑢∗, 𝑦∗] = ∫
∞

0
∫

∞

−∞
𝑓(𝑡, 𝑥, 𝑢∗(𝑡, 𝑥), 𝑦∗(𝑡, 𝑥))𝑑𝑥𝑑𝑡,

  and let 𝑢(𝑡, 𝑥) and 𝑦(𝑡, 𝑥) be admissible perturbations over the optimal levels

𝑢(𝑡, 𝑥) = 𝑢∗(𝑡, 𝑥) + 𝜀ℎ𝑢(𝑡, 𝑥)
𝑦(𝑡, 𝑥) = 𝑦∗(𝑡, 𝑥) + 𝜀ℎ𝑦(𝑡, 𝑥)

 

  where 𝜖 is a constant, and ℎ𝑦(0, 𝑥) = 0, for every 𝑥 ∈ ℝ, and lim𝑥±∞
𝜕ℎ𝑦(𝑡, 𝑥)

𝜕𝑥 = 0, for every
𝑡 ∈ ℝ+.

The integral derivative evaluated at 𝜀 = 0 is

𝛿𝑉 [𝑢∗, 𝑦∗] = ∫
∞

0
∫

∞

−∞
[ 𝜕𝐻∗(𝑡, 𝑥)

𝜕𝑢  ℎ𝑢(𝑡, 𝑥) + ( 𝜕𝐻∗(𝑡, 𝑥)
𝜕𝑦 + 𝜕𝜆(𝑡, 𝑥)

𝜕𝑡 + 𝜕2𝜆(𝑡, 𝑥)
𝜕𝑥2   ) ℎ𝑦(𝑡, 𝑥)]    𝑑𝑥 𝑑𝑡−

− ∫
∞

−∞
𝜆(𝑡, 𝑥)ℎ𝑦 (𝑡, 𝑥) 𝑑𝑥 ∣

∞

𝑡=0
+ ∫

∞

0
(𝜆(𝑡, 𝑥)𝜕ℎ𝑦 (𝑡, 𝑥)

𝜕𝑥 − 𝜕𝜆(𝑡, 𝑥)
𝜕𝑥 ℎ𝑦 (𝑡, 𝑥)) 𝑑𝑡∣

∞

𝑥=−∞

  where 𝐻∗(𝑡, 𝑥) = 𝐻(𝑡, 𝑥𝑢∗(𝑡, 𝑥), 𝑦∗(𝑡, 𝑥), 𝜆(𝑡, 𝑥)). From admissibility conditions, we have

𝛿𝑉 [𝑢∗, 𝑦∗] = ∫
∞

0
∫

∞

−∞
[ 𝜕𝐻∗(𝑡, 𝑥)

𝜕𝑢  ℎ𝑢(𝑡, 𝑥) + ( 𝜕𝐻∗(𝑡, 𝑥)
𝜕𝑦 + 𝜕𝜆(𝑡, 𝑥)

𝜕𝑡 + 𝜕2𝜆(𝑡, 𝑥)
𝜕𝑥2   ) ℎ𝑦(𝑡, 𝑥)]   𝑑𝑥𝑑𝑡−

− lim
𝑡→∞

∫
∞

−∞
𝜆(𝑡, 𝑥)ℎ𝑦 (𝑡, 𝑥)𝑑𝑥 − ∫

∞

0
(𝜕𝜆(𝑡, 𝑥)

𝜕𝑥 ℎ𝑦 (𝑡, 𝑥)) 𝑑𝑡 ∣
∞

𝑥=−∞
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Optimality requires that 𝑉 [𝑢∗, 𝑦∗] ≥ 𝑉 [𝑢, 𝑦] which holds only if 𝛿𝑉 [𝑢∗, 𝑦∗] = 0. Then optimality

conditions are as in equation (11.2).

Proof of Proposition 2. Let us assume that there is a solution (𝑢∗, 𝑦∗), for the problem, and define
the value function as

𝑉 [𝑢∗, 𝑦∗] = lim
𝑥→∞

1
2𝑥 ∫

𝑥

−𝑥
∫

∞

0
𝑓(𝑦∗(𝜉, 𝑡), 𝑢∗(𝜉, 𝑡))𝑒−𝜌𝑡𝑑𝑡𝑑𝜉.

Consider a small continuous perturbation (𝑢(𝜖), 𝑦(𝜖)) = {(𝑢(𝑡, 𝑥), 𝑦(𝑡, 𝑥)) ∶ (𝑡, 𝑥) ∈ ℝ × ℝ+}, where
𝜖 is any positive constant, such that 𝑢(𝑡, 𝑥) = 𝑢∗(𝑡, 𝑥) + 𝜖ℎ𝑢(𝑡, 𝑥) and 𝑦(𝑡, 𝑥) = 𝑦∗(𝑡, 𝑥) + 𝜖ℎ𝑦(𝑡, 𝑥),
for 𝑡 > 0, and ℎ𝑢(𝑥, 0) = ℎ𝑦(𝑥, 0) = 0, for every 𝑥 ∈ ℝ. The value of this strategy is

𝑉 (𝜖) = lim
𝑥→∞

1
2𝑥 ∫

𝑥

−𝑥
∫

∞

0
𝑓(𝑢(𝜉, 𝑡), 𝑦(𝜉, 𝑡))𝑒−𝜌𝑡𝑑𝑡𝑑𝜉.

But,

𝑉 (𝜖) ∶= lim
𝑥→∞

1
2𝑥 ∫

𝑥

−𝑥
∫

∞

0
𝑓(𝑢(𝜉, 𝑡), 𝑦(𝜉, 𝑡))𝑒−𝜌𝑡𝑑𝑡𝑑𝜉−

− lim
𝑥→∞

1
2𝑥 ∫

𝑥

−𝑥
∫

∞

0
𝜆(𝜉, 𝑡) [𝜕𝑦(𝜉, 𝑡)

𝜕𝑡 − 𝜕2𝑦(𝜉, 𝑡)
𝜕𝜉2 − 𝑔(𝑢(𝜉, 𝑡), 𝑦(𝜉, 𝑡))] 𝑑𝑡𝑑𝜉+

+ lim
𝑡→∞

lim
𝑥→∞

1
2𝑥 ∫

𝑥

−𝑥
𝑒−𝑟(𝜉,𝑡)𝜇(𝜉, 𝑡)𝑦(𝜉, 𝑡)𝑑𝜉 (11.32)

where 𝜆(.) is the co-state variable and 𝜇(.) is a Lagrange multiplier associated with the solvability
condition. In the optimum, the Kuhn-Tucker condition should hold

lim
𝑡→∞

lim
𝑥→∞

1
2𝑥 ∫

𝑥

−𝑥
𝑒−𝑟(𝜉,𝑡)𝜇(𝜉, 𝑡)𝑦(𝜉, 𝑡)𝑑𝜉 = 0.

By using integration by parts we find that

∫
∞

0
𝜆(𝑡, 𝑥)𝜕𝑦(𝑡, 𝑥)

𝜕𝑡 𝑑𝑡 = 𝜆(𝑡, 𝑥)𝑦(𝑡, 𝑥)|∞𝑡=0 − ∫
∞

0

𝜕𝜆(𝑡, 𝑥)
𝜕𝑡 𝑦(𝑡, 𝑥)𝑑𝑡

and that

∫
𝑥

−𝑥
∫

∞

0
𝜆(𝜉, 𝑡)𝜕2𝑦(𝜉, 𝑡)

𝜕𝜉2 𝑑𝑡𝑑𝜉 =

= ∫
∞

0
𝜆(𝜉, 𝑡)𝜕𝑦(𝜉, 𝑡)

𝜕𝜉 ∣
𝑥

𝜉=−𝑥
− 𝑦(𝜉, 𝑡)𝜕𝜆(𝜉, 𝑡)

𝜕𝜉 ∣
𝑥

𝜉=−𝑥
𝑑𝑡 + ∫

𝑥

−𝑥
∫

∞

0

𝜕2𝜆(𝜉, 𝑡)
𝜕𝜉2 𝑦(𝜉, 𝑡)𝑑𝑡𝑑𝜉, (11.33)

where the second term is canceled by the boundary conditions (11.15). Then

𝑉 (𝜖) = lim
𝑥→∞

1
2𝑥 ∫

𝑥

−𝑥
∫

∞

0
(𝑓(𝑢(𝜉, 𝑡), 𝑦(𝜉, 𝑡))𝑒−𝜌𝑡+

+𝜕𝜆(𝜉, 𝑡)
𝜕𝑡 𝑦(𝜉, 𝑡) + 𝜕2𝜆(𝜉, 𝑡)

𝜕𝜉2 𝑦(𝜉, 𝑡) + 𝜆(𝜉, 𝑡)𝑔(𝑢(𝜉, 𝑡), 𝑦(𝜉, 𝑡))) 𝑑𝑡𝑑𝜉 −

− lim
𝑥→∞

1
2𝑥 (∫

𝑥

−𝑥
𝜆(𝜉, 𝑡)𝑦(𝜉, 𝑡)|∞𝑡=0 𝑑𝜉 + ∫

∞

0
𝜆(𝜉, 𝑡)𝜕𝑦(𝜉, 𝑡)

𝜕𝜉 ∣
𝑥

𝜉=−𝑥
𝑑𝑡)
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If an optimal solution exists, then we may characterize it by applying the variational principle,
𝜕𝐽(𝑢∗, 𝑦∗)

𝜕𝜖 = lim
𝜖→0

𝐽(𝑢(𝜖), 𝑦(𝜖)) − 𝐽(𝑢∗, 𝑦∗)
𝜖 = 0.

But, defining the Hamiltonian function as 𝐻(𝑢, 𝑦, 𝜆) = 𝑓(𝑢, 𝑦) + 𝜆𝑔(𝑢, 𝑦), then

𝜕𝐽
𝜕𝜖 = lim

𝑥→∞
1

2𝑥 {∫
𝑥

−𝑥
∫

∞

0
[ 𝐻𝑢(𝑢∗(𝜉, 𝑡), 𝑦∗(𝜉, 𝑡), 𝜆(𝜉, 𝑡))ℎ𝑢(𝜉, 𝑡)+

+ (𝜕𝜆(𝜉, 𝑡)
𝜕𝑡 + 𝜕2𝜆(𝜉, 𝑡)

𝜕𝜉2 + 𝜆(𝜉, 𝑡)𝐻𝑥(𝑢∗(𝜉, 𝑡), 𝑦∗(𝜉, 𝑡), 𝜆(𝜉, 𝑡))) ℎ𝑦(𝜉, 𝑡)] 𝑑𝑡𝑑𝜉

− ∫
𝑥

−𝑥
𝜆(𝜉, 𝑡)ℎ𝑦(𝜉, 𝑡)∣∞𝑡=0 𝑑𝜉 + ∫

∞

0
𝜆(𝜉, 𝑡)𝜕ℎ𝑦(𝜉, 𝑡)

𝜕𝜉 ∣
𝑥

𝜉=−𝑥
𝑑𝑡 −

− lim
𝑡→∞

∫
𝑥

−𝑥
𝜇(𝜉, 𝑡)𝑒−𝑟(𝜉,𝑡)ℎ𝑦(𝜉, 𝑡)𝑑𝜉} . (11.34)

The last and the third to last expressions are canceled if lim𝑡→∞[𝜇(𝑡, 𝑥)𝑒−𝑟(𝑡,𝑥) − 𝜆(𝑡, 𝑥)] = 0,
and by the fact that ℎ𝑘(𝑥, 0) = 0, for any 𝑥. Then, substituting in the Kuhn-Tucker condition
we get a generalized transversality condition. We get the first order conditions by equating to
zero all the remaining components of 𝜕𝐽

𝜕𝜖 . Equations (??)-(??) are obtained by simply making
𝑞(𝑡, 𝑥) = 𝑒𝜌𝑡𝜆(𝑡, 𝑥).

Proof of Proposition 3. The Lagrange functional is

𝐿[𝑢, 𝑦, 𝜆]  = ∫
𝑇

∫
𝑋

𝑓(𝑡, 𝑥, 𝑢(𝑡, 𝑥)) 𝑦(𝑡, 𝑥) 𝑑𝑥 𝑑𝑡

− ∫
𝑇

∫
𝑋

𝜆(𝑡, 𝑥)𝜕𝑡𝑦(𝑡, 𝑥) 𝑑𝑥 𝑑𝑡

− ∫
𝑇

∫
𝑋

𝜆(𝑡, 𝑥)𝜕𝑥(𝑔(𝑥, 𝑢(𝑡, 𝑥)) 𝑦(𝑡, 𝑥)), 𝑑𝑥 𝑑𝑡

+ ∫
𝑇

∫
𝑋

𝜆(𝑡, 𝑥)𝜕𝑥𝑥(ℎ(𝑥, 𝑢(𝑡, 𝑥)) 𝑦(𝑡, 𝑥)), 𝑑𝑥 𝑑𝑡

≡ 𝐼1 − 𝐼2 − 𝐼3 + 𝐼4

  Integrating by parts, we find

𝐼2 = ∫
𝑋

𝜆(𝑡, 𝑥) 𝑦(𝑡, 𝑥)𝑑𝑥 ∣
𝑡∈𝜕𝑇

− ∫
𝑇

∫
𝑋

𝜕𝑡𝜆(𝑡, 𝑥) 𝑦(𝑡, 𝑥)𝑑𝑥 𝑑𝑡,

  where 𝜕𝑇 is the boundary of 𝑇 , i.e, 𝜕𝑇 = { 𝑡,̲ 𝑡},

𝐼3 = ∫
𝑇

  𝜆(𝑡, 𝑥) 𝑔(𝑥, 𝑢(𝑡, 𝑥)) 𝑦(𝑡, 𝑥)) 𝑑𝑡 ∣
𝑥∈𝜕𝑋

− ∫
𝑇

∫
𝑋

𝑔(𝑥, 𝑢(𝑡, 𝑥)) 𝜕𝑥𝜆(𝑡, 𝑥) 𝑦(𝑡, 𝑥)𝑑𝑥 𝑑𝑡

  and

𝐼4 = ∫
𝑇

[ 𝜆(𝑡, 𝑥) 𝜕𝑥(ℎ(𝑥, 𝑢(𝑡, 𝑥)) 𝑦(𝑡, 𝑥)) − 𝜕𝑥𝜆(𝑡, 𝑥) ℎ(𝑥, 𝑢(𝑡, 𝑥)) 𝑦(𝑡, 𝑥)]  𝑑𝑡 ∣
𝑥∈𝜕𝑋

+ ∫
𝑇

∫
𝑋

ℎ(𝑥, 𝑢(𝑡, 𝑥)) 𝑦(𝑡, 𝑥) 𝜕𝑥𝑥𝜆(𝑡, 𝑥) 𝑑𝑥 𝑑𝑡. 



Paulo Brito Advanced Mathematical Economics 2021/2022 43

  Therefore, the Lagrange functional becomes

𝐿[𝑢, 𝑦, 𝜆] = ∫
𝑇

∫
𝑋

[ 𝑓(𝑡, 𝑥, 𝑢(𝑡, 𝑥)) + 𝜕𝑡𝜆(𝑡, 𝑥) + 𝑔(𝑥, 𝑢(𝑡, 𝑥)) 𝜕𝑥𝜆(𝑡, 𝑥)+

  + ℎ(𝑥, 𝑢(𝑡, 𝑥)) 𝜕𝑥𝑥𝜆(𝑡, 𝑥)]  𝑦(𝑡, 𝑥) 𝑑𝑥 𝑑𝑡

− ∫
𝑋

𝜆(𝑡, 𝑥) 𝑦(𝑡, 𝑥)𝑑𝑥 ∣
𝑡∈𝜕𝑇

− ∫
𝑇

  𝜆(𝑡, 𝑥) 𝑔(𝑥, 𝑢(𝑡, 𝑥)) 𝑦(𝑡, 𝑥) 𝑑𝑡 ∣
𝑥∈𝜕𝑋

+ ∫
𝑇

[ 𝜆(𝑡, 𝑥) 𝜕𝑥(ℎ(𝑥, 𝑢(𝑡, 𝑥)) 𝑦(𝑡, 𝑥)) − 𝜕𝑥𝜆(𝑡, 𝑥) ℎ(𝑥, 𝑢(𝑡, 𝑥)) 𝑦(𝑡, 𝑥)]  𝑑𝑡 ∣
𝑥∈𝜕𝑋

= 𝐼5 − 𝐼6 − 𝐼7 + 𝐼8

  The Lagrange functional at the optimal control and state variables, 𝑢∗(⋅) and 𝑦∗(⋅) is written
𝐿∗ = 𝐿[𝑢∗, 𝑦∗, 𝜆].

We Introduce perturbations on the control and state variables,

 𝑢(𝑡, 𝑥) = 𝑢∗(𝑡, 𝑥) + 𝜀 𝛿𝑢(𝑡, 𝑥), (𝑡, 𝑥) ∈ 𝑇 × 𝑋
𝑦(𝑡, 𝑥) = 𝑦∗(𝑡, 𝑥) + 𝜀 𝛿𝑦(𝑡, 𝑥), (𝑡, 𝑥) ∈ 𝑇 × 𝑋

 

  which are admissible if 𝛿𝑦(𝑡,̲ 𝑥) = 0 for any 𝑥 ∈ 𝑋, and 𝛿𝑦(𝑡, 𝑥) = 0 for 𝑥 ∈ 𝜕𝑋 and 𝛿𝑦(𝑡, 𝑥) is
arbitrary for 𝑥 ∈ Int(𝑋).

A necessary condition for the optimum is that the integral derivative (Gâteux derivative) of
𝐿[𝑢, 𝑦, 𝜆], evaluated at 𝑢∗(⋅) and 𝑦∗(⋅), 𝐿∗ = 𝐿[𝑢∗, 𝑦∗, 𝜆]   is zero 𝛿𝐿∗ = 0. As 𝐼5, 𝐼6, 𝐼7 and 𝐼8 are
also functionals over 𝑢(⋅), 𝑦(⋅) and 𝜆(⋅), this is equivalent to requiring the functional derivatives to
be zero when evaluated at 𝑢∗(⋅) and 𝑦∗(⋅).

The first functional derivative is

𝛿𝐼∗
5 = ∫

𝑇
∫

𝑋
[𝜕𝑢  𝑓(𝑡, 𝑥, 𝑢∗(𝑡, 𝑥)) + 𝜕𝑢𝑔(𝑥, 𝑢∗(𝑡, 𝑥)) 𝜕𝑥𝜆(𝑡, 𝑥) + 𝜕𝑢ℎ(𝑥, 𝑢∗(𝑡, 𝑥) 𝜕𝑥𝑥𝜆(𝑡, 𝑥)]  𝑦∗(𝑡, 𝑥) 𝛿𝑢(𝑡, 𝑥)

+ [𝑓(𝑡, 𝑥, 𝑢∗(𝑡, 𝑥)) + 𝜕𝑡𝜆(𝑡, 𝑥) + 𝑔(𝑥, 𝑢∗(𝑡, 𝑥)) 𝜕𝑥𝜆(𝑡, 𝑥) + +ℎ(𝑥, 𝑢∗(𝑡, 𝑥)) 𝜕𝑥𝑥𝜆(𝑡, 𝑥)]  𝛿𝑦(𝑡, 𝑥) 𝑑𝑥 𝑑𝑡.

  As the perturbations 𝛿𝑢(𝑡, 𝑥) and 𝛿𝑦(𝑡, 𝑥) are arbitrary in the interior of 𝑇 × 𝑋 the functional is
equal to zero if and only if equations (11.26) and (??).

The second functional derivative

𝛿𝐼∗
6 = ∫

𝑋
𝜆(𝑡, 𝑥) 𝛿𝑦(𝑡, 𝑥)𝑑𝑥 ∣

𝑡∈𝜕𝑇

= ∫
𝑋

𝜆(𝑡, 𝑥) 𝛿𝑦(𝑡, 𝑥)𝑑𝑥 − ∫
𝑋

𝜆(𝑡,̲ 𝑥) 𝛿𝑦(𝑡,̲ 𝑥)𝑑𝑥
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  is equal to zero because 𝛿𝑦(𝑡,̲ 𝑥) = 0 and if the transversality condition 𝜆(𝑡, 𝑥) = 0 for every
𝑥 ∈ 𝑋. The last two functional derivatives are

𝛿𝐼∗
7 = ∫

𝑇
  [ 𝜕𝑢𝑔(𝑥, 𝑢∗(𝑡, 𝑥)) 𝑦∗(𝑡, 𝑥) + 𝑔(𝑥, 𝑢∗(𝑡, 𝑥)) 𝛿𝑦(𝑡, 𝑥)]  𝜆(𝑡, 𝑥) 𝑑𝑡 ∣

𝑥∈𝜕𝑋

= ∫
𝑇

  [ 𝜕𝑢𝑔(𝑥, 𝑢∗(𝑡, 𝑥)) 𝑦∗(𝑡, 𝑥) + 𝑔(𝑥, 𝑢∗(𝑡, 𝑥)) 𝛿𝑦(𝑡, 𝑥)]  𝜆(𝑡, 𝑥) 𝑑𝑡−

− ∫
𝑇

  [ 𝜕𝑢𝑔(�̲̲̲̲�, 𝑢∗(𝑡, �̲̲̲̲�)) 𝑦∗(𝑡, �̲̲̲̲�) + 𝑔(�̲̲̲̲�, 𝑢∗(𝑡, �̲̲̲̲�)) 𝛿𝑦(𝑡, �̲̲̲̲�)]  𝜆(𝑡, �̲̲̲̲�) 𝑑𝑡

  and

𝛿𝐼∗
8 = ∫

𝑇
  { [ 𝜆(𝑡.𝑥) 𝜕𝑢(𝜕𝑥(ℎ(𝑥, 𝑢∗(𝑡, 𝑥))𝑦∗(𝑡, 𝑥))) − 𝜕𝑥𝜆(𝑡, 𝑥) 𝜕𝑢ℎ(𝑥, 𝑢∗(𝑡, 𝑥)) 𝑦∗(𝑡, 𝑥)]  𝛿𝑢(𝑡, 𝑥)

+ [ 𝜆(𝑡.𝑥) 𝜕𝑦(𝜕𝑥(ℎ(𝑥, 𝑢∗(𝑡, 𝑥))𝑦∗(𝑡, 𝑥))) − 𝜕𝑥𝜆(𝑡, 𝑥) ℎ(𝑥, 𝑢∗(𝑡, 𝑥))]  𝛿𝑦(𝑡, 𝑥) }  𝑑𝑡∣
𝑥∈𝜕𝑋

  are both equal to zero because 𝑦(𝑡, 𝑥) = 𝑦(𝑡, �̲̲̲̲�) = 𝛿𝑦(𝑡, 𝑥) = 𝛿𝑦(𝑡, �̲̲̲̲�) = 0.
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