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Chapter 12

Introduction to stochastic differential
equations and stochastic calculus

12.1 Introduction

If we consider again the ordinary differential equation

̇𝑦 = 𝑓(𝑦(𝑡)) (12.1)

  we can extend it by introducing a random perturbation,

̇𝑌 = 𝑓(𝑌 (𝑡)) + 𝜖(𝑡) (12.2)

and call 𝑓(𝑌 (𝑡)) the deterministic component (or skeleton) and 𝜖(𝑡) is a random perturbation.
However, ”noise” can be introduced in a more general form

̇𝑌 = 𝑓(𝑌 (𝑡), 𝜖(𝑡)). (12.3)

While the solution of (12.1) is a mapping 𝑦 ∶ ℝ+ → ℝ𝑛, in the case of equations (12.2) or
(12.3), the solution is a mapping 𝑌 ∶ ℝ+ × Ω → ℝ𝑛 where (Ω, ℙ) is a probability space. We denote
𝑌 (𝑡) = 𝑦(𝑡) = 𝑦𝑡 the realization  of process 𝑌 (𝑡) at time 𝑡 ≥ 0.

In the previous parts, we studied the behaviour of the solution for the deterministic ODE. We
saw that if function 𝑓(.) is continuous and differentiable a solution 𝑦(𝑡) exists, it is unique, and it
is a continuous and differentiable function of time. In addition we characterized the solution as
regards the existence of steady states, their stability properties and their bifurcation behavior.

The solution of a stochastic differential equation can be seen as a (very large) family of solutions
associated to their deterministic component. This is why we use 𝑌 (𝑡) instead of 𝑦(𝑡). Indeed if
we fix ”noise” as 𝜖(𝑡) = 𝜖0 it becomes a deterministic ODE. In this sense, some of the properties
associated to the deterministic part 𝑓(.), like continuity, differentiable, stability and bifurcation
behavior should be checked and analysed. However, the introduction of noise implies that solutions
of a stochastic differential equation may need some reinterpretation and some new features of the
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solutions emerge: they may not be differentiable, they do not converge to a deterministic steady
state and even if the deterministic component has a fixed point, the solution may not be stable.

Simplifying, we can view stability for perturbed systems as stability in a distributional sense.
We are unaware of a general bifurcation theory for stochastic differential equations. However, we
can look at the solutions by trying classify the effects of the perturbation as regards their comparison
with a related deterministic model:

• high noise may generate large deviations (from the deterministic solution)

• high noise may generate small deviations

• low noise can generate small deviations

• low noise can generate high deviations

There are several ways to introduce randomness in dynamic models. In continuous time models
applied to economics and finance there are two main ways to introduce a stochastic component1:

• to model rare events with a local high impact uncertainty is introduced via a Poisson pro-
cess, (𝑄(𝑡) )𝑡∈T,

𝑑𝑌 (𝑡) = 𝑓(𝑌 (𝑡), 𝑡)𝑑𝑡 + 𝑣(𝑌 (𝑡−, 𝑡−) 𝑑𝑄(𝑡) (12.4)

   where 𝑌 (𝑡−) = lim𝑠↑𝑡  𝑌 (𝑠) and 𝑑𝑄(𝑡) = 1 with probability 𝜆 𝑑𝑡 and 𝑑𝑄(𝑡) = 0 with
probability (1 − 𝜆) 𝑑𝑡, 𝑓(.) and 𝑣(.) are continuous and differentiable known functions.

• to model frequent events having a local small impact uncertainty is introduced via a Wiener
process (𝑊(𝑡))𝑡∈T is a Wiener process. The most common model is called diffusion
equation

𝑑𝑌 (𝑡) = 𝑓(𝑌 (𝑡), 𝑡)𝑑𝑡 + 𝜎(𝑌 (𝑡), 𝑡)𝑑𝑊(𝑡) (12.5)

  where 𝑓(.) and 𝜎(.) are continuous and differentiable known functions.

  The main reason for using the previous formalism is related to the fact that 𝑌 (𝑡) in both cases
is not differentiable in the classic sense, and specific stochastic calculus rules have to be developed
before solving those equations.

Therefore, in general, the term stochastic differential equation with jumps  (SDEJ) is
reserved to equations of the form (12.4) in the differential form or to in the integral form

𝑌 (𝑡) = 𝑌 (0) + ∫
𝑡

0
𝑓(𝑌 (𝑠), 𝑠)𝑑𝑠 + ∫

𝑡

0
𝑣(𝑌 (𝑠−, 𝑠−)  𝑑𝑄(𝑠)

  where the first integral in the right-hand-side is a Riemmann integral, but the second is a Poisson
integral. In order to solve and/or characterise SDEJ we have to introduce the properties of the

1For a clear discussion see Merton (1982).
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Poisson process and of the Poisson integral. Likewise, the term stochastic differential equation 
(SDE) is reserved to equations as (12.5) in the differential form or in the integral form

𝑌 (𝑡) = 𝑌 (0) + ∫
𝑡

0
𝑓(𝑌 (𝑠), 𝑠)𝑑𝑠 + ∫

𝑡

0
𝜎(𝑌 (𝑠), 𝑠) 𝑑𝑊(𝑠)

  where the first integral in the right-hand-side is a Riemmann integral, but the second is a Itô
integral. In order to solve and/or characterise SDE we have to introduce the properties of the
Wiener process and of the Itô’s integral.

However, there are SDE which have both jump and diffusion components

𝑑𝑌 (𝑡) = 𝑓(𝑌 (𝑡), 𝑡)𝑑𝑡 + 𝑣(𝑌 (𝑡−, 𝑡−) 𝑑𝑄(𝑡) + 𝜎(𝑌 (𝑡), 𝑡)𝑑𝑊(𝑡)

  The most common approach to SDE’s view ”noise” as generated by a Wiener process and builds
upon the Itô process. In the rest of this lecture we will restrain to Itô’s SDE’s. From this we present
the basic linear SDE, the diffusion equation, and study its statistical and stability properties. We
present a very brief introduction to the Itô’s stochastic calculus applied to stochastic differential
equation of type (12.5), following an applied and heuristic approach. In particular, we emphasise
the connections with ordinary and partial differential equations.

In section 12.2 we define and describe the properties of the Wiener process. In section 12.3
we define and present the properties of the Itô’s process and integral. In section 12.4 we present
methods for characterizing diffusion processes.

12.2 The Wiener process

12.2.1 Stochastic processes: a brief description

A uni-dimensional stochastic process can be seen as a flow of random variables (𝑋(𝑡, 𝜔))
𝑡∈T

,
where 𝑋(𝑡, 𝜔) ∶ T × Ω → ℝ, where (Ω, ℱ, ℙ, 𝔽) is a filtered probability space. A filtered probability
space is defined by the sample space Ω, by the set of events ℱ (i.e., the set of all subsets of Ω, a
probability measure over events and the filtration 𝔽 = (ℱ(𝑡))

𝑡∈T
.

In non-rigorous terms, we can interpret a filtration as the way in which the flow informa-
tion allows for determining a probability distribution for events taking place over time. A non-
anticipating  process is a process in which the probability associated to a particular event is
determined from past events, meaning that we can only ascertain the probability of a future event
on the base of past information. An anticipating process  is a process in which we condition the
probability of present events on the occurrence of future events. A stochastic process is adapted
to a filtration if it has a probability distribution associated to a particular filtration, that is,
depending on the flow of information implicit in the filtration.

In the rest of the lecture we represent a stochastic process by (𝑋(𝑡))
𝑡∈T

, where 𝑋(𝑡) ∶ T → ℝ
represents the possible realizations of the process at time 𝑡, that is before nature (or a pseudo
random number generator of a computer) makes a draw at time 𝑡. The realization of a stochastic
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process at time 𝑡, 𝑋(𝑡) = 𝑥(𝑡) is a particular number which can be observed after nature (or
the computer) makes a draw. Therefore, we consider non-anticipating processes, or processes
adapted to a non-anticipating filtration.

12.2.2 Wiener process: definition

There are several ways of characterising the Wiener process  also called standard Brownian
motion. As we mentioned in the last subsection, a stochastic process can be defined by the way
information on the flow of events and the associated probability distribution.

Definition 1.  A Wiener process, denoted by (𝑊(𝑡))𝑡≥0, is a stochastic process, where 𝑊 ∶
Ω × 𝑇 → ℝ has the following properties:

1. the initial value is equal to 0 with probability one: ℙ[𝑊(0) = 0] = 1 (also written as

𝑊(0) = 0, a. s.

 

2. it has a continuous version: i.e., a randomly generated path is a continuous function of time
with probability one (i.e., there can be discontinuous jumps, but they have probability zero of
occurring);

3. the path increments are independent and are Gaussian with zero mean and variance equal to
the temporal increment

𝑑𝑊(𝑡) = 𝑊(𝑡 + 𝑑𝑡) − 𝑊(𝑡) ∼ 𝑁(0, 𝑑𝑡), ≥ 0

 

The last property implies that the Wiener process is a Markovian, or memory-less, process.
A propagator  can be defined as

ℙ𝑑𝑡(𝑤
′ |𝑤) ≡ ℙ[𝑊(𝑡 + 𝑑𝑡) = 𝑤′|𝑊(𝑡) = 𝑤] ,

that is the conditional probability of the process (𝑊(𝑡)) having the realization 𝑤′ at time 𝑡 + 𝑑𝑡,
given that it had the realization 𝑤 at time 𝑡.

If we write 𝑤′ = 𝑤 + 𝑑𝑤 then the propagator of a Wiener process is

ℙ𝑑𝑡(𝑤
′ |𝑤) = 1√

2𝜋𝑑𝑡
 𝑒− (𝑑𝑤)2

2𝑑𝑡 .

There are several ways of charaterizing stochastic processes. Next we characterize the Wiener
process by its sample path  and statistic  (or stochastic) properties.

Figure 12.1 depicts a sample path (upper diagram) and 100 draws of the process which allows
for an illustration of its stochastic properties. In the upper diagram we see that every sample path is
strongly jagged: although it looks like being continuous, it is not smooth enough to be differentiable.
In the lower diagram we see that the distribution seems to change with time although it tends to
be located most of the time close to 𝑊 = 0.

Next we will make a heuristic confirmation of those perceptions.
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Wiener process
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Figure 12.1: Sample paths for the Wiener process
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Sample path properties

Proposition 1. The Wiener process is not first-order-differentiable.

Proof.  (Heuristic) Let

∣𝑑𝑊(𝑡)
𝑑𝑡  ∣ = ∣𝑊(𝑡 + 𝑑𝑡) − 𝑊(𝑡)

𝑑𝑡  ∣

  for a given 0 < 𝑡 < ∞ and 𝑑𝑡 > 0.
Then

𝔼 [∣𝑑𝑊(𝑡)
𝑑𝑡  ∣] = 1

𝑑𝑡𝔼 [|𝑊(𝑡 + 𝑑𝑡) − 𝑊(𝑡)|]

Writing 𝑊(𝑡 + 𝑑𝑡) − 𝑊(𝑡) = 𝑋, and taking into account the definition of the Wiener process,

𝔼[|𝑋|]  = ∫
∞

−∞

|𝑥|√
2𝜋𝑑𝑡

 𝑒−
𝑥2

2𝑑𝑡 𝑑𝑥 =
√

2𝑑𝑡√𝜋 ∫
∞

−∞

|𝑥|√
2𝑑𝑡

𝑒−
𝑥2

2𝑑𝑡 𝑑𝑥√
2𝑑𝑡

(setting  𝑦 = 𝑥/
√

2𝑑𝑡, and as 𝑑𝑡 > 0)

=
√

2𝑑𝑡√𝜋 ∫
∞

−∞
 |𝑦| 𝑒−𝑦2 𝑑𝑦

(because   ∫
∞

−∞
 |𝑦| 𝑒−𝑦2 𝑑𝑦 = 1 see the Appendix on the Gaussian integral)

= √2𝑑𝑡
𝜋 .

Then

𝔼 [∣𝑑𝑊(𝑡)
𝑑𝑡  ∣] = 𝑑

𝑑𝑡(√2𝑑𝑡
𝜋 ) =  √ 2

𝜋𝑑𝑡 = 𝑜( 1√
𝑑𝑡

).

  The time derivative is of order 𝑑𝑡−1/2 meaning that as lim𝑑𝑡→0  𝔼 [∣𝑑𝑊(𝑡)
𝑑𝑡  ∣] = ∞ which means

that the sample path of (𝑊(𝑡)) is not first-order differentiable in time.

Therefore, although we can write the process in the integral form

𝑊(𝑡) = 𝑊(0) + ∫
𝑡

0
𝑑𝑊(𝑡) = ∫

𝑡

0
𝑑𝑊(𝑠),

  from the fundamental theorem of calculus, but the derivative

𝑑𝑊(𝑡)
𝑑𝑡

  is not well defined.
This is the reason why we need a particular calculus to deal with functions of Wiener processes,

as we will see next.
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Statistic properties

Looking again to Figure 12.1 we can characterize the statistic properties of the Wiener process.
Those properties can be derived from the definition of the Wiener process

Proposition 2. Assume that the time variation is positive 𝑑𝑡 > 0.

1 The Wiener process is stationary in expected value terms

𝔼[𝑑𝑊(𝑡)]  = 0, for each  𝑡 ∈ T

 

2 the mathematical expectation of the square variation of the Wiener process is equal to the
time increment

𝔼[(𝑑𝑊(𝑡))2]  = 𝑑𝑡, for each  𝑡 ∈ T

 

3 the variance of the variation is equal to the time increment

𝕍[𝑑𝑊(𝑡)]  = 𝔼[ 𝑑𝑊(𝑡)2]  − 𝔼[ 𝑑𝑊(𝑡)]2 = 𝑑𝑡, for each  𝑡 ∈ T.

 

Proof. Let 𝑑𝑊(𝑡) = 𝑑𝑊 , where 𝑑𝑊 can be seen as a random variable with a 𝑁(0, 𝑑𝑡) density
distribution, and 𝑑𝑡 > 0. Then: (1) the expected value is

 𝔼 [𝑑𝑊]   = ∫
∞

−∞

𝑤√
2𝜋𝑑𝑡

𝑒− (𝑤)2
2𝑑𝑡  𝑑𝑤

(changing variables  𝑤 =
√

2𝑑𝑡𝑥 ⇒ 𝑑𝑤 =
√

2𝑑𝑡 𝑑𝑥)

= √2𝑑𝑡
𝜋 ∫

∞

−∞
𝑥𝑒−𝑥2𝑑𝑥 = 0

  from the properties of the Gaussian integral (see the Appendix); (2) the quadratic variation
(𝑑𝑊(𝑡))2 = (𝑑𝑊)2 has the expected value

𝔼 [(𝑑𝑊)2]   = ∫
∞

−∞

𝑤2
√

2𝜋𝑑𝑡
𝑒− (𝑤)2

2𝑑𝑡  𝑑𝑤 =

(using the same change in variables)

= 2𝑑𝑡√𝜋 ∫
∞

−∞
𝑥2𝑒−𝑥2𝑑𝑥 =

(using again the properties of the Gaussian integral)

= 2𝑑𝑡√𝜋

√𝜋
2 =

= 𝑑𝑡

;

  (3) as the he variance of a change 𝕍 [𝑑𝑊(𝑡)]   = 𝔼 [𝑑𝑊(𝑡)2] − 𝔼 [𝑑𝑊(𝑡)]2 and 𝔼 [𝑑𝑊(𝑡)] = 0 then
𝕍 [𝑑𝑊(𝑡)]   = 𝔼 [𝑑𝑊(𝑡)2] = 𝑑𝑡.



Paulo Brito Advanced Mathematical Economics 2021/2022 10

Corollary 1. Assume that the time variation is positive 𝑑𝑡 > 0.

1 The expected value for a Wiener process is equal to zero

𝔼[𝑊(𝑡)]  = 0, for each  𝑡 ∈ T

 

2 the mathematical expectation of the square variation of the Wiener process is equal to the
time increment

𝔼[𝑊(𝑡)2]  = 𝑡, for each  𝑡 ∈ T

 

3 the variance of the variation is equal to the time increment

𝕍[𝑊(𝑡)]  = 𝑡, for each  𝑡 ∈ T

 

4 Let 𝑠 = 𝑑𝑡 + 𝑡. Then the covariance of the Wiener process is

Cov[𝑊(𝑠), 𝑊(𝑡)] = 𝑠, for any  𝑠 > 𝑡 ∈ T

 

5 The correlation coefficient is

Corr[𝑊(𝑠), 𝑊(𝑡)] = √𝑠
𝑡 , for any  𝑠 > 𝑡 ∈ T.

 

Proof.  (1) As 𝑊(𝑡) = ∫𝑡
0  𝑑𝑊(𝑡) then 𝔼[𝑊(𝑡)]  = 𝔼[ ∫𝑡

0  𝑑𝑊(𝑡)] = ∫𝑡
0  𝔼[𝑑𝑊(𝑠)]  = 0, for ant

𝑡 ∈ T; (2) 𝑊(𝑡)2 = ∫𝑡
0  𝑑𝑊(𝑡)2 then 𝔼[𝑊(𝑡)2]  = 𝔼[ ∫𝑡

0  𝑑𝑊(𝑡)2] = ∫𝑡
0  𝔼[𝑑𝑊(𝑠)2]  = ∫𝑡

0 𝑑𝑠 = 𝑡, for
ant 𝑡 ∈ T; (4) for the covariance

Cov[𝑊(𝑠), 𝑊(𝑡)] = Cov(𝑊(𝑠), 𝑊(𝑠) − (𝑊(𝑠) − 𝑊(𝑡))) =
= Cov(𝑊(𝑠), 𝑊(𝑠)) − Cov(𝑊(𝑠), 𝑊(𝑠) − 𝑊(𝑡))) =
= 𝕍(𝑊(𝑠)) − Cov(𝑊(𝑠), 𝑑𝑊(𝑡))) = 𝑠
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12.3 The Itô’s processes

In the definition of the stochastic differential equation, in its integral form, we had the expression
(Itô (1951))

∫
𝑡

0
𝜎(𝑌 (𝑠))𝑑𝑊(𝑠)

  which, from the non-differentiability properties of the Wiener process needs to be addressed.

Definition 2. Let 𝑓(𝑡) be a bounded function of time. We call Itô’s integral to

𝐼(𝑡) = ∫
𝑡

0
𝑓(𝑠)𝑑𝑊(𝑠).

 

This definition can be extended to functions of type 𝑓(𝑡, 𝜔),where 𝜔 is adapted to the Wiener
process, that is 𝜔 is a function of 𝑊(𝑠) with 𝑠 ≤ 𝑡 (I.e, past realizations of (𝑊(𝑡))). If the function
is bounded in the sense 𝔼[∫𝑡

0 𝑓(𝑡)2𝑑𝑡]  < ∞, a more general definition of an Itô integral is

𝐼(𝑡, 𝑤) = ∫
𝑡

0
𝑓(𝑠, 𝑤)𝑑𝑊(𝑠)

  where 𝑤 is the outcome of a non-anticipating Wiener process, i.e, 𝑤 = 𝑊(𝑠) for 𝑠 ≤ 𝑡.
The Itô’s integral generates an Itô’s process  (𝐼(𝑠, .))𝑡

𝑠=0.

Properties of the Itô’s integral

• The integral of a sum is equal to the sum of the integrals

∫
𝑡

0
(𝑓1(𝑠) + 𝑓2(𝑠))𝑑𝑊(𝑠) = ∫

𝑡

0
𝑓1(𝑠)𝑑𝑊(𝑠) + ∫

𝑡

0
𝑓2(𝑠)𝑑𝑊(𝑠)

 

• The Itô integral is additive as regards the time integrand

∫
𝑇

0
𝑓(𝑠)𝑑𝑊(𝑠) = ∫

𝑡

0
𝑓(𝑠)𝑑𝑊(𝑠) + ∫

𝑇

𝑡
𝑓(𝑠)𝑑𝑊(𝑠)

  for 0 < 𝑡 < 𝑇 .

Statistic properties of the Itô’s integral

• The Itô’s integral is stationary in expected value terms, because

𝔼[𝐼(𝑡)]  = 𝔼[ ∫
𝑡

0
𝑓(𝑠)𝑑𝑊(𝑠)]  = ∫

𝑡

0
𝑓(𝑠)𝔼[𝑑𝑊(𝑠)] = 0

 

• The variance of the Itô’s integral is

𝕍[𝐼(𝑡)]  = 𝔼[𝐼(𝑡)2] = ∫
𝑡

0
𝔼[𝑓(𝑠)2]𝑑𝑠

  (see the proof next).
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12.3.1 The Itô’s integral and stochastic calculus

We caw write the Itô’s integral in the differential form as

𝑑𝐼(𝑡) = 𝑓(𝑡)𝑑𝑊(𝑡)

  where 𝑑𝑊(𝑡) is a variation of the Wiener process. Even though 𝑓(.) is differentialble we readily
see that 𝐼(𝑡) is not first-order differentiable. However, there is differentiability in a second-order
sense.

Itô’s formula for a one-dimensional process

Lemma 1 (Itô’s formula).   Assume that 𝑋(𝑡) is an Itô’s integral and assume that 𝑓(𝑥) ∶ ℝ → ℝ
is a 𝐶2 function. Then the integral 𝑌 (𝑡)

𝑌 (𝑡) = 𝑔(𝑡, 𝑋(𝑡))

  satisfies, in its differential form, the Itô’s formula

𝑑𝑌 (𝑡) = 𝑔𝑡(𝑡, 𝑋(𝑡))𝑑𝑡 + 𝑔𝑥(𝑡, 𝑋(𝑡))𝑑𝑋(𝑡) + 1
2𝑔𝑥𝑥(𝑡, 𝑋(𝑡))(𝑑𝑋(𝑡))2.  (12.6)

  where
𝑔𝑡(𝑡, 𝑥) = 𝜕𝑔(𝑡, 𝑥)

𝜕𝑡 , 𝑔𝑥(𝑡, 𝑥) = 𝜕𝑔(𝑡, 𝑥)
𝜕𝑥 , and  𝑔𝑥𝑥(𝑡, 𝑥) = 𝜕2𝑔(𝑡, 𝑥)

𝜕𝑥2 .

   In its application the following Itô’s rules  are used

(𝑑𝑡)2 = 𝑑𝑡 𝑑𝑊(𝑡) = 0, (𝑑𝑊(𝑡))2 = 𝑑𝑡.

Proof.  Itô (1951)

 
Examples

• Let 𝑑𝑋(𝑡) = 𝑑𝑊(𝑡) and 𝑌 (𝑡) = 𝑔(𝑡, 𝑋(𝑡)) then

𝑑𝑌 (𝑡) = (𝑔𝑡(𝑡, 𝑋(𝑡)) + 1
2𝑔𝑥𝑥(𝑡, 𝑋(𝑡))) 𝑑𝑡 + 𝑔𝑥(𝑡, 𝑋(𝑡))𝑑𝑊(𝑡) 

 

• Let 𝑑𝑋(𝑡) = 𝑓(𝑡) 𝑑𝑊(𝑡), then 𝑌 (𝑡) = 𝑔(𝑡, 𝑋(𝑡)) satisfies

𝑑𝑌 (𝑡) = (𝑔𝑡(𝑡, 𝑋(𝑡)) + 1
2𝑔𝑥𝑥(𝑡, 𝑋(𝑡)) 𝑓2(𝑡)) 𝑑𝑡 + 𝑔𝑥(𝑡, 𝑋(𝑡)) 𝑓(𝑡) 𝑑𝑊(𝑡). 

 
We can use the previous formulas for proving that

𝔼[𝐼(𝑡)2]  = ∫
𝑡

0
𝑓(𝑠)2 𝑑𝑠
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  where 𝑓(.) is deterministic. and (𝑇 (𝑡)) is an Itô integral.
First, let 𝑑𝐼(𝑡) =  𝑓(𝑡) 𝑑𝑊(𝑡) and determine 𝐼(𝑡)2: applying the Itôs formula yields

𝑑(𝐼(𝑡))2) = 2 𝐼(𝑡) 𝑑𝐼(𝑡) + 2
2 (𝑑𝐼(𝑡))2

= 2 𝑓(𝑡) 𝑑𝑊(𝑡) + (𝑓(𝑡) 𝑑𝑊(𝑡))2

= 𝑓(𝑡)2 𝑑𝑡 + 2 𝑓(𝑡) 𝑑𝑊(𝑡)

  Second, integrating

𝐼(𝑡)2 = 𝐼(0)2 + ∫
𝑡

0
 𝑑𝐼(𝑠)2 = ∫

𝑡

0
 𝑑𝐼(𝑠)2 = ∫

𝑡

0
𝑓(𝑠)2 𝑑𝑠 + 2 ∫

𝑡

0
𝑓(𝑠) 𝑑𝑊(𝑠)

  Therefore 𝔼[𝐼(𝑡)2]  = ∫𝑡
0 𝑓(𝑠)2 𝑑𝑠 because 𝔼[ ∫𝑡

0 𝑓(𝑠) 𝑑𝑊(𝑠)]  = 0.

Examples Let 𝑑𝑋(𝑡) = 𝑑𝑊(𝑡) and 𝑌 (𝑡) = 𝑔(𝑋(𝑡)). We can determine 𝑑𝑌 (𝑡) for several partic-
ular cases:

• for a linear function: 𝑔(𝑥) = 𝑎 𝑥 + 𝑏, as 𝑔𝑡(𝑥) = 0, 𝑔𝑥(𝑥) = 𝑎 and 𝑔𝑥𝑥(𝑥) = 0, then

𝑑𝑌 (𝑡) = 𝑎 𝑑𝑋(𝑡) = 𝑎 𝑑𝑊(𝑡)

 

• for a power function: 𝑔(𝑥) = 𝑥𝑎, for 𝑎 ≠ 0, as 𝑔𝑡(𝑥) = 0, 𝑔𝑥(𝑥) = 𝑎 𝑥𝑎−1 and 𝑔𝑥𝑥(𝑥) =
𝑎 (𝑎 − 1) 𝑥𝑎−2, then

𝑑𝑌 (𝑡) = 𝑎(𝑎 − 1)
2 𝑋(𝑡)𝑎−2𝑑𝑡 + 𝑎𝑋(𝑡)𝑎−1 𝑑𝑊(𝑡)

= 𝑎(𝑎 − 1)
2 𝑌 (𝑡) 𝑎−2

𝑎  𝑑𝑡 + 𝑎𝑌 (𝑡) 𝑎−1
𝑎   𝑑𝑊(𝑡)

= 𝑎𝑌 (𝑡) 𝑎−2
𝑎  (𝑎 − 1

2 𝑑𝑡 + 𝑌 (𝑡) 𝑑𝑊(𝑡))
 

• for an exponential function: 𝑔(𝑥) = 𝑒𝜆𝑥, for 𝜆 ≠ 0, as 𝑔𝑡(𝑥) = 0, 𝑔𝑥(𝑥) = 𝜆 𝑒𝜆𝑥 and 𝑔𝑥𝑥(𝑥) =
𝜆2 𝑒𝜆𝑥, then

𝑑𝑌 (𝑡) = 𝜆2

2 𝑌 (𝑡) 𝑑𝑡 + 𝜆𝑌 (𝑡) 𝑑𝑊(𝑡)

• for a logarithmic function: 𝑔(𝑥) = ln (𝑥), then

𝑑𝑌 (𝑡) = − 1
2𝑋(𝑡)2 𝑑𝑡 + 1

𝑋(𝑡) 𝑑𝑊(𝑡)

= 1
2𝑒−2𝑌 (𝑡)𝑑𝑡 + 𝑒−𝑌 (𝑡) 𝑑𝑊(𝑡)
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12.3.2 Itô’s formula for a multi-dimensional process

The formula can be extended to a multi-dimensional function,

𝑌 (𝑡) = 𝑓(X(𝑡), 𝑡)

  where

X(𝑡) = ⎛⎜⎜⎜
⎝

𝑋1(𝑡)
⋮

𝑋𝑛(𝑡)

⎞⎟⎟⎟
⎠

  satisfies the variation, in its differential form,

𝑑𝑌 (𝑡) = 𝑓𝑡(X(𝑡), 𝑡)𝑑𝑡 + ∇𝑥𝑓(X(𝑡), 𝑡)⊤𝑑X(𝑡) + 1
2(X(𝑡))⊤ ∇𝑥𝑥𝑓(X(𝑡), 𝑡)𝑑X(𝑡),

  where ∇𝑥𝑓(⋅, x) is the Jacobian and ∇𝑥𝑥𝑓(⋅, x) is the Hessian on function 𝑓(⋅, x),

∇𝑥𝑓(X(𝑡), 𝑡) = ⎛⎜⎜⎜
⎝

𝑓𝑥1
(X(𝑡), 𝑡)

⋮
𝑓𝑥𝑛

(X(𝑡), 𝑡)

⎞⎟⎟⎟
⎠

, ∇𝑥𝑥 𝑓(X(𝑡), 𝑡) = ⎛⎜⎜⎜
⎝

𝑓𝑥1𝑥1
(X(𝑡), 𝑡) … 𝑓𝑥1𝑥𝑛

(X(𝑡), 𝑡)
⋮ ⋱ ⋮

𝑓𝑥𝑛𝑥1
(X(𝑡), 𝑡) … 𝑓𝑥𝑛𝑥𝑛

(X(𝑡), 𝑡)

⎞⎟⎟⎟
⎠

  If there are 𝑛 independent Wiener processes W(𝑡) = (𝑊1(𝑡), … , 𝑊𝑛(𝑡)) we use the rule

𝑑𝑊𝑖(𝑡)𝑑𝑡 = 𝑑𝑊𝑖(𝑡)𝑑𝑊𝑗(𝑡) = 0, for any, 𝑖 ≠ 𝑗, and  𝑑𝑊𝑖(𝑡)𝑑𝑊𝑖(𝑡) = 𝑑𝑡, for any  𝑖.

 
Example 1: product rule Let 𝑌 (𝑡) = 𝑓(𝑋1(𝑡), 𝑋2(𝑡)) = 𝑋1(𝑡)𝑋2(𝑡). Then

𝑑𝑌 (𝑡) = 𝑋1(𝑡)𝑑𝑋2(𝑡) + 𝑋2(𝑡)𝑑𝑋1(𝑡) + 𝑑𝑋1(𝑡)𝑑𝑋2(𝑡), for each  𝑡 ∈ T

that is equivalent to
𝑑𝑌 (𝑡)
𝑌 (𝑡) = 𝑑𝑋1(𝑡)

𝑋1(𝑡) + 𝑑𝑋2(𝑡)
𝑋2(𝑡) + 𝑑𝑋1(𝑡)

𝑋1(𝑡)
𝑑𝑋2(𝑡)
𝑋2(𝑡) , for each  𝑡 ∈ T,

where the presence of the last term distinguishes the Itô’s stochastic calculus from product rule of
elementary calculus.

To prove this, apply the Itô rule observing that we have the following derivatives of 𝑓(𝑥1, 𝑥2) 2:

∇𝑥𝑓(𝑥1, 𝑥2) = (𝑥2
𝑥1

) , ∇𝑥𝑥 𝑓(𝑥1, 𝑥2) = (0 1
1 0) .

  Then

 𝑑𝑌 (𝑡) = (𝑋2(𝑡) 𝑋1(𝑡)) (𝑑𝑋1(𝑡)
𝑑𝑋2(𝑡)) + 1

2 (𝑑𝑋1(𝑡) 𝑑𝑋2(𝑡)) (0 1
1 0) (𝑑𝑋1(𝑡)

𝑑𝑋2(𝑡)) ,

= 𝑋1(𝑡)𝑑𝑋2(𝑡) + 𝑋2(𝑡)𝑑𝑋1(𝑡) + 1
2 ( 𝑑𝑋2(𝑡) 𝑑𝑋1(𝑡))   (𝑑𝑋1(𝑡)

𝑑𝑋2(𝑡))

= 𝑑𝑌 (𝑡) = 𝑋1(𝑡)𝑑𝑋2(𝑡) + 𝑋2(𝑡)𝑑𝑋1(𝑡) + 𝑑𝑋1(𝑡)𝑑𝑋2(𝑡).

 

2We write the function as 𝑓(𝑥1, 𝑥2) and not 𝑓(𝑋1, 𝑋2) because this function is the same independently from
the realizations of the two stochastic processes. That is, it is state-independent. This would not be the case if the
function is state dependent, as 𝑓(𝑋1, 𝑋2, 𝜔) in which 𝜔 is a function of past values of the Wiener process (𝑊(𝑡)).
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Example 2: quocient rule Let 𝑌 (𝑡) = 𝑓(𝑋1(𝑡), 𝑋2(𝑡)) = 𝑋1(𝑡)/𝑋2(𝑡). Then

𝑑𝑌 (𝑡)
𝑌 (𝑡) = 𝑑𝑋1(𝑡)

𝑋1(𝑡) − 𝑑𝑋2(𝑡)
𝑋2(𝑡) − 𝑑𝑋2(𝑡)

𝑋2(𝑡) (𝑑𝑋1(𝑡)
𝑋1(𝑡) − 𝑑𝑋2(𝑡)

𝑋2(𝑡) ), for each  𝑡 ∈ T,

where, again, the presence of the last term distinguishes the Itô’s stochastic calculus from the
quotient rule of elementary calculus.

Exercise: prove this.

12.4 Characterizing Itô’s processes

 
Let us consider the stochastic differential equation in the Itô interpretation, which is also called

diffusion equation,

𝑑𝑋(𝑡) = 𝜇(𝑋(𝑡))𝑑𝑡 + 𝜎(𝑋(𝑡))𝑑𝑊(𝑡), for each  𝑡 ∈ [0, ∞) (12.7)

  where the solution (𝑋(𝑡))𝑡∈T is called a diffusion process. Next we deal with one-dimensional
diffusions, 𝑋 ∶ Ω × 𝑇 → ℝ.

There are several results that allow to characterise the properties of the diffusion process. In
the next chapter we will apply them to the solutions of linear SDE’s.

12.4.1 Functions of the diffusion

Before determining the statistics for the process (𝑋(𝑡))
𝑡∈T

it is useful to apply the Itô’s formula
to a function of the diffusion.

Proposition 3. Consider the process (𝑌 (𝑡))𝑡∈T such that

𝑌 (𝑡) = 𝑓(𝑋(𝑡))

  where 𝑋(𝑡) is a diffusion process given by equation (??), and 𝑓(⋅) is a point-wise mapping
𝑓(𝑥) ∶ ℝ → ℝ which is at least 𝐶2(ℝ), and it is invertible, such that 𝑥 = 𝑓−1(𝑦) = 𝑔(𝑦), where 𝑔(⋅)
is continuous. Then 𝑌 (𝑡) is also a diffusion process  such that

𝑑𝑌 (𝑡) = 𝜇𝑦(𝑌 (𝑡))𝑑𝑡 + 𝜎𝑦(𝑌 (𝑡))𝑑𝑊(𝑡). (12.8)

where

𝜇𝑦(𝑦) = 𝑓𝑥(𝑔(𝑦)) 𝜇(𝑔(𝑦)) + 1
2𝑓𝑥𝑥 (𝜎(𝑔(𝑦)))2

𝜎𝑦(𝑦) = 𝑓𝑥(𝑔(𝑦)) 𝜎(𝑔(𝑦)).
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Proof. To prove this we use the Itô’s formula to find 𝑑𝑌 (𝑡) = 𝑑(𝑓(𝑋(𝑡)),

𝑑𝑌 (𝑡) = 𝑓𝑥(𝑋(𝑡))𝑑𝑋(𝑡) + 1
2𝑓𝑥𝑥(𝑋(𝑡))𝑠(𝑑𝑋(𝑡))2 

= 𝑓𝑥(𝑋(𝑡)) (𝜇(𝑋(𝑡))𝑑𝑡 + 𝜎(𝑋(𝑡))𝑑𝑊(𝑡)) + 1
2𝑓𝑥𝑥(𝑋(𝑡))(𝜎(𝑋(𝑡)))2 𝑑𝑡 =

= (𝑓𝑥(𝑋(𝑡))𝜇(𝑋(𝑡)) + 1
2𝑓𝑥𝑥(𝜎(𝑋(𝑡)))2) 𝑑𝑡 + 𝑓𝑥(𝑋(𝑡))𝜎(𝑋(𝑡))𝑑𝑊(𝑡).

  If the function 𝑓(.) is invertible then we substitute, for every realization, 𝑥 = 𝑓−1(𝑦) = 𝑔(𝑦) into
the last equation.

We can use the Itô’s rule to get several properties related to the diffusion equation. In particular,
we can characterise statistics for the sample path (or moment) and distribution properties.

12.4.2 Dynamics of the density: the Kolmogorov forward equation

Consider again the diffusion process specified in equation (12.7).
We write unconditional probability as

𝑝(𝑡, 𝑥) = ℙ[𝑋(𝑡) = 𝑥|𝑋(0) = 𝑥0].

  This is the probability, determined with the information at time 𝑡 = 0, that the realization of the
process at time 𝑡 > 0 will be equal to 𝑥 (a scalar), that is 𝑋(𝑡) = 𝑥, when we observe that at time
𝑡 = 0 it is equal to 𝑥0. We can see the initial state as a Dirac-delta distribution 𝑝(0, 𝑥) = 𝛿(𝑥 − 𝑥0).

We introduce the following assumption: the support of 𝑥 is the whole set of real numbers ℝ, it
satisfies lim𝑥→±∞ 𝑝(𝑡, 𝑥) = 0, and a normalization condition holds

∫
∞

−∞
𝑝(𝑡, 𝑥) 𝑑𝑥 = 1, for every 𝑡 ≥ 0.

  Then the mean value of the process is the function of time

𝔼[𝑋(𝑡)]  = ∫
∞

−∞
 𝑥 𝑝(𝑡, 𝑥) 𝑑𝑥, for every 𝑡 ∈ ℝ+.

  definition [adjoint operator]  Let 𝑋(𝑡) = 𝑥 be the realization of the diffusion process (12.7)
at time 𝑡 > 0 and let 𝑝(𝑡, 𝑥) be its unconditional probability. Then the following operator

𝒢∗[𝑝](𝑡, 𝑥) = −𝜕(𝜇(𝑥) 𝑝(𝑡, 𝑥))
𝜕𝑥 + 1

2
𝜕2(𝜎(𝑥)2 𝑝(𝑡, 𝑥))

𝜕𝑥2  

is called adjoint operator.
The following (forward) partial differential equation

 𝜕𝑝(𝑡, 𝑥)
𝜕𝑡   = −𝜕(𝜇(𝑥) 𝑝(𝑡, 𝑥))

𝜕𝑥 + 1
2

𝜕2(𝜎(𝑥)2 𝑝(𝑡, 𝑥))
𝜕𝑥2   (12.9)

is called Kolmogorov-Fokker-Planck equation.
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Proposition 4 (Forward density dynamics).  
Assume the initial state is 𝑥0 at 𝑡 = 0, that is 𝑋(0) = 𝑥0. Then the density distribution of 𝑋(𝑡) at
time 𝑡 > 0, when 𝑋(𝑡) is the solution to the problem

⎧{
⎨{⎩

 𝑝𝑡(𝑡, 𝑥) = 𝒢∗[𝑝](𝑡, 𝑥) for  𝑡 > 0
𝑝(0, 𝑥) = 𝛿(𝑥 − 𝑥0) for  𝑡 = 0

  (12.10)

  where 𝒢∗[(.) is the adjoint operator, together with the initial condition ).

Proof. (Heuristic) We introduce a test function. Let 𝑡 ∈ T = [0, 𝑇 ] and 𝑥 ∈ X = (−∞, ∞) and
consider an arbitrary stationary and bounded function 𝑓(𝑡, 𝑥) such that 𝑓(0, 𝑋(0)) = 𝑓(𝑇 , 𝑋(𝑇 )) =
0, for 𝑋(0) = 𝑥0 and any realization of 𝑋(𝑇 ), and lim𝑥→±∞ 𝑓(𝑡, 𝑥) = 0.

Therefore,

𝑓(𝑡, 𝑋(𝑡)) = 𝑓(0, 𝑥0) + ∫
𝑡

0
𝑑𝑓(𝑠, 𝑋(𝑠)) = ∫

𝑡

0
𝑑𝑓(𝑠, 𝑋(𝑠)),

  and we expect

𝔼[𝑓(𝑇 , 𝑋(𝑇 ))] = 𝔼[ ∫
𝑇

0
𝑑𝑓(𝑡, 𝑋(𝑡))]  = 0.

  Using the Itô’s Lemma we find, for any realization of the process

𝑑𝑓(𝑡, 𝑥) = [ 𝜕𝑡𝑓(𝑡, 𝑥) + 𝜇(𝑥)𝜕𝑥𝑓(𝑡, 𝑥) + 1
2𝜎2(𝑥)𝜕𝑥𝑥𝑓(𝑡, 𝑥)]  𝑑𝑡 + (𝜎(𝑥)𝜕𝑥𝑓(𝑡, 𝑥)) 𝑑𝑊(𝑡).

  The variation of 𝑓 from 𝑡 = 0 to 𝑡 = 𝑇 is

∫
𝑇

0
𝑑𝑓(𝑡, 𝑥) = ∫

𝑇

0
[ 𝜕𝑡𝑓(𝑡, 𝑥) + 𝜇(𝑥)𝜕𝑥𝑓(𝑡, 𝑥) + 1

2𝜎2(𝑥)𝜕𝑥𝑥𝑓(𝑡, 𝑥)]  𝑑𝑡 + ∫
𝑇

0
(𝜎(𝑥)𝜕𝑥𝑓(𝑡, 𝑥)) 𝑑𝑊(𝑡).

  Taking the unconditional expected value

𝔼[ ∫
𝑇

0
𝑑𝑓(𝑡)]  = 𝔼[  ∫

𝑇

0
[ 𝜕𝑡𝑓(𝑡, 𝑥) + 𝜇(𝑥)𝜕𝑥𝑓(𝑡, 𝑥) + 1

2𝜎2(𝑥)𝜕𝑥𝑥𝑓(𝑡, 𝑥)]  𝑑𝑡] +

+ 𝔼[ ∫
𝑇

0
(𝜎(𝑥)𝜕𝑥𝑓(𝑡, 𝑥)) 𝑑𝑊(𝑡)]

= 𝔼[  ∫
𝑇

0
[ 𝜕𝑡𝑓(𝑡, 𝑥) + 𝜇(𝑥)𝜕𝑥𝑓(𝑡, 𝑥) + 1

2𝜎2(𝑥)𝜕𝑥𝑥𝑓(𝑡, 𝑥)]  𝑑𝑡]  =

(because the second integral is an Itô integral) 

= ∫
∞

−∞
  ∫

𝑇

0
[ 𝜕𝑡𝑓(𝑡, 𝑥) + 𝜇(𝑥)𝜕𝑥𝑓(𝑡, 𝑥) + 1

2𝜎2(𝑥)𝜕𝑥𝑥𝑓(𝑡, 𝑥)]  𝑝(𝑡, 𝑥)𝑑𝑡𝑑𝑥

= 𝐼1 + 𝐼2 + 𝐼3

  Because function 𝑓(⋅) is arbitrary, but with the properties we introduced, we see that the 𝔼[𝑑𝑓(𝑡)]
is equal to the sum of three integrals. Performing repeatedly integration by parts we find

𝐼1 = ∫
∞

−∞
𝑝(𝑡, 𝑥) 𝑓(𝑡, 𝑥) 𝑑𝑥∣

𝑇

𝑡=0
− ∫

∞

−∞
∫

𝑇

0
𝜕𝑡𝑝(𝑡, 𝑥) 𝑓(𝑡, 𝑥) 𝑑𝑡 𝑑𝑥,
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𝐼2 = ∫

𝑇

0
𝜇(𝑥) 𝑝(𝑡, 𝑥) 𝑓(𝑡, 𝑥) 𝑑𝑡∣

∞

𝑥=−∞
− ∫

∞

−∞
∫

𝑇

0
𝜕𝑥(𝜇(𝑥)𝑝(𝑡, 𝑥)) 𝑓(𝑡, 𝑥) 𝑑𝑡 𝑑𝑥

  and

𝐼3 = 1
2  ∫

𝑇

0
[ 𝜎2(𝑥) 𝑝(𝑡, 𝑥) 𝜕𝑥𝑓(𝑡, 𝑥) − 𝜕𝑥(𝜎2(𝑥) 𝑝(𝑡, 𝑥)) 𝑓(𝑡, 𝑥)]  𝑑𝑡∣

∞

𝑥=−∞

+ 1
2  ∫

∞

−∞
∫

𝑇

0
𝜕𝑥𝑥(𝜎2(𝑥)𝑝(𝑡, 𝑥)) 𝑓(𝑡, 𝑥) 𝑑𝑡 𝑑𝑥

 

  With the boundary conditions introduced then

𝔼[ ∫
𝑇

0
𝑑𝑓(𝑡)] = ∫

∞

−∞
∫

𝑇

0
[  − 𝜕𝑡𝑝(𝑡, 𝑥) − 𝜕𝑥(𝜇(𝑥) 𝑝(𝑡, 𝑥)) + 1

2𝜕𝑥𝑥(𝜎2(𝑥)𝑝(𝑡, 𝑥))]  𝑓(𝑡, 𝑥) 𝑑𝑡 𝑑𝑥

  Therefore, for an arbitrary stationary process 𝔼[ ∫𝑇
0 𝑑𝑓(𝑡)] = 0 if equation (12.9) holds.

If we determine the probability distribution 𝑝(𝑡, 𝑥) then we have an alternative method fo find
the moments of the diffusion process. For the case in which the support is ℝ The mathematical
expectation is

𝔼[𝑋(𝑡)]  = ∫
∞

−∞
𝑥 𝑝(𝑡, 𝑥) 𝑑𝑥

  and the variance is
𝕍[𝑋(𝑡)]  = ∫

∞

−∞
(𝑥 − 𝔼[𝑋(𝑡)])2 𝑝(𝑡, 𝑥) 𝑑𝑥.

 
A process is called ergodic if the asymptotic probability distribution is time independent

𝑝∗(𝑥) = lim
𝑡→∞

𝑝(𝑡, 𝑥).

  This implies that the moments are asymptotically constants

lim
𝑡→∞

 𝔼[𝑋(𝑡)]  = ∫
∞

−∞
𝑥 𝑝(𝑡, 𝑥) 𝑑𝑥 = 𝜇∗

𝑋

  and the variance is

lim
𝑡→∞

𝕍[𝑋(𝑡)]  = ∫
∞

−∞
(𝑥 − 𝔼[𝑋(𝑡)])2 𝑝(𝑡, 𝑥) 𝑑𝑥 = 𝜎∗2

𝑋 > 0

 
Intuition: small or large perturbations do not have large long run effects on the value of 𝑋.
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Example 1 Let 𝑑𝑋(𝑡) = 𝜎𝑑𝑊(𝑡) and let 𝑋(0) = 𝑥0. In order to find the 𝑝(𝑡, 𝑥) = ℙ[𝑋(𝑡) =
𝑥|𝑋(0) = 𝑥0], we set 𝑝(𝑥, 0) = ℙ[𝑋(0)] = 𝛿(𝑥 − 𝑥0) is a Dirac delta function with the distribution
mass concentrated at 𝑥0. The initial distribution is a probability distribution because

∫
∞

−∞
𝛿(𝑥 − 𝑥0) 𝑑𝑥 = 1. 

As we have 𝜇(𝑥) = 0 and 𝜎(𝑥) = 𝜎 the adjoint operator is

𝐺∗[𝑝](𝑡, 𝑥) = 1
2

𝜕2(𝜎2𝑝(𝑡, 𝑥))
𝜕𝑥2 = 𝜎2

2 𝑝𝑥𝑥(𝑡, 𝑥).

  To find the 𝑝(𝑡, 𝑥) we apply the Fokker-Planck equation and solve the problem with a forward
parabolic PDE and an initial condition:

⎧{
⎨{⎩

𝑝𝑡(𝑡, 𝑥) = 𝜎2
2  𝑝𝑥𝑥(𝑡, 𝑥), (𝑡, 𝑥) ∈ ℝ+ × ℝ

𝑝(0, 𝑥) = 𝛿(𝑥 − 𝑥0), 𝑡 = 0.

  We saw in chapter 9 that the solution to this problem is

𝑝(𝑡, 𝑥) = 1
𝜎

√
2𝜋𝑡 𝑒− (𝑥−𝑥0)2

2𝜎2𝑡 , for 𝑡 > 0

 

Example 2 Let 𝑑𝑋(𝑡) = 𝜇 𝑑𝑡 + 𝜎𝑑𝑊(𝑡) and let 𝑋(0) = 𝑥0. As we have 𝜇(𝑥) = 𝜇 and 𝜎(𝑥) = 𝜎
the adjoint operator is

𝐺∗[𝑝](𝑡, 𝑥) = −𝜇𝑝𝑥(𝑡, 𝑥) + 𝜎2

2 𝑝𝑥𝑥(𝑡, 𝑥).

  To find the 𝑝(𝑡, 𝑥) we apply the Fokker-Planck equation and solve the problem with a forward
parabolic PDE and an initial condition:

⎧{
⎨{⎩

𝑝𝑡(𝑡, 𝑥) = −𝜇𝑝𝑥(𝑡, 𝑥) + 𝜎2

2  𝑝𝑥𝑥(𝑡, 𝑥), (𝑡, 𝑥) ∈ ℝ+ × ℝ
𝑝(0, 𝑥) = 𝛿(𝑥 − 𝑥0), 𝑡 = 0.

  We saw in chapter 9 that the solution to this problem is

𝑝(𝑡, 𝑥) = ∫
∞

−∞
𝛿(𝑠 − 𝑥0) 𝑔(𝑡, 𝑥 − 𝑠) 𝑑𝑠

  where

𝑔(𝑡, 𝑦) = 1√
2𝜋𝜎2𝑡

𝑒−
(𝑦 − 𝜇𝑡)2

2𝜎2𝑡 .

  Therefore

𝑝(𝑡, 𝑥) = 1√
2𝜋𝜎2𝑡

𝑒−
(𝑥 − 𝑥0 − 𝜇𝑡)2

2𝜎2𝑡 . (12.11)
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12.4.3 Moment equations

An alternative method to determine the dynamics of moments, without resorting to the forward
Kolmogorov equation is the following.

Consider the one-dimensional diffusion equation in integral form

𝑋(𝑡) = 𝑋(0) + ∫
𝑡

0
𝜇(𝑋(𝑠))𝑑𝑠 + ∫

𝑡

0
𝜎(𝑋(𝑠))𝑑𝑊(𝑠). (12.12)

 

Proposition 5. Consider the diffusion integral form in equation (12.12) and assume that 𝑋(0) = 𝑥0
is deterministic. Then

• the first moment of the diffusion process is

𝔼[𝑋(𝑡)] = 𝑥0 + ∫
𝑡

0
𝔼 [𝜇(𝑋(𝑠))] 𝑑𝑠

 

• the second moment of the diffusion process is

𝔼[𝑋(𝑡)2] = 𝑥2
0 + ∫

𝑡

0
(2𝔼[𝑋(𝑠)𝜇(𝑋(𝑠))] + 𝔼[𝜎(𝑋(𝑠))2]) 𝑑𝑠

 

• and the variance is

𝕍[𝑋(𝑡)] = ∫
𝑡

0
(2𝔼[𝑋(𝑠)𝜇(𝑋(𝑠))] + 𝔼[𝜎(𝑋(𝑠))2]) 𝑑𝑠−∫

𝑡

0
𝔼 [𝜇(𝑋(𝑠))] 𝑑𝑠 (2𝑥0 − ∫

𝑡

0
𝔼 [𝜇(𝑋(𝑠))] 𝑑𝑠)

 

Proof. As 𝜎(𝑋(𝑡)) is a non-anticipating random variable, if we use the properties of the Wiener
process we have

𝔼[𝑋(𝑡)] = 𝔼[𝑥0] + 𝔼 [∫
𝑡

0
𝜇(𝑋(𝑠))𝑑𝑠] + 𝔼 [∫

𝑡

0
𝜎(𝑋(𝑠))𝑑𝑊(𝑠)] =

= 𝑥0 + 𝔼 [∫
𝑡

0
𝜇(𝑋(𝑠))𝑑𝑠] =

= 𝑥0 + ∫
𝑡

0
𝔼 [𝜇(𝑋(𝑠))] 𝑑𝑠

  because of the properties of the expected value operator. In order to determine the second
moment, 𝔼[𝑋(𝑡)2], we introduce the variable 𝑌 (𝑡) = 𝑋(𝑡)2. Using the Itô’s formula, as

𝑑𝑌 (𝑡) = 2𝑋(𝑡)𝑑𝑋(𝑡) + (𝑑𝑋(𝑡))2

= 2𝑋(𝑡)(𝜇(𝑋(𝑡))𝑑𝑡 + 𝜎(𝑋(𝑡))𝑑𝑊(𝑡)) + (𝜇(𝑋(𝑡))𝑑𝑡 + 𝜎(𝑋(𝑡))𝑑𝑊(𝑡))2 =
= (2𝑋(𝑡)𝜇(𝑋(𝑡)) + 𝜎(𝑋(𝑡))2) 𝑑𝑡 + 2𝑋(𝑡)𝜎(𝑋(𝑡))𝑑𝑊(𝑡)),
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then in the integral form 𝑌 (𝑡) is

𝑌 (𝑡) = 𝑥2
0 + ∫

𝑡

0
(2𝑋(𝑠)𝜇(𝑋(𝑠)) + 𝜎(𝑋(𝑠))2)𝑑𝑠 + ∫

𝑡

0
2𝑋(𝑠)𝜎(𝑋(𝑠))𝑑𝑊(𝑠)).

  Then

𝔼[𝑋(𝑡)2] = 𝑥2
0 + 𝔼 [∫

𝑡

0
(2𝑋(𝑠)𝜇(𝑋(𝑠)) + 𝜎(𝑋(𝑠))2)𝑑𝑠]   + 𝔼 [∫

𝑡

0
2𝑋(𝑠)𝜎(𝑋(𝑠))𝑑𝑊(𝑠))]   =

= 𝑥2
0 + ∫

𝑡

0
(2𝔼[𝑋(𝑠)𝜇(𝑋(𝑠))] + 𝔼[𝜎(𝑋(𝑠))2]) 𝑑𝑠

  The variance is

𝕍[𝑋(𝑡)] = 𝔼[𝑋(𝑡)2] − (𝔼[𝑋(𝑡)])2 =

= 𝑥2
0 + ∫

𝑡

0
(2𝔼[𝑋(𝑠)𝜇(𝑋(𝑠))] + 𝔼[𝜎(𝑋(𝑠))2]) 𝑑𝑠 − (𝑥0 + ∫

𝑡

0
𝔼 [𝜇(𝑋(𝑠))] 𝑑𝑠)

2

=

= ∫
𝑡

0
(2𝔼[𝑋(𝑠)𝜇(𝑋(𝑠))] + 𝔼[𝜎(𝑋(𝑠))2]) 𝑑𝑠 − 2𝑥0 ∫

𝑡

0
𝔼 [𝜇(𝑋(𝑠))] 𝑑𝑠 − (∫

𝑡

0
𝔼 [𝜇(𝑋(𝑠))] 𝑑𝑠)

2

 

The following properties result

𝑑𝔼[𝑋(𝑡)]
𝑑𝑡 = 𝔼[𝜇(𝑋(𝑡))]. 

 
 𝑑𝔼[𝑋(𝑡)2]

𝑑𝑡 = 2𝔼[𝑋(𝑡)𝜇(𝑋(𝑡))] + 𝔼[𝜎(𝑋(𝑡))2]

 
𝑑𝕍[𝑋(𝑡)]

𝑑𝑡 = 2𝔼[𝑋(𝑡)𝜇(𝑋(𝑡))] + 𝔼[𝜎(𝑋(𝑡))2] − 𝔼[𝜇(𝑋(𝑡))]2 

 
Example Consider the linear diffusion equation

𝑑𝑋(𝑡) = −𝛾𝑋(𝑡)𝑑𝑡 + 𝜎𝑑𝑊(𝑡)

  where 𝑋(0) = 𝑥0, and 𝛾 > 0 and 𝜎 > 0.
The first moment satisfies the ODE

𝑑𝔼[𝑋(𝑡)]
𝑑𝑡 = −𝛾𝔼[𝑋(𝑡)] 

  then the expected value of the process follows the deterministic path

𝔼[𝑋(𝑡)] = 𝑥0𝑒−𝛾𝑡.
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  The second moment satisfies
𝑑𝔼[𝑋(𝑡)2]

𝑑𝑡 = −2𝛾𝔼[𝑋(𝑡)2] + 𝜎2

  also satisfies the deterministic path

𝔼[𝑋(𝑡)2] = 𝜎2

2𝛾 + (𝑥2
0 − 𝜎2

2𝛾 ) 𝑒−2𝛾𝑡.

 
The variance is

𝕍[𝑋(𝑡)] = 𝔼[𝑋(𝑡)2]  − 𝔼[𝑋(𝑡)]2  =

= 𝜎2

2𝛾 + (𝑥2
0 − 𝜎2

2𝛾 ) 𝑒−2𝛾𝑡 − (𝑥0𝑒−𝛾𝑡)2

= 𝜎2

2𝛾 (1 − 𝑒−2𝛾𝑡)
 

In this case we can determine the asymptotic moments:

lim
𝑡→∞

𝔼[𝑋(𝑡)] = 0

 
lim

𝑡→∞
𝕍[𝑋(𝑡)] = lim

𝑡→∞
𝔼[𝑋(𝑡)2] = 𝜎2

2𝛾 .

  This means that the process is asymptotically bounded tends to a limit distribution 𝑁 (0, 𝜎2

2𝛾 ).
It is an ergodic process.

12.5 Backward distributions

In some problems, particularly in finance applications, we may be interested in determining the
distribution dynamics such that a terminal condition is observed. We continue to assume that a
diffusion process

𝑑𝑋(𝑡) = 𝜇(𝑋(𝑡)) 𝑑𝑡 + 𝜎(𝑋(𝑡)) 𝑑𝑊(𝑡).
 

First, we introduce the concept of a generator of a diffusion

12.5.1 Generator of a diffusion

Definition: Let 𝑓(𝑋(𝑡)) be a smooth function and let 𝑋(𝑡) = 𝑥. The infinitesimal generator
of 𝑓(𝑋) is a function 𝐺(𝑡, 𝑥)[𝑓] ,

𝐺(𝑡, 𝑥)[𝑓] = 𝑑𝔼[𝑓(𝑋(𝑡))|𝑋(𝑡) = 𝑥] 
𝑑𝑡   =

= lim
∆𝑡→0

𝔼[𝑓(𝑋(𝑡 + Δ𝑡))|𝑋(𝑡) = 𝑥]  − 𝑓(𝑥)
Δ𝑡 =

= 𝔼[𝑑𝑓(𝑋(𝑡))|𝑋(𝑡) = 𝑥] 
𝑑𝑡
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The generator is defined for every time, 𝑡, and is conditional on the realization value at time 𝑡,

𝑥, that is 𝑋(𝑡) = 𝑥.
The generator of a function 𝑓(𝑋) of the diffusion,

𝑑𝑋(𝑡) = 𝜇(𝑋(𝑡))𝑑𝑡 + 𝜎(𝑋(𝑡))𝑑𝑊(𝑡)

  conditional on 𝑋(𝑡) = 𝑥 is the function

𝐺(𝑡, 𝑥)[𝑓] = 𝑓𝑥(𝑥)𝜇(𝑥) + 1
2𝜎(𝑥)2𝑓𝑥𝑥(𝑥), 𝑡 ≥ 0,

We can prove this by just using the Itô’s formula.
The generator of a diffusion (over an Itô process), for a differentiable function of a diffusion,

allows us to find a directional derivative of 𝑓 averaged over the paths generated by the diffusion.

12.5.2 Kolmogorov backward equation

The Kolmogorov backward equation allows for the determination of the probability, at time 𝑡,
conditional on the observable state of the process 𝑋(𝑡) = 𝑥, that the value of the process will
belong to a target set 𝜙𝑇 at time 𝑇 > 𝑡.

We denote the hitting probability by 𝑞(𝑡, 𝑥)

𝑞(𝑡, 𝑥) = ℙ[𝑋(𝑇 ) ∈ Φ𝑇 |𝑋(𝑡) = 𝑥],

  where 𝑋(𝑡) follows a diffusion process.Then it satisfies

𝑞𝑡(𝑡, 𝑥) + 𝐺(𝑡, 𝑥)[𝑞] = 0.

  The equation is called Kolmogorov backward equation 

𝑞𝑡(𝑡, 𝑥) = −𝐺(𝑡, 𝑥)[𝑞] = −𝑞𝑥(𝑡, 𝑥)𝜇(𝑥) − 1
2𝜎(𝑥)2𝑞𝑥𝑥(𝑡, 𝑥)

  which we want to solve together with with the terminal condition

𝑞(𝑇 , 𝑥) =
⎧{
⎨{⎩

𝜁(𝑥) if 𝑋(𝑇 ) = 𝑥 ∈ 𝜙𝑇

0 if 𝑋(𝑇 ) ∉ 𝜙𝑇 .

Using the Feynman-Kac (see next subsection) the probability satisfies

𝑞(𝑡, 𝑥) = ℙ[𝑋(𝑇 ) ∈ Φ𝑇 |𝑋(𝑡) = 𝑥]  =
= 𝔼[𝑞(𝑇 , 𝑥(𝑇 ))|𝑋(𝑡) = 𝑥] =
= 𝔼[𝜁]
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Example Let 𝑑𝑋(𝑡) = 𝜎𝑑𝑊(𝑡) and let 𝑞(𝑇 , 𝑥) = 𝑥2. The distribution for 𝑡 < 𝑇 follows the PDE

𝑞𝑡(𝑡, 𝑥) = −𝜎2

2  𝑞𝑥𝑥(𝑡, 𝑥), 0 < 𝑡 < 𝑇

  From the Feynman-Kac formula
𝑞(𝑡, 𝑥) = 𝔼[𝑋(𝑇 )2]

  We can find 𝑞(𝑡, 𝑥) by solving the parabolic PDE or by using the Feynman-Kac formula.
Following the second course, we know that the solution of the SDE 𝑑𝑋(𝑡) = 𝜎𝑑𝑊(𝑡) is

𝑋(𝑇 ) = 𝑥 + 𝜎 ∫
𝑇

𝑡
𝑑𝑊(𝑠) = 𝑥𝜎(𝑊(𝑇 ) − 𝑊(𝑡)), for 𝑇 > 𝑡,

  because 𝑊(𝑇 ) = 𝑊(𝑡) + ∫𝑇
𝑡 𝑑𝑊(𝑠). Computing the moments, we have

𝔼[𝑋(𝑇 )] = 𝑥, 𝔼[𝑋(𝑇 )2] = 𝜎2(𝑇 − 𝑡) + 𝑥2

  Then
𝑞(𝑡, 𝑥) = 𝔼[𝑋(𝑇 )2] = 𝜎2(𝑇 − 𝑡) + 𝑥2.

  If we solve the problem, i.e., a well-posed backward parabolic PDE,

⎧{
⎨{⎩

𝑞𝑡(𝑡, 𝑥) = −𝜎2
2  𝑞𝑥𝑥(𝑡, 𝑥), 0 < 𝑡 < 𝑇

𝑞(𝑡, 𝑥) = 𝑥2, 𝑡 = 𝑇

  we would reach the same solution.

12.5.3 The Feynman-Kac formula

The Feynman-Kac formula allows us to determine the probability distribution, at time 0 < 𝑡 < 𝑇 ,
conditional on a known terminal distribution, at time 𝑇 , for the realization of a diffusion process
(𝑋(𝑡))𝑡∈[0,𝑇 ], when there is a discount factor with discount rate 𝑓(𝑋(𝑡)).

Let 𝑣(𝑡, 𝑥) be the probability at time 𝑡 for a realization 𝑋(𝑡) = 𝑥. Assume that the function
𝑣(𝑡, 𝑥) is the solution for the partial differential equation boundary value problem

⎧{
⎨{⎩

𝑣𝑡(𝑡, 𝑥) = −𝐺(𝑡, 𝑥)[𝑣] + 𝑣(𝑡, 𝑥)𝑓(𝑥), 0 < 𝑡 ≤ 𝑇
𝑣(𝑇 , 𝑋(𝑇 )), 𝑇

(12.13)

  where 𝑣(𝑇 , 𝑋(𝑇 )) is known, 𝑓(.) is a known function and

𝐺(𝑡, 𝑥)[𝑣] = 𝑣𝑥(𝑥)𝜇(𝑥) + 1
2𝜎(𝑥)2𝑣𝑥𝑥(𝑥) 

  is the infinitesimal generator of 𝑣(.).

Proposition 6. The solution to the PDE problem (12.13) is the Feynman-Kac formula:

𝑣(𝑡, 𝑥) = 𝔼 [ 𝑣(𝑇 , 𝑋(𝑇 ))𝑒− ∫𝑇
𝑡 𝑓(𝑋(𝑠))𝑑𝑠|𝑋(𝑡) = 𝑥] . 

  Then 𝑣(𝑡, 𝑥) is the present value of a terminal value 𝑣(𝑇 , 𝑋(𝑇 )) where the discount rate if 𝑓(𝑋(𝑡)).
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Proof. Write
𝑉 (𝑡, 𝑋(𝑡)) = 𝑣(𝑡, 𝑋(𝑡))𝐻(𝑡)

  where 𝐻(𝑡) ≡ 𝑒−𝑍(𝑡) = 𝑒− ∫𝑡
𝑠 𝑓(𝑋(𝜏))𝑑𝜏 . As

𝑑𝐻(𝑡) = −𝑍(𝑡)𝑒−𝑍(𝑡)𝑑𝑍(𝑡) + 1
2𝑍(𝑡)2𝑒−𝑍(𝑡)(𝑑𝑍(𝑡))2 =

= −𝐻(𝑡)𝑑𝑍(𝑡) + 1
2𝑍(𝑡)𝐻(𝑡)(𝑑𝑍(𝑡))2

  But because 𝑑𝑍(𝑡) = 𝑓(𝑋(𝑡))𝑑𝑡 we find, using Itô’s rule ,

𝑑𝐻(𝑡) = −𝐻(𝑡)𝑓(𝑋(𝑡))𝑑𝑡.

  Using Itô’s formula we obtain

𝑑𝑣(𝑡, 𝑋(𝑡)) = 𝑣𝑡(𝑡, 𝑋(𝑡))𝑑𝑡 + 𝑣𝑥(𝑡, 𝑋(𝑡))𝑑𝑋(𝑡) + 1
2𝑣𝑥𝑥(𝑡, 𝑋(𝑡))(𝑑𝑋(𝑡))2 =

= (𝑣𝑡(𝑡, 𝑋(𝑡)) + 𝑣𝑥(𝑡, 𝑋(𝑡))𝜇(𝑋(𝑡)) + 1
2𝑣𝑥𝑥(𝑡, 𝑋(𝑡))𝜎(𝑋(𝑡))2) 𝑑𝑡 + (𝑣𝑥(𝑡, 𝑋(𝑡))𝜎(𝑋(𝑡))) 𝑑𝑊(𝑡) =

= 𝑣(𝑡, 𝑋(𝑡))𝑓(𝑋(𝑡))𝑑𝑡 + 𝑣𝑥(𝑡, 𝑋(𝑡))𝜎(𝑋(𝑡))𝑑𝑊(𝑡)
  if we use the PDE in problem (12.13). Then, using the product rule, the previous derivations
and Itô’s multiplication rules, writing 𝑣(𝑡) = 𝑣(𝑡, 𝑋(𝑡)) and 𝑓(𝑡) = 𝑓(𝑋(𝑡))

𝑑𝑉 (𝑡) = 𝐻(𝑡)𝑑𝑣(𝑡) + 𝑣(𝑡)𝑑𝐻(𝑡) + 𝑑𝑣(𝑡)𝑑𝐻(𝑡) =
= 𝐻(𝑡) (𝑣(𝑡)𝑓(𝑡)𝑑𝑡 + 𝑣𝑥(𝑡)𝜎(𝑡)𝑑𝑊(𝑡)) − 𝑣(𝑡)𝐻(𝑡)𝑓(𝑡)𝑑𝑡 + 0 =
= 𝐻(𝑡)𝑣𝑥(𝑡)𝜎(𝑡)𝑑𝑊(𝑡).

  Integrating forward from 𝑡, yields

𝑉 (𝑇 ) = 𝑉 (𝑡) + ∫
𝑇

𝑡
𝑑𝑉 (𝑠) = 𝑉 (𝑋(𝑡)) + ∫

𝑇

𝑡
𝑒− ∫𝑠

𝑡 𝑓(𝑋(𝜏))𝑑𝜏𝑣𝑥(𝑠, 𝑋(𝑠))𝜎(𝑋(𝑠))𝑑𝑊(𝑠)

  the initial value plus an Itô’s integral. Therefore, the expected value conditional on 𝑋(𝑡) = 𝑥 is

𝔼 [𝑉 (𝑇 )|𝑋(𝑡) = 𝑥]   = 𝔼 [𝑉 (𝑡)|𝑋(𝑡) = 𝑥]  

  Seeing 𝑣(𝑡, 𝑥) as an unconditional expected value 𝑣(𝑡, 𝑥) = 𝔼[𝑉 (𝑋(𝑡))|𝑋(𝑡) = 𝑥] and using the
expression for 𝑉 (𝑇 ) = 𝑣(𝑇 , 𝑋(𝑇 ))𝐻(𝑇 ) we have the Feinman-Kac formula.
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Appendix: The Gaussian integral

The gaussian kernel is a function
𝑔(𝑥) = 𝑒−𝑥2

  which has the well known bell shape.
A Gaussian integral is an integral of type

∫
∞

−∞
ℎ(𝑥)𝑔(𝑥)𝑑𝑥

  if it is finite (I.e. 𝐿2).
Some properties of the Gaussian integral are:

  ∫
∞

−∞
𝑒−𝑥2𝑑𝑥 = √𝜋,

 
  ∫

∞

−∞
𝑥𝑒−𝑥2𝑑𝑥 = 0,

 
∫

∞

−∞
|𝑥|𝑒−𝑥2𝑑𝑥 = 1,

  where |𝑥| =
√

𝑥2

∫
∞

−∞
𝑥2𝑒−𝑥2𝑑𝑥 = √𝜋

4
If we introduce a parameter 𝑎 > 0

  ∫
∞

−∞
𝑒−𝑎𝑥2𝑑𝑥 = √𝜋

𝑎
 

  ∫
∞

−∞
𝑥𝑒−𝑎𝑥2𝑑𝑥 = 0

 
  ∫

∞

−∞
𝑥2𝑒−𝑎𝑥2𝑑𝑥 = 1

𝑎 √ 𝜋
4𝑎

 
Gaussian distribution function

Φ(𝑥) = 1√
2𝜋 ∫

𝑥

−∞
𝑒− 𝑠2

2 𝑑𝑠.

 



Chapter 13

Linear scalar stochastic differential
equations

13.1 Introduction

In this chapter we provide explicit solutions and the statistics for forward scalar linear stochastic
differential equations (SDE), which are the simplest SDE’s.

These equations have the general form

𝑑𝑋(𝑡) = (𝜇0(𝑡) + 𝜇1(𝑡) 𝑋(𝑡)) 𝑑𝑡 + (𝜎0(𝑡) + 𝜎1(𝑡) 𝑋(𝑡)) 𝑑𝑊(𝑡). (13.1)

where 𝑋(0) = 𝑥0 is a known constant, and 𝜇0(⋅), 𝜇1(⋅), 𝜎0(⋅) and 𝜎1(⋅) are known functions and
(𝑊(𝑡))𝑡∈ℝ+

is a standard one-dimensional Wiener process, and therefore, a non-anticipating process.
We also

We will present closed-form solutions for several versions this equation, and characterize their
sample path statistical properties and some discussion of its geometrical content.

We can compare those solutions with the analogous (deterministic) ODE

𝑑𝑦(𝑡) = (𝜇0 + 𝜇1 𝑦(𝑡)) 𝑑𝑡

  we saw that the solution is

𝑦(𝑡) =

⎧{{{
⎨{{{⎩

  − 𝜇0
𝜇1

+ (𝑦(0) + 𝜇0
𝜇1

) 𝑒𝜇1 𝑡, if 𝜇0 ≠ 0. 𝜇1 ≠ 0
𝑦(0) 𝑒𝜇1 𝑡, if 𝜇0 = 0. 𝜇1 ≠ 0
𝑦(0) + 𝜇0 𝑡, if 𝜇0 ≠ 0. 𝜇1 = 0
𝑦(0), if 𝜇0 = 𝜇1 = 0

 

for every 𝑡 ∈ T. We saw that: (1) if 𝜇1 < 0 the solution is asymptotically stable, such that
lim𝑡→∞  𝑦(𝑡) = −𝜇0

𝜇1
; (2) if 𝜇1 > 0 or if 𝜇1 = 0 and 𝜇0 ≠ 0 the solution is unstable; (4) the solution

is stationary if 𝜇0 = 𝜇1 = 0.
We can compare those results with the sotutions of a linear SDE.

27
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13.2 Autonomous equations

In this section we consider the linear autonomous forward SDE,

𝑑𝑋(𝑡) = (𝜇0 + 𝜇1 𝑋(𝑡)) 𝑑𝑡 + (𝜎0 + 𝜎1 𝑋(𝑡)) 𝑑𝑊(𝑡). (13.2)

in which the coefficients are known constants. We assume a known initial value 𝑋(0) = 𝑥0.
Next we present the explicit solutions, and the first and second moments of the solutions. With

a view to comparing with the deterministic ODE, we discuss in the stochastic dynamic properties,
that is, the asymptotic statistic properties of the solutions.

13.2.1 Brownian motion

The Brownian motion is usual name of a process (𝑋(𝑡), 𝑡 ∈ ℝ+) generated by the Itô SDE

𝑑𝑋 = 𝜇𝑑𝑡 + 𝜎𝑑𝑊(𝑡), 𝑡 ∈ ℝ+ (13.3)

with 𝑋(0) = 𝑥0 ∈ ℝ and 𝜎 > 0. This is a special case of equation (13.2) with 𝜇1 = 𝜎1 = 0 and
𝜇0 = 𝜇 and 𝜎0 = 𝜎.

The solution of equation (13.3), given 𝑋(0) = 𝑥0 is

𝑋(𝑡) = 𝑥0 + 𝜇 𝑡 + 𝜎𝑊(𝑡), 𝑡 ∈ ℝ+.

 
To prove this, writing 𝑋(𝑡) in the integral form

𝑋(𝑡) = 𝑋(0) + ∫
𝑡

0
𝑑𝑋(𝑠)

= 𝑥0 + ∫
𝑡

0
𝜇 𝑑𝑠 + ∫

𝑡

0
𝜎𝑑𝑊(𝑠)

= 𝜙 + 𝜇 𝑡 + 𝜎 (𝑊(𝑡) − 𝑊(0))
= 𝜙 + 𝜇 𝑡 + 𝜎 𝑊(𝑡)

because, form the properties of the Wiener process, 𝑊(0) = 0.
Figure 13.1 presents one sample path in panel (a) and 100 sample paths for the case in which

𝜇 = −0.5 and 𝜎 = 1.
The probability distribution is given by equation (12.11)

𝑝(𝑡, 𝑥) = 1
𝜎

√
2𝜋𝑡 𝑒− (𝑥−𝑥0−𝜇𝑡)2

2𝜎2𝑡 , (𝑡, 𝑥) ∈ ℝ+ × ℝ.

Properties The first and second moments are functions of time

𝔼[𝑋(𝑡)]  = ∫
∞

−∞
𝑥 𝑝(𝑡, 𝑥)𝑑𝑥 = 𝑥0 + 𝜇 𝑡, 𝑡 ∈ ℝ+,

𝕍[𝑋(𝑡)]  = ∫
∞

−∞
(𝑥 − 𝔼[𝑋(𝑡)] )2 𝑝(𝑡, 𝑥)𝑑𝑥 = 𝜎2 𝑡, 𝑡 ∈ ℝ+.
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Figure 13.1: Sample path for the Brownian process for 𝜇 = −0.5 and 𝜎 = 1.
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We observe that the process is not ergodic, because

lim
𝑡→∞

𝔼[𝑋(𝑡)] = lim
𝑡→∞

𝕍[𝑋(𝑡)] = ±∞

  if 𝜇 ≠ 0 and 𝜎 ≠ 0.
Observe that the solution of the squeleton 𝑑𝑥(𝑡)

𝑑𝑡 = 𝜇, given 𝑥0 is 𝑥(𝑡) = 𝑥0 + 𝜇 𝑡.

13.2.2 Geometric Brownian motion

The geometric Brownian motion is usual name of a process (𝑋(𝑡))𝑡∈ℝ+
generated by the Itô SDE

  𝑑𝑋(𝑡) = 𝜇 𝑋(𝑡)𝑑𝑡 + 𝜎 𝑋(𝑡)𝑑𝑊(𝑡), 𝑡 ∈ ℝ+, (13.4)

  where 𝑋(0) = 𝑥0 with ℙ[𝑋(0) = 𝑥0]  = 1. This is a special case of equation (13.2) with
𝜇0 = 𝜎0 = 0 and 𝜇1 = 𝜇 and 𝜎1 = 𝜎.

The explicit solution is
𝑋(𝑡) = 𝑥0𝑒(𝜇− 𝜎2

2 ) 𝑡+𝜎 𝑊(𝑡), 𝑡 ∈ ℝ+. (13.5)

To prove this we define 𝑌 (𝑡) = ln 𝑋(𝑡). Using Itô’s formula

𝑑𝑌 (𝑡) = 1
𝑋(𝑡)𝑑𝑋(𝑡) + 1

2 (− 1
𝑋(𝑡)2 ) (𝑑𝑋(𝑡))2 =

= 𝑑𝑋(𝑡)
𝑋(𝑡) − 𝜎2

2 𝑑𝑡 =

= (𝜇 − 𝜎2

2 )𝑑𝑡 + 𝜎𝑑𝑊(𝑡)

  Then,

𝑌 (𝑡) = 𝑦(0) + ∫
𝑡

0
𝑑𝑌 (𝑠)

= 𝑦(0) + ∫
𝑡

0
(𝜇 − 𝜎2

2 ) 𝑑𝑠 + ∫
𝑡

0
𝜎 𝑑𝑊(𝑠)

= 𝑦(0) + (𝜇 − 𝜎2

2 )𝑡 + 𝜎 𝑊(𝑡)

  Therefore,

ln 𝑋(𝑡) = ln 𝑥0 + (𝜇 − 𝜎2

2 ) 𝑡 + 𝜎𝑊(𝑡)

  and, because 𝑥 = 𝑒𝑦, equation (13.5) results.
By using the Kolmogorov forward equation (or Fokker-Planck) we find the probability distri-

bution 𝑝(𝑡, 𝑥) = ℙ[𝑋(𝑡) = 𝑥] given 𝑋(0) = 𝑥0 solves the problem

⎧{
⎨{⎩

𝜕
𝜕𝑡𝑝(𝑡, 𝑥) = −𝐺(𝑡, 𝑥)[𝑝] = − 𝜕

𝜕𝑥 (𝜇𝑥𝑝(𝑡, 𝑥)) + 1
2  𝜕2

𝜕𝑥2 (𝜎𝑥𝑝(𝑡, 𝑥))
𝑝(0, 𝑥0) = 𝛿(𝑥 − 𝑥0)
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  Next we assume that 𝑥 ∈ ℝ+, which means that 𝑥0 > 0. The solution to this problem is

 𝑝(𝑡, 𝑥) = 𝑥0
𝑥𝜎

√
2𝜋𝑡𝑒−

(ln (𝑥/𝑥0) − (𝜇 − 1
2𝜎2) 𝑡 )2

2𝜎2𝑡 , for (𝑡, 𝑥) ∈ ℝ2
+.  (13.6)

  
To prove this result, we derive the Fokker-Planck equation and the associated initial condition

⎧{
⎨{⎩

𝜕𝑡𝑝(𝑡, 𝑥) = 𝜎2

2   𝑥2 𝜕𝑥𝑥𝑝(𝑡, 𝑥) + (2𝜎2 − 𝜇) 𝜕𝑥𝑝(𝑡, 𝑥) + (𝜎2 − 𝜇) 𝑝(𝑡, 𝑥) 𝑡 ≥ 0
𝑝(0, 𝑥) = 𝛿(𝑥 − 𝑥0) 𝑡 = 0

  Performing a transformation of variables 𝑥 = 𝑒𝑧 mapping 𝑥 ∶ ℝ+ → ℝ, we write 𝑢(𝑡, 𝑧) = 𝑝(𝑡, 𝑥(𝑧)).
As 𝜕𝑡𝑢(𝑡, 𝑧) = 𝜕𝑡𝑝(𝑡, 𝑥(𝑧)), 𝜕𝑧𝑢(𝑡, 𝑧) = 𝜕𝑥𝑝(𝑡, 𝑥(𝑧)) 𝑥(𝑧) and 𝜕𝑧𝑧𝑢(𝑡, 𝑧) = 𝜕𝑥𝑥𝑝(𝑡, 𝑥(𝑧)) 𝑥(𝑧)2 +
𝜕𝑥𝑝(𝑡, 𝑥(𝑧)) 𝑥(𝑧) the Fokker-Planck equation is equivalent to the linear parabolic, with constant
coefficients, parabolic PDE,

⎧{
⎨{⎩

𝜕𝑡𝑢(𝑡, 𝑧) = 𝜎2

2 𝜕𝑧𝑧𝑢(𝑡, 𝑧) + (3
2𝜎2 − 𝜇)𝜕𝑧𝑢(𝑡, 𝑧) + (𝜎2 − 𝜇) 𝑢(𝑡, 𝑧), (𝑡, 𝑧) ∈ ℝ+ × ℝ

𝑢(0, 𝑧) = 𝛿(𝑧 − ln (𝑥0)) (𝑡, 𝑧) ∈ {𝑡 = 0}  × ℝ.

  Using the results for the linear parabolic PDE (in the unbounded spatial domain) the solution is

𝑢(𝑡, 𝑧) = ∫
∞

−∞
  𝛿(𝑠 − ln (𝑥0)) 𝑔(𝑡, 𝑧 − 𝑠) 𝑑𝑠 = 𝑔(𝑡, 𝑧 − ln (𝑥0))

  where

𝑔(𝑡, 𝜉) = 1√
2𝜋𝜎2𝑡

  exp {  −
(𝜉 − (𝜇 − 𝜎2

2  ))
2

2𝜎2𝑡 − 𝜉}.

  Transforming back to the original variable we have 𝑝(𝑡, 𝑥) = 𝑢(𝑡, ln (𝑥) − ln (𝑥0)) = 𝑔(𝑡, ln (𝑥/𝑥0))
as in equation (13.6).

The linear diffusion has the moments

𝔼[𝑋(𝑡)]  = 𝑥0𝑒𝜇𝑡, 𝑡 ∈ ℝ+,

𝕍[𝑋(𝑡)]  = 𝑥2
0𝑒2𝜇𝑡  (𝑒𝜎2𝑡 − 1) , 𝑡 ∈ [0, ∞)

 

Properties In Figure 13.2 we plot one sample path and several sample paths for the linear
diffusion equation where 𝜇 < 0 and 𝜎 > 0 and in Figure 13.3 for the case in which 𝜇 > 0. We see
that in the first case the paths converge to lim𝑡→∞ 𝑋(𝑡) = 0 and in the second case they diverge.

From the moment expressions, we see that:

• if 𝜇 < 0, for any 𝜎 ≠ 0, then lim𝑡→∞ 𝔼[𝑋(𝑡)] = lim𝑡→∞ 𝕍[𝑋(𝑡)] = 0
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• if 𝜇 > 0, for any 𝜎 ≠ 0, lim𝑡→∞ 𝔼[𝑋(𝑡)] = sign(𝑥0)∞ and lim𝑡→∞ 𝕍[𝑋(𝑡)] = ∞.

In the first case, i.e., when 𝜇 < 0 the steady state of the skelleton 𝑑𝑥(𝑡)
𝑑𝑡 = 𝜇𝑥(𝑡), that is

𝑋 = 𝑥 = 0 is an absorbing state, meaning that, although the model is stochastic, all the
trajectories converge to a (measure zero) point.

13.2.3 Ornstein-Uhlenback processes

 
An Ornstein-Uhlenback, or mean-reverting, process (𝑋(𝑡))𝑡∈ℝ+

is generated by solution to the
Itô SDE

𝑑𝑋 = 𝜃 (𝜇 − 𝑋) 𝑑𝑡 + 𝜎𝑑𝑊(𝑡) (13.7)

  where 𝑋(0) = 𝑥0. This is a special case of equation (13.2) with 𝜇0 = 𝜃 𝜇, 𝜇1 = −𝜃, 𝜎0 = 𝜎 and
𝜎1 = 0.

The solution is
𝑋(𝑡) = 𝜇 + 𝑒−𝜃𝑡(𝑥0 − 𝜇 + 𝜎 ∫

𝑡

0
𝑒𝜃 𝑠 𝑑𝑊(𝑠)).

  To prove this, we introduce the change in variables 𝑌 (𝑡) = 𝑋(𝑡) 𝑒𝜃𝑡. Itô’s formula yields

𝑑𝑌 (𝑡) = 𝜃 𝑋(𝑡) 𝑒𝜃𝑡 𝑑𝑡 + 𝑒𝜃𝑡 𝑑𝑋(𝑡)
= 𝜃 𝑋(𝑡) 𝑒𝜃𝑡 𝑑𝑡 + 𝑒𝜃𝑡 (𝜃 (𝜇 − 𝑋(𝑡)) 𝑑𝑡 + 𝜎 𝑑𝑊(𝑡))
= 𝑒𝜃𝑡 (𝜃𝜇𝑑𝑡 + 𝜎𝑑𝑊(𝑡)) .

  Integrating on time we have

𝑌 (𝑡) = 𝑦0 + 𝑦0 + 𝜃𝜇 ∫
𝑡

0
𝑒𝜃𝑠𝑑𝑠 + 𝜎 ∫

𝑡

0
𝑒𝜃𝑠𝑑𝑊(𝑠).

  Transforming back to the original variable, by making 𝑋(𝑡) = 𝑒−𝜃𝑡𝑌 (𝑡) and 𝑥0 = 𝑦0, we obtain
the solution to the Itô SDE (13.7)

𝑋(𝑡) = 𝑒−𝜃𝑡 (𝑦0 + 𝜃𝜇 ∫
𝑡

0
𝑒𝜃𝑠𝑑𝑠 + 𝜎 ∫

𝑡

0
𝑒𝜃𝑠𝑑𝑊(𝑠))

= 𝑥0𝑒−𝜃𝑡 + 𝜇𝑒−𝜃𝑡 (𝑒𝜃𝑡 − 1) + 𝜎 ∫
𝑡

0
𝑒−𝜃(𝑡−𝑠)𝑑𝑊(𝑠).

  By using the Kolmogorov forward equation (or Fokker-Planck) we find the probability distribution
𝑝(𝑡, 𝑥) = ℙ[𝑋(𝑡) = 𝑥] given 𝑋(0) = 𝑥0 solves the problem

⎧{
⎨{⎩

𝜕
𝜕𝑡𝑝(𝑡, 𝑥) = − 𝜕

𝜕𝑥(𝜃 (𝜇 − 𝑥) 𝑝(𝑡, 𝑥)) + 1
2  𝜕2

𝜕𝑥2 (𝜎𝑝(𝑡, 𝑥))
𝑝(0, 𝑥) = 𝛿(𝑥 − 𝑥0)
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Linear diffusion: µ < 0
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Figure 13.2: Sample paths for the linear diffusion process with 𝜇 < 0
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Linear diffusion: µ > 0
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Figure 13.3: Sample paths for the linear diffusion process with 𝜇 > 0



Paulo Brito Advanced Mathematical Economics 2021/2022 35

  The solution to this problem is

𝑝(𝑡, 𝑥) = (2𝜋 𝜎2

𝜃 (1 − 𝑒−2𝜃𝑡))
− 1

2 𝑒
−

(𝑥 − 𝜇 − (𝑥0 − 𝜇) 𝑒−𝜃𝑡))2

2𝜎2
𝜃 (1 − 𝑒−2𝜃𝑡) , (𝑡, 𝑥) ∈ ℝ+ × ℝ.

 
Therefore, the conditional expected value and variance, for 𝑋(0) = 𝑥0 are

𝔼𝑥0 [𝑋(𝑡)] = 𝔼 [ 𝑋(𝑡)|𝑋(0) = 𝑥0] = 𝜇 + (𝑥0 − 𝜇)𝑒−𝜃𝑡

  and
𝕍𝑥0 [ 𝑋(𝑡)] = 𝕍 [ 𝑋(𝑡)|𝑋(0) = 𝑥0] = 𝜎2

2𝜃 (1 − 𝑒−2𝜃𝑡) .

  The properties of the sample paths and of the statistics depend on the sign of 𝜃. Again, assuming
that 𝜎 ≠ 0 we have the following cases:

• if 𝜃 > 0 then the process is ergodic

lim
𝑡→∞

 𝔼𝑥0 [ 𝑋(𝑡)] = 𝜇

lim
𝑡→∞

 𝕍𝑥0 [ 𝑋(𝑡)] = 𝜎2

2𝜃
  and it is asymptotically Gaussian, because

lim
𝑡→∞

𝑋(𝑡) ∼ 𝑁 (𝜇, 𝜎2

2𝜃 ) ;

 

• if 𝜃 < 0 then lim𝑡→∞  𝔼𝑥0 [ 𝑋(𝑡)] = (𝑥0 − 𝜇) ∞ and lim𝑡→∞  𝕍𝑥0 [ 𝑋(𝑡)] = ∞

Observe that the skeleton
𝑑𝑥(𝑡)

𝑑𝑡   = 𝜃 (𝜇 − 𝑥(𝑡))

  has the solution
𝑥(𝑡) = 𝜇 + (𝑥0 − 𝜇) 𝑒−𝜃 𝑡 

  which is asymptotically stable if 𝜃 > 0.
The sample paths for the case 𝜃 > 0 are illustrated in figure 13.4: we see that they converge

in average to 𝑋(𝑡) = 𝜇, however this value is not an attractor, that is the solution although not
stationary is ergodic.

13.2.4 The linear autonomous SDE

 
Now consider equation the general linear Itô-SDE (13.2) with 𝑋(0) = 𝑥0.
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Orenstein-Uhlenbeck process
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Figure 13.4: Sample paths for Ornstein-Uhlenbeck process for 𝜃 > 0 and 𝜇 = 1
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It can be proved that it has an explicit solution which is

 𝑋(𝑡) = Φ(𝑡) (𝑥0 + (𝜇0 − 𝜎0 𝜎1) ∫
𝑡

0
Φ(𝑠)−1 𝑑𝑠 + 𝜎0 ∫

𝑡

0
Φ(𝑠)−1 𝑑𝑊(𝑠)) (13.8)

  where Φ(𝑡) is the solution of the geometric Brownian motion

𝑑Φ(𝑡) = 𝜇1 Φ(𝑡)𝑑𝑡 + 𝜎1 Φ(𝑡)𝑑𝑊(𝑡)

  and Φ(0) = 1.
Exercise: prove this. Hint conjecture that 𝑋(𝑡) = Φ(𝑡) 𝑌 (𝑡) , where Φ(𝑡) follows the geometric

Brownian motion. Use the Itô formula to derive 𝑑𝑋(𝑡). Match with equation (13.2) to find the
process 𝑑𝑌 (𝑡).

The conditional probability 𝑝(𝑡, 𝑥) = ℙ[𝑋(𝑡) = 𝑥|𝑋(0) = 𝑥0] is the solution of the FPK equation

⎧{
⎨{⎩

𝜕𝑡𝑝(𝑡, 𝑥) = −𝜕𝑥((𝜇0 + 𝜇1 𝑥) 𝑝(𝑡, 𝑥)) + 1
2 𝜕𝑥𝑥((𝜎0 + 𝜎1 𝑥) 𝑝(𝑡, 𝑥)), (𝑡, 𝑥) ∈ ℝ+ × ℝ

𝑝(0, 𝑥) = 𝛿(𝑥 − 𝑥0), (𝑡, 𝑥) ∈ {𝑡 = 0}  × ℝ
 

  It can be proved that the conditional moments are

𝔼[𝑋(𝑡)] = −𝜇0
𝜇1

+ 𝑒𝜇1𝑡 (𝑥0 + 𝜇0
𝜇1

),

  and

𝕍[𝑋(𝑡)] = −(𝜇1𝜎0 − 𝜇0𝜎1)2

𝜇2
1 (2𝜇1 + 𝜎2

1) + (𝜇0 + 𝜇1𝑥0) 𝑒𝜇1𝑡

𝜇2
1

 (𝑒𝜇1𝑡(𝜇0 + 𝜇1𝑥0) + 2𝜎1(𝜇0𝜎1 − 𝜇1𝜎0)
𝜇1 + 𝜎2

1
)+

+ 𝑒(2𝜇1+𝜎2
1) 𝑡

(𝜇1 + 𝜎2
1)(2𝜇1 + 𝜎2

1) (2𝜇0(𝜇0 + 𝜎0𝜎1) + 𝜎2
0(𝜇1 + 𝜎2

1) + 2(𝑥0 + 𝜇0)𝜎0𝜎1(2𝜇1 + 𝜎2
1)+

+ 𝑥2
0(𝜇1 + 𝜎2

1)(2𝜇1 + 𝜎2
1) )

 
If 𝜇1 < 0 then the first moment is asymptotically finite:

lim
𝑡→∞

 𝔼[𝑋(𝑡)] = −𝜇0
𝜇1

  However, if 𝜇1 < 0 is sufficiently large in absolute value, such that 𝜇1 + 𝜎2
1 < 0, which implies

2 𝜇1 + 𝜎2
1 < 0, and then the process is ergodic because in this case

lim
𝑡→∞

 𝕍[𝑋(𝑡)] = −(𝜇1 𝜎0 − 𝜇1𝜎1)2

𝜇2
1 (2 𝜇1 + 𝜎2

1) > 0.

 

13.2.5 Stochastic dynamic properties of the linear autonomous SDE

From the perspective of the asymptotic dynamics, the following behaviors can be expected from a
linear Itô-SDE
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1. if 𝜇1 + 𝜎2
1 < 0 and 𝜇1 𝜎0 − 𝜇1𝜎1 ≠ 0 the process is ergodic and tends asymptotically to a

Gaussian distribution with positive variance 𝑁( − 𝜇0
𝜇1

, −(𝜇1 𝜎0 − 𝜇1𝜎1)2

𝜇2
1 (2 𝜇1 + 𝜎2

1) ), which means that
the steady state is a distribution

2. if 𝜇1 + 𝜎2
1 < 0 and 𝜇1 𝜎0 − 𝜇1𝜎1 = 0 the dynamic tends to absorbing state 𝑥 = −𝜇0

𝜇1
which is

a deterministic steady state

3. if 𝜇1 + 𝜎2
1 ≥ 0 the equation tends to an unbounded distribution in which both moments are

asymptotically unbounded.

13.3 The general linear SDE: the non-autonomous case

The general linear SDE has the form

 𝑑𝑋 = (𝜇0(𝑡) + 𝜇1(𝑡)𝑋(𝑡)) 𝑑𝑡 + (𝜎0(𝑡) + 𝜎 ∶1 (𝑡) 𝑋)𝑑𝑊(𝑡)

  where 𝑋(0) = 𝑥0 with ℙ[𝑋(0) = 𝑥0]  = 1, has the explicit solution

𝑋(𝑡) = Φ(𝑡) (𝑥0 + ∫
𝑡

0
Φ(𝑠)−1(𝜇0(𝑠) − 𝜎0(𝑠)𝜎1(𝑠))𝑑𝑠 + ∫

𝑡

0
Φ(𝑠)−1𝜎0(𝑠)𝑑𝑊(𝑠))

  where Φ(𝑡) is the solution of

𝑑Φ(𝑡) = 𝜇1(𝑡)Φ(𝑡)𝑑𝑡 + 𝜎1(𝑡) Φ(𝑡)𝑑𝑊(𝑡)

  and Φ(0) = 1

13.4 Economic applications

13.4.1 The Solow stochastic growth model

Several papers, starting with Merton (1975) and Bourguignon (1974) (see (Malliaris and Brock,
1982, ch. 3)) study the stochastic Solow model.

Assume that population follows the SDE

𝑑𝐿(𝑡) = 𝜇𝐿𝑑𝑡 + 𝜎𝐿𝑑𝑊(𝑡)

  where 𝜇 is the rate mean rate of growth of population and 𝜎 its variance.
The equilibrium equation for the product market is

𝑑𝐾(𝑡)
𝑑𝑡 = 𝑠𝐹(𝐾, 𝐿) 

  where 𝐹(.) has the neoclassical properties (increasing, concave, homogeneous of degree one and
Inada). We define the capitai intensity as usual 𝑘 ≡ 𝐾/𝐿. Then 𝐹(𝐾, 𝐿) = 𝐿𝑓(𝑘). and

𝑑𝐾 = 𝑠𝐿𝑓(𝑘)𝑑𝑡
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Figure 13.5: Sample path for the capital intensity: 𝑠 = 0.1, 𝛼 = 0.3, 𝜇 = 0.01, 𝜎 = 0.1

  We can write 𝑘 = 𝜅(𝐾/𝐿). Then 𝜅𝐾 = 1/𝐿, 𝜅𝐿 = −𝐾/(𝐿2) , 𝜅𝐾𝐾 = 0, 𝜅𝐾𝐿 = 𝜅𝐿𝐾 = −1/(𝐿2)
and 𝜅𝐿𝐿 = 2𝐾/(𝐿3). Then, applying the Itô’s Lemma

𝑑𝑘 = 𝜅𝐾𝑑𝐾 + 𝜅𝐿𝑑𝐿 + 1
2 (𝜅𝐾𝐾(𝑑𝐾)2 + 2𝜅𝐾𝐿𝑑𝐾𝑑𝐿 + 𝜅𝐿𝐿(𝑑𝐿)2)

= 𝑠𝑓(𝑘)𝑑𝑡 − 𝑘(𝜇𝑑𝑡 + 𝜎𝑑𝑊) + 1
2 (−𝑠𝑓(𝑘)𝑑𝑡(𝜇𝑑𝑡 + 𝜎𝑑𝑊) + 2𝑘(𝜇𝑑𝑡 + 𝜎𝑑𝑊)2)

Using (𝑑𝑡)2 = 𝑑𝑡𝑑𝑊(𝑡) = 0 and (𝑑𝑊(𝑡))2 = 𝑑𝑡 then we get the SDE

𝑑𝑘 = (𝑠𝑓(𝑘) − (𝜇 − 𝜎2)𝑘) 𝑑𝑡 − 𝑘𝜎𝑑𝑊(𝑡) (13.9)

For a Cobb-Douglas function we have

𝑑𝑘 = (𝑠𝑘𝛼 − (𝜇 − 𝜎2)𝑘) 𝑑𝑡 − 𝑘𝜎𝑑𝑊(𝑡)

  where 0 < 𝛼 < 1. Figures 13.5 and 13.6 present one replication and 100 replications for this
equation for a deterministic initial value 𝑘(0) = 𝑘0

The stationary distribution for the capital intensity is (see Merton (1975) and (Malliaris and
Brock, 1982, p. 146)

𝑝(𝑘) = 𝑚
𝜎2𝑘2 exp (2 ∫

𝑘 𝑠𝑓(𝜉) − (𝑛 − 𝜎2)𝜉
𝜎2𝜉2  𝑑𝜉) 

  where 𝑚 is chosen such that ∫∞
0 𝑝(𝑘)𝑑𝑘 = 1. For the Cobb-Douglas case it is

𝑝(𝑘) = 𝑚𝑘−2𝜇/𝜎2 exp ( −2𝑠
(1 − 𝛼)𝜎2 𝑘−(1−𝛼) )
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Figure 13.6: Sample paths for the capital intensity: 𝑠 = 0.1, 𝛼 = 0.3, 𝜇 = 0.01, 𝜎 = 0.1, 100
replications

 

13.4.2 Derivation of the Black and Scholes (1973) equation

Assume that there are two assets, a risk free asset, with value 𝐵(𝑡), following the process

𝑑𝐵(𝑡) = 𝑟𝐵(𝑡)𝑑𝑡,

  and a risky asset, with value 𝑆(𝑡), and following the diffusion process

𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊(𝑡).

  The current prices of both assets, 𝐵(0) and 𝑆(0) are observed.
An European call option is a contract offering the option (but not the obligation) to buy, at the

expiration time 𝑇 > 0, the risky asset at a price 𝐾. A purchaser would have an interest to exercise
the option only if the price of the risky asset at time 𝑇 , 𝑆(𝑇 ), is higher than the exercise price. If
𝐾 < 𝑆(𝑇 ) the purchaser would not exercise the option.

Let 𝑉 (𝑆, 𝑡) be the value of the option on the risky asset at time 𝑡, for 0 ≤ 𝑡 ≤ 𝑇 . The value of
the option at time of the exercise 𝑇 is dependent of 𝑆(𝑇 ) and is

𝑉 (𝑆, 𝑇 ) = max{ 𝑆(𝑇 ) − 𝐾, 0}. 
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  However, the contract would only be possible if there is a payment at time 𝑡 = 0, otherwise the
writer would have no incentive in offering the contract. What would be the price of the option at
the moment of the contract, i.e., at time 𝑡 = 0, 𝑉 (𝑆, 0) ?

Using the Itô’s formula we obtain the process for the value of the option

𝑑𝑉 (𝑆, 𝑡) = 𝑉𝑡(𝑆, 𝑡)𝑑𝑡 + 𝑉𝑠(𝑆, 𝑡)𝑑𝑆 + 1
2𝑉𝑠𝑠(𝑆, 𝑡)(𝑑𝑆)2 =

= 𝑉𝑡(𝑆, 𝑡)𝑑𝑡 + 𝑉𝑠(𝑆, 𝑡) (𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊(𝑡)) + 1
2𝑉𝑠𝑠(𝑆, 𝑡)𝜎2𝑆(𝑡)2𝑑𝑡 =

= (𝑉𝑡(𝑆, 𝑡) + 𝜇𝑆(𝑡)𝑉𝑠(𝑆, 𝑡) + 1
2𝜎2𝑆(𝑡)2𝑉𝑠𝑠(𝑆, 𝑡)) 𝑑𝑡 + 𝜎𝑆(𝑡)𝑉𝑠(𝑆, 𝑡)𝑑𝑊(𝑡).

 
The market data also allows us to obtain a valuation, if we assume that there are no arbitrage

opportunities. If the markets are complete, the yields generated by the option can also be
generated by the yields of a portfolio composed by the available assets with the same value. We
call this portfolio the replicating portfolio.

The replicating portfolio is composed of 𝜃 units of the risky asset and (1 − 𝜃) units of the risk
free asset such that

𝑉 𝑟(𝐵(𝑡), 𝑆(𝑡)) = (1 − 𝜃(𝑡))𝐵(𝑡) + 𝜃(𝑡)𝑆(𝑡), for every 𝑡 ∈ [0, 𝑇 ]

  Using the Itô’s formula, we have

𝑑𝑉 𝑟(𝐵(𝑡), 𝑆(𝑡)) = (1 − 𝜃)𝑑𝐵 + 𝜃𝑑𝑆 =
= (1 − 𝜃)𝑟𝐵(𝑡)𝑑𝑡 + 𝜃𝑆(𝑡) (𝜇𝑑𝑡 + 𝜎𝑑𝑊(𝑡)) =
= (𝑟𝑉 𝑟(𝐵, 𝑆) + (𝜇 − 𝑟)𝑆(𝑡)) 𝑑𝑡 + 𝜃𝜎𝑆(𝑡)𝑑𝑊(𝑡).

  In the absence of arbitrage opportunities we should have 𝑑𝑉 (𝑆(𝑡), 𝑡) = 𝑑𝑉 (𝐵(𝑡), 𝑆(𝑡).
Matching the diffusion and the dispersion components of the two differentials for the option

and the replicating portfolio values, yields

⎧{
⎨{⎩

𝜃𝜎𝑆(𝑡) = 𝜎𝑆(𝑡)𝑉𝑠(𝑆, 𝑡)
𝑟𝑉 𝑟(𝐵, 𝑆) + (𝜇 − 𝑟)𝑆(𝑡) = 𝑉𝑡(𝑆, 𝑡) + 𝜇𝑆(𝑡)𝑉𝑠(𝑆, 𝑡) + 1

2𝜎2𝑆(𝑡)2𝑉𝑠𝑠(𝑆, 𝑡)

  From the first equation we obtain the weight of the risky asset in the replicating portfolio com-
position

𝜃(𝑡) = 𝑉𝑠(𝑆, 𝑡).

After setting 𝑉 (𝑆, 𝑡) = 𝑉 𝑟(𝐵, 𝑆), we obtain from the second equation the Black and Scholes
(1973) PDE,

𝑉𝑡(𝑆, 𝑡) = −𝜎2

2 𝑆2𝑉𝑠𝑠(𝑆, 𝑡) − 𝑟𝑆𝑉𝑠(𝑆, 𝑡) + 𝑟𝑉 (𝑆, 𝑡),

  which is backward semi-linear parabolic PDE.
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The value of the option, and in particular its price 𝑉 (𝑆, 0) is the solution of the following option
valuation problem:

⎧{
⎨{⎩

𝑉𝑡(𝑆, 𝑡) = −𝜎2

2 𝑆2𝑉𝑠𝑠(𝑆, 𝑡) − 𝑟𝑆𝑉𝑠(𝑆, 𝑡) + 𝑟𝑉 (𝑆, 𝑡), (𝑆, 𝑡) ∈ (0, ∞) × [0, 𝑇 ] 
𝑉 (𝑆, 𝑇 ) = max{𝑆 − 𝐾, 0}, (𝑆, 𝑡) ∈ (0, ∞) × { 𝑡 = 𝑇 }  

(13.10)

We show in the PDE chapter that the solution of the option valuation problem is

𝑉 (𝑆, 𝑡) = 𝑆Φ(𝑑+(𝑡)) − 𝐾𝑒−𝑟(𝑇 −𝑡)Φ(𝑑−(𝑡)), 𝑡 ∈ [0, 𝑇 ]

  where Φ(⋅) is the Gaussian distribution function (see the Appendix) and

𝑑∓(𝑡) = ln (𝑆(0)
𝐾 ) + (𝑇 − 𝑡)(𝑟 ∓ 𝜎2

2 )
𝜎

√
𝑇 − 𝑡

  The price of the option is

𝑉 (𝑆, 0) = 𝑆(0)Φ(𝑑+(0)) − 𝐾𝑒−𝑟𝑇 Φ(𝑑−(0)),

  with

𝑑∓(0) = ln (𝑆(0)
𝐾 ) + 𝑇 (𝑟 ∓ 𝜎2

2 )
𝜎

√
𝑇

.

  where 𝑆(0) is observable at time 𝑡 = 0, 𝐾 and 𝑇 are specified in the option contract and 𝑟 and
𝜎 are estimated or conjectured.

13.5 References

• Mathematics of SDE’s: Karatzas and Shreve (1991), Øksendal (2003), Pavliotis (2014)

• Very useful hands-on introduction to SDE: Särkkä and Solin (2019). Explicit solutions:
Kloeden and Platen (1992) and Gardiner (2009)

• Dynamic systems theory and SDE’s: Cai and Zhu (2017)

• Numerical analysis of SDE Iacus (2010)

• Application to economics and finance: Malliaris and Brock (1982), Dixit and Pindyck (1994),
Cvitanić and Zapatero (2004) , Stokey (2009)



Chapter 14

Stochastic optimal control

14.1 Introduction

In this chapter we identify the stochastic optimal control problem as an optimal control problem
of an Itô forward stochastic differential equation (FSDE) together with an initial condition on the
state variable and some cases in which there are terminal conditions. We deal with both the finite
and the infinite horizon cases. We, again, present the simplest problems, present heuristic proofs,
and are mostly concerned with characterizing solutions.

There are three approaches to solving the stochastic optimal control problem: (1) using the
principle of dynamic programming (DP); (2) using the Pontriyagin maximum principle (PM); and
(3) the convex duality method (see Pham (2009)).

The first method is the most well known (see Fleming and Rishel (1975) or Malliaris and Brock
(1982) for applications in economics and finance) and leads to the solution of a parabolic PDE,
or a second order ODE for infinite horizon problems. The second method is less well known and
leads directly to a system of forward-backward stochastic differential equations (FBSDE). The third
method is used in association to the Malliavin calculus and is still new. It is not presented in the
following notes.

14.2 Stochastic dynamic programming

14.2.1 Finite horizon

Again we assume the filtered probability space (Ω, ℱ, {ℱ𝑡}𝑡∈ℝ+
 , ℙ), where a non-anticipating fil-

tration is generated by a Wiener process {𝑊(𝑡) ∶ 𝑡 ∈ ℝ+}. This means that all the information is
given by the past.  

We consider the stochastic optimal control problem, that consists in determining the value
function, 𝑉 (.),

𝑉 (𝑥0) = max
(𝑈(𝑡))𝑡∈[0,𝑇]

 𝔼0 [∫
𝑇

0
𝑓(𝑡, 𝑋(𝑡), 𝑈(𝑡))𝑑𝑡] (14.1)

43
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subjected to
𝑑𝑋(𝑡) = 𝑔(𝑡, 𝑋(𝑡), 𝑈(𝑡))𝑑𝑡 + 𝜎(𝑡, 𝑋(𝑡), 𝑈(𝑡))𝑑𝑊(𝑡) (14.2)

given the initial distribution for the state variable 𝑋(0) = 𝑥0. We call 𝑈(.) the control variable
and assume that the objective, the drift and the volatility functions, 𝑓(.), 𝑔(.) and 𝜎(.). Function
𝑔(.) is assumed to be of class 𝐻 and functions 𝑓(.) and 𝜎(.) are of class N.

One important difference as regards deterministic optimal control is that while in this case
the control variable, together with the transversality condition can be seen as a backward looking
variable, in the stochastic case it should be a ℱ𝑡-adapted process. Therefore, some type of terminal
condition should be imposed.

The stochastic dynamic programming principle is the analogue to the dynamic programming
principle for the optimal control of ODE’s. It gives a local necessary condition for optimality.

Proposition 1. Stochastic dynamic programming Let the processes (𝑋∗(𝑡), 𝑈 ∗(𝑡))𝑡∈[0,𝑇 ] be
solution to the SOC problem (14.1)-(14.2). Then, at time 𝑡, the realizations of the state and control
variables, 𝑋∗(𝑡) = 𝑥 and 𝑈∗(𝑡) = 𝑢, satisfy the Hamilton-Jacobi-Bellman equation

−𝜕𝑉 (𝑡, 𝑥)
𝜕𝑡 = max

𝑢
(𝑓(𝑡, 𝑥, 𝑢) + 𝑔(𝑡, 𝑥, 𝑢)𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥 + 1
2𝜎(𝑡, 𝑥, 𝑢)2 𝜕2𝑉 (𝑡, 𝑥)

𝜕𝑥2 ) . (14.3)

Proof. (Heuristic) Observe that a solution of the problem satisfies

𝑉 (0, 𝑥0) = max
(𝑢(𝑡))𝑡∈[0,𝑇]

𝔼0 (∫
𝑇

0
𝑓(𝑡, 𝑋(𝑡), 𝑈(𝑡))𝑑𝑡) =

= max
(𝑢(𝑡))𝑡∈[0,𝑇]

𝔼0 (∫
∆𝑡

0
𝑓(𝑡, 𝑋(𝑡), 𝑈(𝑡))𝑑𝑡 + ∫

𝑇

∆𝑡
𝑓(𝑡, 𝑋(𝑡), 𝑈(𝑡))𝑑𝑡)

by the principle of the dynamic programming and the law of iterated expectations we have

𝑉 (𝑥0) = max
(𝑢(𝑡))𝑡∈[0,∆𝑡]

 𝔼0 [∫
∆𝑡

0
𝑓(𝑡, 𝑋(𝑡), 𝑈(𝑡))𝑑𝑡 + max

(𝑢(𝑡))𝑡∈[∆𝑡,𝑇]
 𝔼∆𝑡 [∫

𝑇

∆𝑡
𝑓(𝑡, 𝑋(𝑡), 𝑈(𝑡))𝑑𝑡]]

= max
(𝑢(𝑡))𝑡∈[0,∆𝑡]

 𝔼0 [𝑓(𝑡, 𝑋(𝑡), 𝑈(𝑡))Δ𝑡 + 𝑉 (Δ𝑡, 𝑥(Δ𝑥))]

if we write 𝑥(Δ𝑡) = 𝑥0 +Δ𝑥. If 𝑉 is continuously differentiable of the second order, the Itô’s lemma
may be applied to get, for pair (𝑡, 𝑥(𝑡)) = (𝑡, 𝑥)

𝑉 (𝑡 + 𝑑𝑡, 𝑥 + 𝑑𝑥) = 𝑉 (𝑡, 𝑥) + 𝑉𝑡(𝑡, 𝑥)𝑑𝑡 + 𝑉𝑥(𝑡, 𝑥)𝑑𝑥 + 1
2𝑉𝑥𝑥(𝑡, 𝑥)(𝑑𝑥)2 + ℎ.𝑜.𝑡

where

𝑑𝑥 = 𝑔(.)𝑑𝑡 + 𝜎(.)𝑑𝑊
(𝑑𝑥)2 = 𝑔(.)2(𝑑𝑡)2 + 2𝑔(.)𝜎(.)(𝑑𝑡)(𝑑𝑊) + (𝜎(.))2(𝑑𝑊)2 = (𝜎(.))2𝑑𝑡.

Then,

𝑉 = max
𝑢

𝔼 [𝑓𝑑𝑡 + 𝑉 + 𝑉𝑡𝑑𝑡 + 𝑉𝑥𝑔𝑑𝑡 + 𝑉𝑥𝜎𝑑𝑊 + 1
2𝜎2𝑉𝑥𝑥𝑑𝑡]

= max
𝑢

[𝑓 + 𝑉𝑡 + 𝑉𝑥𝑔 + 1
2𝜎2𝑉𝑥𝑥] 𝑑𝑡 + 𝑉
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because 𝔼0(𝑑𝑊) = 0. The equation is only true if and only if the HJB equation holds.

14.2.2 Infinite horizon

The autonomous discounted infinite horizon problem is

𝑉 (𝑥0) = max
𝑢

𝔼0 [∫
∞

0
𝑓 (𝑋(𝑡), 𝑈(𝑡)) 𝑒−𝜌𝑡𝑑𝑡] (14.4)

where 𝜌 > 0, subject to

𝑑𝑋(𝑡) = 𝑔 (𝑋(𝑡), 𝑈(𝑡)) 𝑑𝑡 + 𝜎 (𝑋(𝑡), 𝑈(𝑡)) 𝑑𝑊(𝑡) (14.5)

given the initial distribution of the state variable 𝑋(0) = 𝑥0, and assuming the same properties for
functions 𝑓(.), 𝑔(.) and 𝜎(.).

Applying, again, the Bellman’s principle, now the HJB equation is the nonlinear second order
ODE of the form

𝜌𝑉 (𝑥) = max
𝑢

(𝑓(𝑥, 𝑢) + 𝑔(𝑡, 𝑥, 𝑢)𝑉 ′(𝑥) + 1
2𝜎(𝑥, 𝑢)2𝑉 ″(𝑥)) . (14.6)

References (Kamien and Schwartz, 1991, cap. 22).

14.2.3 Economic applications using stochastic dynamic programming

The representative agent problem

The Merton (1971) model is the standard micro model for the simultaneous determination of the
strategies of consumption and portfolio investment. Next, we present a simplified version with one
risky and one risk-free asset.

Assume that an agent can invest in two types of assets, a risk-free and a risky asset, whose
prices are denoted by 𝐵 and 𝑆, respectively. We denote by 𝜃0(𝑡) and 𝜃1(𝑡) the number of risk free
and risky assets in the portfolio, and by 𝐴(𝑡) net financial wealth of the agent at time 𝑡, we have
𝐴(𝑡) = 𝜃0(𝑡)𝐵(𝑡) + 𝜃1(𝑡)𝑆(𝑡), for any 𝑡 ∈ [0, ∞). The agent can have a short or a long position on
any asset: if 𝜃𝑗(𝑡) < 0 (𝜃𝑗(𝑡) > 0) this means that the agent has a short (long) position in asset 𝑗
at time 𝑡.

The prices of the assets are given to the agent and are assume to follow the exogenous processes

𝑑𝐵(𝑡) = 𝑟𝐵(𝑡)𝑑𝑡
𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊(𝑡)

where 𝑟 is the risk-free interest rate, 𝜇 and 𝜎 are the constant rates of return and volatility for the
risky asset. The change in financial income in the time interval 𝑑𝑡, starting at time 𝑡, is therefore,

𝜃0(𝑡) 𝑟 𝐵(𝑡) 𝑑𝑡 + 𝜃1(𝑡)(𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊(𝑡)).
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Assume that the agent is entitled to a deterministic endowment {𝑦(𝑡), 𝑡 ∈ ℝ} which adds to the

financial income. Then the value of financial wealth at time 𝑡 is

𝐴(𝑡) = 𝐴(0) + ∫
𝑡

0
(𝑟𝜃0(𝑠)𝐵(𝑠) + 𝜇𝜃1(𝑠)𝑆(𝑠) + 𝑦(𝑠) − 𝑐(𝑠)) 𝑑𝑠 + ∫

𝑡

0
𝜎𝜇𝜃1(𝑠)𝑆(𝑠)𝑑𝑊(𝑠),

where the process for consumption {𝑐(𝑡), 𝑡 ∈ ℝ} is endogenous. Denoting the shares of the equity
and of the risk-free asset by 𝑤 = 𝜃1𝑆

𝐴 and 1−𝑤 = 𝜃0𝐵
𝐴 , the budget constraint is the Itô’s stochastic

differential equation

𝑑𝐴(𝑡) = [(𝑟 (1 − 𝑤(𝑡)) + 𝜇 𝑤(𝑡)) 𝐴(𝑡) + 𝑦(𝑡) − 𝑐(𝑡)] 𝑑𝑡 + 𝜎 𝑤(𝑡) 𝐴(𝑡) 𝑑𝑊(𝑡), for 𝑡 ≥ 0  (14.7)

and the initial net wealth 𝐴(0) = 𝜃0(0)𝐵(0) + 𝜃1(0)𝑆(0) is known. The rate of return on the total
asset position 𝑟𝑎(𝑡) = 𝑟 (1 − 𝑤(𝑡)) + 𝜇 𝑤(𝑡) is a weighted sum of the rates of return of the risk-free
and the risky asset, and there is time-varying.

The problem for the consumer-investor is

max
𝑐,𝑤

𝔼0 [∫
∞

0
𝑢(𝑐(𝑡))𝑒−𝜌𝑡𝑑𝑡] (14.8)

subject to the instantaneous budget constraint (14.7), given 𝐴(0) = 𝑎0 and assuming that the
utility function is increasing and concave.

This is a stochastic optimal control problem with infinite horizon, and has two control variables,
𝑐 and 𝑤. We solve it by using proposition 1.

The Hamilton-Jacobi-Bellman equation (14.6) is

𝜌 𝑉 (𝐴) = max
𝑐,𝑤

{𝑢(𝑐) + 𝑉 ′(𝐴)[(𝑟(1 − 𝑤) + 𝜇𝑤)𝐴 + 𝑦 − 𝑐] + 1
2𝑤2𝜎2𝐴2𝑉 ″(𝐴)} .

The first order necessary conditions allows us to get the optimal controls, i.e. the optimal policies
for consumption and portfolio composition

𝑢′(𝑐∗) = 𝑉 ′(𝐴), (14.9)

𝑤∗ = 𝑊(𝐴) = (𝜇 − 𝑟)
𝜀𝑣(𝐴) 𝜎2 (14.10)

where the (𝜇 − 𝑟)
𝜎 is the Sharpe index and 𝜀𝑣(𝐴) ≡ − 𝑉 ′(𝐴)

𝐴𝑉 ″(𝐴) is the inverse of the elasticity of the
value function.

If 𝑢″(.) < 0 then the optimal policy function for consumption may be written as 𝑐∗ = 𝐶(𝐴) ≡
(𝑢′)−1(𝑉 ′(𝐴)). Substituting the policy functions into the HJB equation, we get the differential
equation over 𝑉 (𝐴)

𝜌𝑉 (𝐴) = 𝑢(𝐶(𝐴)) + 𝑉 ′(𝐴)(𝑦 + 𝑟𝐴 − 𝐶(𝐴)) + 1
2(𝑟 − 𝜇

𝜎  )
2 (𝑉 ′(𝐴))2

𝑉 ″(𝐴) . (14.11)
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In some cases, in particular when the utility function is a generalized mean and the constraint is a
linear SDE, the HJB equation can be solved explicitly.

Example: the CRRA case In particular, let the utility function display constant relative
risk aversion (CRRA)

𝑢(𝑐) = 𝑐1−𝜂 − 1
1 − 𝜂 , for 𝜂 > 0,

and define total net wealth
𝑁 = 𝑁(𝐴) = 𝑦

𝑟 + 𝐴,

  as the sum of human wealth (𝑦
𝑟 ) and net financial wealth.

We can solve equation solve equation (14.11) by using the method of undetermined coefficients.
Conjecture that the solution for equation (14.11) is of type

𝑉 (𝐴) = 𝛼 + 𝜃 𝑁(𝐴)1−𝜂

where 𝛼 and 𝜃 are arbitrary constants to be determined. If the functional form of this function is
correct, by substituting in equation (14.11) the state variable, we obtain the HJB equation, at the
optimum, containing only the unknowns 𝛼 and 𝜃. By finding a particular solution of that equation
we find particular values for those two coefficients.

First, as
𝑉 ′(𝐴) = 𝜃 (1 − 𝜂) 𝑁−𝜂, and 𝑉 ″(𝐴) = −𝜃 𝜂 (1 − 𝜂) 𝑁−𝜂−1

  then the optimal policy functions are: for consumption is

𝐶(𝐴) = (𝜃(1 − 𝜂))− 1
𝜂 𝑁(𝐴)

which requires that 𝜃 (1 − 𝜂) > 0 to be a real number, and for the portfolio composition is

𝑊(𝐴) = (𝜇 − 𝑟)
𝜎2   𝑁

𝜂 𝐴.

Substituting in (14.11), we obtain

𝜌(𝛼 + 𝜃𝑁1−𝜂) = 1
1 − 𝜂((𝜃 (1 − 𝜂))

𝜂−1
𝜂 𝑁1−𝜂 − 1)+

+ (𝜃 (1 − 𝜂) 𝑁1−𝜂)(𝑟 − (𝜃 (1 − 𝜂))
−1
𝜂 − 1

2 𝜂(𝜇 − 𝑟
𝜎 )

2
).

If we set 𝛼 𝜌 (1 − 𝜂) + 1 = 0, we can eliminate 𝑁1−𝜂 and obtain an equation in 𝜃. Solving it, yields

𝜃 = 𝜃∗  ≡ 1
1 − 𝜂 [𝜌 + 𝑟(1 − 𝜂)

𝜂 + (1 − 𝜂)
2𝜂2 (𝜇 − 𝑟

𝜎 )
2
]

−𝜂

Then

𝑉 (𝐴) = 1
1 − 𝜂{  [𝜌 − 𝑟(1 − 𝜂)

𝜂 + (1 − 𝜂)
2𝜂2 (𝜇 − 𝑟

𝜎 )
2
]

−𝜂
𝑁1−𝜂 − 1

𝜌}. 

 



Paulo Brito Advanced Mathematical Economics 2021/2022 48

Then the optimal consumption is

𝑐∗ = (𝜌 + 𝑟(𝜂 − 1)
𝜂 + (1 − 𝜂)

2𝜂2 (𝜇 − 𝑟
𝜎 )

2
) 𝑁,

and the share of the risky asset in the portfolio is again

𝑤∗  = −(𝑟 − 𝜇)
𝜎2   𝑁

𝜂 𝐴.

  In the deterministic analogue, with only the risk-free asset, optimal consumption would be

𝑐∗ = 𝜌 + 𝑟(𝜂 − 1)
𝜂 𝑁,

which means that if 𝜂 > 1 consumption will be smaller in the stochastic environment than in the
stochastic one.

We see that the consumer cannot eliminate risk, in general. If we write 𝑐∗ = 𝜒𝑁 , where
𝜒 ≡ 𝜌−𝑟(1−𝜂)

𝜂 + (1−𝜂)
2𝜂2 (𝜇−𝑟

𝜎 )2, then the optimal net wealth is stochastic and follows a geometric
Brownian motion

𝑑𝑁(𝑡) = [ 𝜇𝑛𝑑𝑡 + 𝜎𝑛𝑑𝑊(𝑡)]  𝑁(𝑡)

where

𝜇𝑛 = 𝑟 + (𝜇 − 𝑟
𝜎 )

2
(1 − 𝜂

𝜂 ) − 𝜒

𝜎𝑛 = 𝜇 − 𝑟
𝜎

1 − 𝜂
𝜂 .

Given the initial wealth 𝑛(0) = 𝑦
𝑟 + 𝑎0, and using the results in the previous chapter, we find that

the probability density of a realization 𝐴(𝑡) = 𝑎/𝑎0 follows a log-normal distribution.
As 𝑐∗ = 𝑐(𝑁), the optimal consumption is also stochastic. Iff we apply Itô’s lemma,

𝑑𝐶 = 𝜒𝑑𝑁 = 𝐶 (𝜇𝑐𝑑𝑡 + 𝜎𝑐𝑑𝑊(𝑡))

where

𝜇𝑐 = 𝑟 − 𝜌
𝜂

𝜎𝑐 = 𝑟 − 𝜂𝜌
𝜂 + .12(𝜇 − 𝑟

𝜎
1 − 𝜂

𝜂 )
2

The sde has the solution

𝐶(𝑡) = 𝑐(0) exp {(𝜇𝑐 − 𝜎2
𝑐

2 ) 𝑡 + 𝜎𝑐𝑊(𝑡)}

where
𝑐(0) = (1 − 𝜂)(𝜃∗) 1

𝜂 𝑛(0) = (1 − 𝜂)(𝜃∗) 1
𝜂 (𝑦 + 𝑟𝑎0

𝑟 ).
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The unconditional expected value for consumption at time 𝑡

𝔼0[𝐶(𝑡)] = 𝑐(0) 𝑒𝜇𝑐𝑡.

The value function follows a stochastic process which is a monotonous function for wealth.
The optimal strategy for consumption follows a stochastic process which is a linear function of the
process for wealth and the fraction of the risky asset in the optimal portfolio is a direct function of
the premium of the risky asset relative to the riskless asset and is a inverse function of the volatility.

References Merton (1971), Merton (1990), Duffie (1996) Cvitanić and Zapatero (2004)

The stochastic Ramsey model

Let 𝐾 denote the stock of physical capital and 𝐿 the labor input which is equal to the population
(no unemployment, diseases, etc). The economy is represented by the the differential equations

𝑑𝐾(𝑡) = (𝐹(𝐾(𝑡), 𝐿(𝑡)) − 𝐶(𝑡))𝑑𝑡
𝑑𝐿(𝑡) = 𝜇𝐿(𝑡)𝑑𝑡 + 𝜎𝐿(𝑡)𝑑𝑊(𝑡)

where we assume that 𝐹(𝐾, 𝐿) is linearly homogeneous, given the (deterministic) initial stock of
capital and labor 𝐾(0) = 𝐾0 and 𝐿(0) = 𝐿0. The growth of the labor input (or its productivity)
is stochastic.

If we define the variables in intensity terms,

𝑘(𝑡) ≡ 𝐾(𝑡)
𝐿(𝑡) , 𝑐(𝑡) ≡ 𝐶(𝑡)

𝐿(𝑡) ,

we can get an equilvalent representation of the economy by a single stochastic differential equation
over 𝑘. Using the Itô’s lemma yields

𝑑𝑘 = (𝑓(𝑘) − 𝑐 − (𝜇 − 𝜎2)𝑘) 𝑑𝑡 − 𝜎2𝑘𝑑𝑊(𝑡) (14.12)

where the production function in intensity terms is 𝑓(𝑘) = 𝐹 (𝐾
𝐿 , 1).

There is a central who wants to find the optimal path of the economy maximizing the intertem-
poral utility functional

𝔼0 [  ∫
∞

0
𝑢(𝑐(𝑡))𝑒−𝜌𝑡𝑑𝑡]  

  subject to the budget constraint (14.12).
We use the stochastic dynamic programming principle to solve the problem. The HJB equation,

(14.6), is
𝜌𝑉 (𝑘) = max

𝑐
{𝑢(𝑐) + 𝑉 ′(𝑘) (𝑓(𝑘) − 𝑐 − (𝜇 − 𝜎2)𝑘) + 1

2(𝑘𝜎)2𝑉 "(𝑘)}

the optimality condition is again
𝑢′(𝑐) = 𝑉 ′(𝑘)
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and, substituting in the HJB equation yields an implicit second-order ODE

𝜌𝑉 (𝑘) = 𝑢(ℎ(𝑘)) + 𝑉 ′(𝑘) (𝑓(𝑘) − ℎ(𝑘) − (𝜇 − 𝜎2)𝑘) + 1
2(𝑘𝜎)2𝑉 "(𝑘).

Again, we assume the benchmark particular case: 𝑢(𝑐) = 𝑐1−𝜃

1 − 𝜃 and 𝑓(𝑘) = 𝑘𝛼. Then the
optimal policy function becomes

𝑐∗ = 𝑉 ′(𝑘)− 1
𝜃

and the HJB becomes

𝜌𝑉 (𝑘) = 𝜃
1 − 𝜃𝑉 ′(𝑘) 𝜃−1

𝜃 + 𝑉 ′(𝑘) (𝑘𝛼 − (𝜇 − 𝜎2)𝑘) + 1
2(𝑘𝜎)2𝑉 "(𝑘).

This equation does not seem to have a closed form solution.
However, to illustrate how a solution would be obtained in the case in which a closed-form

solution would be obtained, we consider the (unrealistic) case 𝜃 = 𝛼. Again we conjecture that the
solution if of the form

𝑉 (𝑘) = 𝐵0 + 𝐵1𝑘𝛼

Using the same methods as before we get

𝐵0 = (1 − 𝛼)𝐵1
𝜌

𝐵1 = 1
1 − 𝛼 [ (1 − 𝛼)𝜃

(1 − 𝜃)(𝜌 − (1 − 𝛼)2𝜎2)]
𝛼

.

Then
𝑉 (𝑘) = 𝐵1 (1 − 𝛼

𝜌 + 𝑘1−𝛼)

and
𝑐∗ = 𝑐(𝑘) = ((1 − 𝜃)(𝜌 − (1 − 𝛼)2𝜎2)

(1 − 𝛼)𝜃 ) 𝑘 ≡ 𝜚𝑘

as we see an increase in volatility decreases consumption for every level of the capital stock.
Then the optimal dynamics of the per capita capital stock is the SDE

𝑑𝑘∗(𝑡) = (𝑓(𝑘∗(𝑡)) − (𝜇 + 𝜚 − 𝜎2)𝑘∗(𝑡)) 𝑑𝑡 − 𝜎2𝑘∗(𝑡)𝑑𝑊(𝑡).

In this case we can not solve it explicitly as in the deterministic case.
References: Brock and Mirman (1972), Merton (1975), Merton (1990)

14.3 The stochastic PMP

Consider again the optimal control problem with value function (14.1).
In order to find the necessary optimality conditions by using the stochastic version of the

Pontriyagin maximum principle (SPMP) it is useful to distinguish the case in which the volatility
component depends on the control variable, as in equation (14.2), from the case in which it does
not, as in equation

𝑑𝑋(𝑡) = 𝑔(𝑡, 𝑋(𝑡), 𝑈(𝑡))𝑑𝑡 + 𝜎(𝑡, 𝑋(𝑡))𝑑𝑊(𝑡). (14.13)

The reason for this is, again, related to the fact that the control variable should be ℱ𝑡 adapted.
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14.3.1 Volatility function independent of the control variable

Proposition 2. Stochastic PMP Let the processes (𝑋∗(𝑡), 𝑈 ∗(𝑡))𝑡∈[0,𝑇 ] be solution to the SOC
problem (14.1)-(14.13). Then, there are two processes (𝑝(𝑡), 𝑞(𝑡))𝑡∈[0,𝑇 ] satisfying the adjoint equa-
tion and a terminal condition

⎧{
⎨{⎩

𝑑𝑝(𝑡) = −{ 𝑓𝑥(𝑡, 𝑋∗(𝑡), 𝑈 ∗(𝑡)) + 𝑝(𝑡)𝑔𝑥(𝑡, 𝑋∗(𝑡), 𝑈 ∗(𝑡)) + 𝑞(𝑡)𝜎𝑥(𝑡, 𝑋∗(𝑡))} 𝑑𝑡 + 𝑞(𝑡)𝑑𝑊(𝑡)
𝑝(𝑇 ) = 0

  and, defining the Hamiltonian function by

𝐻(𝑡, 𝑥, 𝑢, 𝑝, 𝑞) = 𝑓(𝑡, 𝑥, 𝑢) + 𝑝𝑔(𝑡, 𝑥, 𝑢) + 𝑞𝜎(𝑡, 𝑥),

  the optimal control satisfies for the realizations of the state and the control variables 𝑋∗(𝑡) = 𝑥
and 𝑈∗(𝑡) = 𝑢,

𝐻(𝑡, 𝑥∗, 𝑢∗, 𝑝, 𝑞) = max
𝑢

𝐻(𝑡, 𝑥∗, 𝑢, 𝑝, 𝑞)

 

The proof is in (Yong and Zhou, 1999, p.123-137)

14.3.2 Volatility dependent on the control variable

Proposition 3. Stochastic PMP Let the processes (𝑋∗(𝑡), 𝑈 ∗(𝑡))𝑡∈[0,𝑇 ] be solution to the SOC
problem (14.1)-(14.2). Then, there are four processes (𝑝(𝑡), 𝑞(𝑡), 𝑃 (𝑡), 𝑄(𝑡))𝑡∈[0,𝑇 ] satisfying the two
adjoint equations and associated terminal conditions

⎧{
⎨{⎩

𝑑𝑝(𝑡) = −{ 𝑓𝑥(𝑡, 𝑋∗(𝑡), 𝑈 ∗(𝑡)) + 𝑝(𝑡)𝑔𝑥(𝑡, 𝑋∗(𝑡), 𝑈 ∗(𝑡)) + 𝑞(𝑡)𝜎𝑥(𝑡, 𝑋∗(𝑡), 𝑈 ∗(𝑡))} 𝑑𝑡 + 𝑞(𝑡)𝑑𝑊(𝑡)
𝑝(𝑇 ) = 0

  and

⎧{{
⎨{{⎩

𝑑𝑃(𝑡) = −{ 𝑓𝑥𝑥(𝑡, 𝑋∗(𝑡), 𝑈 ∗(𝑡)) + 2𝑃(𝑡)𝑔𝑥 (𝑡, 𝑋∗(𝑡), 𝑈 ∗(𝑡)) + 𝑃(𝑡) (𝑔𝑥(𝑡, 𝑋∗(𝑡), 𝑈 ∗(𝑡)))2 +
+2𝑄(𝑡)𝜎𝑥(𝑡, 𝑋∗(𝑡), 𝑈 ∗(𝑡))} 𝑑𝑡 + 𝑄(𝑡)𝑑𝑊(𝑡)

𝑃 (𝑇 ) = 0

  and, defining the Hamiltonian function,

𝐻(𝑡, 𝑥, 𝑢, 𝑝) = 𝑓(𝑡, 𝑥, 𝑢) + 𝑝𝑔(𝑡, 𝑥, 𝑢)

  the Generalized Hamiltonian function

𝐺(𝑡, 𝑥, 𝑢, 𝑝, 𝑃 ) = 𝑓(𝑡, 𝑥, 𝑢) + 𝑝𝑔(𝑡, 𝑥, 𝑢) + 1
2𝜎2(𝑡, 𝑥, 𝑢)𝑃

  the optimal control satisfies locally 𝑋∗(𝑡) = 𝑥∗ and 𝑈∗(𝑡) = 𝑢∗ such that defining

ℋ(𝑡, 𝑥∗, 𝑢) = 𝐺(𝑡, 𝑥∗, 𝑢, 𝑝, 𝑃 ) + 𝜎(𝑡, 𝑥∗, 𝑢) (𝑞 − 𝑃𝜎(𝑡, 𝑥∗, 𝑢∗))
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  it satisfies
ℋ(𝑡, 𝑥∗, 𝑢∗) = max

𝑢
ℋ(𝑡, 𝑥∗, 𝑢)

 

The proof is in (Yong and Zhou, 1999, p.123-137)

14.3.3 Economic applications using stochastic maximum principle

We present next two applications of the stochastic PMP: a stochastic endogenous growth model and,
again, the Merton model. In the first case the control variable does not affect the volatility term
and in the second it does. This means that we use Proposition 2 in the first case and Proposition
3 in the second.

Application: the stochastic 𝐴𝐾 model

This is a stochastic version of the simplest endogenous growth model:

max
𝐶(.)

∫
𝑇

0
ln (𝐶(𝑡))𝑒−𝜌𝑡𝑑𝑡

  subject to
𝑑𝐾(𝑡) = (𝜇𝐾(𝑡) − 𝐶(𝑡)) 𝑑𝑡 + 𝜎𝐾(𝑡)𝑑𝑊(𝑡) (14.14)

𝐾(0) = 𝑘0

Observe that, as in this case the volatility term is independent of the control variable, 𝐶, we use
proposition 2.

The adjoint equation is

⎧{
⎨{⎩

𝑑𝑝(𝑡) = − (𝜇𝑝(𝑡) + 𝜎𝑞(𝑡)) 𝑑𝑡 + 𝑞(𝑡)𝑑𝑊(𝑡), 𝑡 ∈ (0, 𝑇 )
𝑝(𝑇 ) = 0

  and the Hamiltonian is

𝐻(𝑡, 𝑐, 𝑘, 𝑝, 𝑞) = ln (𝑐)𝑒−𝜌𝑡 + 𝑝(𝜇𝑘 − 𝑐) + 𝑞𝜎𝑘.

  We determine optimal consumption such that 𝐶∗ = 𝑐∗ by making 𝜕𝐻
𝜕𝑐 = 0. Therefore,

𝐶∗(𝑡) = (𝑝(𝑡)𝑒𝜌𝑡)−1 .

  Consumption is a stochastic process, depending on 𝑝. Using Itô’s lemma yields

𝑑𝐶∗(𝑡) = −𝜌𝑒−𝜌𝑡

𝑝(𝑡) 𝑑𝑡 − 𝑒−𝜌𝑡

𝑝(𝑡)2 𝑑𝑝(𝑡) + 𝑒−𝜌𝑡

𝑝(𝑡)3 (𝑑𝑝(𝑡))2

= 𝐶∗(𝑡) (−𝜌𝑑𝑡 − 𝑑𝑝(𝑡)
𝑝(𝑡) + (𝑑𝑝(𝑡)

𝑝(𝑡) )
2
)

= 𝐶∗(𝑡) [(𝜇 − 𝜌 + 𝜎 𝑞(𝑡)
𝑝(𝑡) + (𝑞(𝑡)

𝑝(𝑡))
2
) 𝑑𝑡 − 𝑞(𝑡)

𝑝(𝑡)𝑑𝑊(𝑡)]  
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We have a stochastic differential equation for 𝑝(.) but we do not have one equation allowing for

the determination of 𝑞(.). Based on our knowledge of the related deterministic model, we introduce
a trial relationship

𝐶(𝑡) = 𝜙 𝐾(𝑡)

  where 𝜙 is a constant to be determined. Applying the Itô’s lemma we have

𝑑𝐶(𝑡) = 𝜙𝑑𝐾(𝑡)
= 𝜙 ((𝜇𝐾(𝑡) − 𝐶(𝑡)) 𝑑𝑡 + 𝜎𝐾(𝑡)𝑑𝑊(𝑡))

  If we match the deterministic and the stochastic components of the two equations for 𝐶, we have,
for any realization of 𝐶(𝑡) = 𝑐, 𝐾(𝑡) = 𝑘, 𝑝(𝑡) = 𝑝, and 𝑞(𝑡) = 𝑞

⎧{{
⎨{{⎩

𝑐 (𝐴 − 𝜌 + 𝜎 𝑞
𝑝 + (𝑞

𝑝)
2
) = 𝜙(𝜇𝑘 − 𝑐)

−𝑐 𝑞
𝑝 = 𝜙𝜎𝑘

  that would hopefully allow for the determination of the two unknowns, the realization 𝑞 and the
parameter 𝜙. Solving the system we get 𝑞 = −𝜎𝑝 and 𝜙 = 𝜌. Therefore,

𝐶∗(𝑡) = 𝜌𝐾∗(𝑡)

  substituting in equation (14.14) yields

𝑑𝐾∗(𝑡) = 𝐾∗(𝑡) ((𝜇 − 𝜌)𝑑𝑡 + 𝜎𝑑𝑊(𝑡))

  Therefore
𝐾∗(𝑡) = 𝑘0𝑒(𝜇−𝜌− 1

2 𝜎2)𝑡+𝜎𝑊(𝑡)

  and
𝐶∗(𝑡) = 𝜌𝑘0𝑒(𝜇−𝜌− 1

2 𝜎2)𝑡+𝜎𝑊(𝑡)

  meaning that:

1. consumption and capital accumulation are perfectly correlated;

2. they both follow a log-normal process with mean, where

𝔼[𝐾(𝑡)]  = 𝑘0𝑒(𝜇−𝜌− 1
2 𝜎2)𝑡

3. meaning that there wil be long-run growth if 𝜇 − 𝜌 − 1
2𝜎2 > 0 that is if volatility does not

affect much total factor productivity.
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The Merton (1990) model

Next we consider again the problem of maximizing the intertemporal utility functional (14.8) subject
to the stochastic differential equation (14.7). Differently from the previous presentation of the
Merton’s model, we now assume that there is no non-financial income, that is 𝑦 = 0 and the utility
function is logarithmic.

We consider the problem

max
𝐶.𝑤

𝔼0 [  ∫
∞

0
ln (𝐶(𝑡))𝑒−𝜌𝑡𝑑𝑡]  

subject to budget constraint, represents the dynamics of financial net wealth 𝑁 ,

𝑑𝑁(𝑡) = [  (𝑟 + (𝜇 − 𝑟)𝑤) 𝑁 − 𝐶]  𝑑𝑡 + 𝜎𝑤𝑁𝑑𝑊(𝑡)

   and 𝑁(0) = 𝑛0 is given and perfectly observed.
In this case there are two control variables, 𝐶 and 𝑤, but one control variable, 𝑤, affects the

volatility term. Therefore, we have to apply Proposition 3.
The adjoint equations are

⎧{
⎨{⎩

𝑑𝑝(𝑡) = − [(𝑟 + (𝜇 − 𝑟)𝑤(𝑡)) 𝑝(𝑡) + 𝜎𝑤(𝑡)𝑞(𝑡)] 𝑑𝑡 + 𝑞(𝑡)𝑑𝑊(𝑡)
lim𝑡→∞ 𝑝(𝑡) = 0

  and

 
⎧{
⎨{⎩

𝑑𝑃(𝑡) = − [2(𝑟 + (𝜇 − 𝑟)𝑤(𝑡))𝑃(𝑡) + (𝑟 + (𝜇 − 𝑟)𝑤(𝑡))
2
𝑃(𝑡) + 2𝜎𝑤(𝑡)𝑄(𝑡)] 𝑑𝑡 + 𝑄(𝑡)𝑑𝑊(𝑡)

lim𝑡→∞ 𝑃(𝑡) = 0.

  To find the optimal controls we write the generalized Hamiltonian

𝐺(𝑡, 𝑁, 𝐶, 𝑤, 𝑝, 𝑃 ) = 𝑒−𝜌𝑡 ln (𝐶) + 𝑝 [  (𝑟 + (𝜇 − 𝑟)𝑤) 𝑁 − 𝐶]   + 1
2𝜎2𝑤2𝑁2𝑃

  and
ℋ(𝑡, 𝑁, 𝐶, 𝑤) = 𝐺(𝑡, 𝑁, 𝐶, 𝑤, 𝑝, 𝑃 ) + 𝜎𝑤𝑁 (𝑞 − 𝑃𝜎𝑤∗𝑁) .

  The optimal controls, 𝐶∗ and 𝑤∗ are found by maximizing function ℋ(𝑡, 𝑁, 𝐶, 𝑤) for 𝐶 and 𝑤.
Therefore, we find

𝐶∗(𝑡) = 𝑒−𝜌𝑡𝑝(𝑡)−1 (14.15)

  and the condition

𝑝(𝑡)(𝜇 − 𝑟)𝑁 ∗(𝑡) + 𝑤∗(𝑡)𝜎2𝑁 ∗(𝑡)2𝑃(𝑡) + 𝜎𝑁 ∗(𝑡) (𝑞(𝑡) − 𝜎𝑤∗(𝑡)𝑁 ∗(𝑡)𝑃 (𝑡)) = 0

  which is equivalent to 𝑝(𝑡)(𝜇 − 𝑟)𝑁 ∗(𝑡) + 𝜎𝑞(𝑡)𝑁 ∗(𝑡) = 0. Therefore we find

𝑞(𝑡) = −𝑝(𝑡) (𝜇 − 𝑟
𝜎 ) ,
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  and, substituting in the adjoint equation,

𝑑𝑝(𝑡) = −𝑝(𝑡) (𝑟𝑑𝑡 + (𝜇 − 𝑟
𝜎 ) 𝑑𝑊(𝑡)) .

  Observe that the structure of the model is such that the shadow value of volatility functions 𝑃
and 𝑄 have no effect in the shadow value functions associated with the drift component 𝑝 and 𝑞,
which simplifies the solution.

Applying the Itô’s formula to consumption (14.15), and using this expression for the adjoint
variable 𝑞, we find

𝑑𝐶(𝑡) = −𝜌𝐶(𝑡)𝑑𝑡 − 𝐶(𝑡)
𝑝(𝑡) 𝑑𝑝(𝑡) + 𝐶(𝑡)

𝑝2(𝑡)(𝑑𝑝(𝑡))2 =

= −𝜌𝐶(𝑡)𝑑𝑡 + 𝐶(𝑡) (𝑟𝑑𝑡 + (𝜇 − 𝑟
𝜎 ) 𝑑𝑊(𝑡)) + 𝐶(𝑡)  (𝜇 − 𝑟

𝜎 )
2

𝑑𝑡 =

= 𝐶(𝑡) {(𝑟 − 𝜌 + (𝜇 − 𝑟
𝜎 )

2
) 𝑑𝑡 + (𝜇 − 𝑟

𝜎 ) 𝑑𝑊(𝑡)} . 

  Now, we conjecture that consumption is a linear function of net wealth 𝐶 = 𝜉𝑁 . If this is the
case this would allow us to obtain the optimal portfolio composition 𝑤∗. If the conjecture is right
then we will also have

𝑑𝐶(𝑡) = 𝜉𝑑𝑁(𝑡)
= 𝜉𝑁(𝑡) [  (𝑟 + (𝜇 − 𝑟)𝑤 − 𝜉)  𝑑𝑡 + 𝜎𝑤𝑑𝑊(𝑡)]  
= 𝐶(𝑡) [  (𝑟 + (𝜇 − 𝑟)𝑤 − 𝜉)  𝑑𝑡 + 𝜎𝑤𝑑𝑊(𝑡)]  

  This is only consistent with the previous derivation if

⎧{
⎨{⎩

𝑟 − 𝜌 + (𝜇 − 𝑟
𝜎 )

2
= 𝑟 + (𝜇 − 𝑟)𝑤 − 𝜉

𝜇 − 𝑟
𝜎 = 𝜎𝑤

  Solving for 𝜉 and 𝑤 we obtain the optimal controls

𝐶∗(𝑡) = 𝜌𝑁 ∗(𝑡) (14.16)
𝑤∗(𝑡) = 𝜇 − 𝑟

𝜎2 (14.17)

Substituting in the budget constraint we have the optimal net wealth process
𝑑𝑁 ∗(𝑡)
𝑁 ∗(𝑡)   = 𝜇𝑛 𝑑𝑡 + 𝜎𝑛𝑑𝑊(𝑡)

  where

𝜇𝑛 = 𝑟 − 𝜌 + (𝜇 − 𝑟
𝜎 )

2
(14.18)

𝜎𝑛 = 𝜇 − 𝑟
𝜎 (14.19)

which can be explicitly solved with the initial condition 𝑁 ∗(0) = 𝑛0. We also find that
𝑑𝐶∗(𝑡)
𝐶∗(𝑡)   = 𝜇𝑛 𝑑𝑡 + 𝜎𝑛𝑑𝑊(𝑡)

  the rates of return for consumption and wealth are perfectly correlated.
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14.4 References

• Application to economics: Malliaris and Brock (1982), Chang (2004), Stokey (2009)

• Applications to finance: asset pricing Björk (2004) and Cvitanić and Zapatero (2004) , credit
risk Bielecki and Rutkowski (2004). Advanced Pham (2009).

• Solution by DP methods: Fleming and Rishel (1975) and Seierstad (2009)

• Pontryiagin’s principle for SDE: Bensoussan (1988), (Yong and Zhou, 1999, chap. 3)

• A survey on stochastic control: Kushner (2014),
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