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Chapter 1

Scalar ODEs

 

1.1 Introduction

 
A scalar ordinary differential equation is a functional equation allowing for finding and char-

acterizing a cross-section distribution or a deterministic process of type (𝑦(𝑥))
X

, where
𝑦 ∶ X → Y ⊆ ℝ, is a mapping 𝑦 = 𝑦(𝑥), where 𝑥 is a real number belonging to the domain X ⊆ ℝ,
and 𝑦 is also a real number belonging to the set Y ⊆ ℝ.

It is specified by using a variational approach. This  means that the law governing the
process is the solution of a functional equation containing the derivative of 𝑦(𝑥),

𝑦′(𝑥) ≡ 𝑑𝑦(𝑥)
𝑑𝑥 =   lim

ℎ→0
𝑦(𝑥 + ℎ) − 𝑦(𝑥)

ℎ .

Therefore, ODE models phenomena which we describe by specifying a local interaction.

Definition 1.  A scalar ordinary differential equation (ODE) is a functional equation, defined
over function 𝑦(𝑥), of the form

 𝐹 (𝑦′(𝑥), 𝑦(𝑥), 𝑥) = 0, for  𝑥 ∈ X ⊆ ℝ  (1.1)

  where 𝐹 ∶ ℝ3 → ℝ is a known continuous and differentiable function.

That is, while function 𝐹(⋅) is known,  function 𝑦(⋅) is unknown.
In economics, we call endogenous variable to function 𝑦(⋅), and the ODE commonly takes the

form 𝐹(𝑦′(𝑥), 𝑦(𝑥), 𝑧(𝑥)) = 0, where 𝑧 ∶ X → ℝ is called an exogenous variable.
Solving an ODE means finding function 𝑦(𝑥) which verifies equation (1.1). The existence,

uniqueness, and the properties of the solutions depend on the nature of function 𝐹(⋅).
A well developed theory on the characterization of solutions is provided by the case in which

the independent variable is time. In this case, the unknow function is 𝑦 ∶ T  ⊆ ℝ → ℝ and the
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derivative is denoted by the Newtonian notation ̇𝑦 = 𝑑𝑦(𝑡)
𝑑𝑡 and the ODE is

𝐹( ̇𝑦, 𝑦(𝑡), 𝑡) = 0

or
𝐹( ̇𝑦, 𝑦(𝑡), 𝑧(𝑡)) = 0

where 𝑧 ∶ T → ℝ is an exogenous variable.
In most applications, we are interested in characterizing the behavior of the solution of an ODE

of type
𝐹(𝑦′(𝑥), 𝑦(𝑥), 𝑥; 𝜑) = 0, if  𝑦 ∶ X → ℝ

or
𝐹( ̇𝑦, 𝑦(𝑡), 𝑡; 𝜑) = 0, if  𝑦 ∶ T → ℝ

  where 𝜑 ∈ Φ ⊆ ℝ𝑚 is a vector of parameters. When time is the independent variable, the
qualitative (geometric) theory of the change in behavior of the solution, that is of the dynamic
process (𝑦(𝑡))

𝑡∈T
for different values of the parameter 𝜑 is called bifurcation theory.

1.2 Classification of scalar ODE

The solutions of an ODE depend crucially on the form of function 𝐹(⋅). Therefore, it is useful to
classify ODE’s according to its form.

There are several criteria for classification:
First, according to the dependency on the independent variable, we have

• a non-autonomous ODE if 𝐹(⋅) depends directly on the dependent variable 𝑥, as in equation
(1.1);  

• a autonomous  ODE if 𝐹(⋅) does not depend directly on 𝑥, i.e., it has form 𝐹(𝑦′(𝑥), 𝑦(𝑥)) =
0.

Second, an ODE is in explicit of form if it is written as

𝑦′(𝑥) = 𝑓(𝑦(𝑥), 𝑥), 𝑥 ∈ X ⊆ ℝ. (1.2)

otherwise it is called an ODE in implicit form as (1.1).
Third, if we consider an ODE in explicit form it is

• homogeneous if 𝑓(⋅) is an homogeneous function of 𝑦;

• non-homogeneous if 𝑓(⋅) is not an homogeneous function of 𝑦.

Fourth, scalar ODEs can also be classified according to the linearity properties of 𝐹(⋅)
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• an ODE is quasi-linear if 𝐹(⋅) is a linear function of 𝑦′(𝑥). A general form of this equation
is

𝐴(𝑦(𝑥), 𝑥) 𝑦′(𝑥) + 𝐵(𝑦(𝑥), 𝑥) = 0;

where 𝐴 ∶ Y × X → ℝ and 𝐵 ∶ Y × X → ℝ;

• an ODE is semi-linear if 𝐹(⋅) is a linear function of 𝑦′(𝑥) and its coefficient is independent
of 𝑦(𝑥). A general form of this equation is

𝐴(𝑥) 𝑦′(𝑥) + 𝐵(𝑦(𝑥), 𝑥) = 0;

where 𝐴 ∶ X → ℝ and 𝐵 ∶ Y × X → ℝ;

• an ODE is linear if 𝐹(⋅) is a linear function of both 𝑦′(𝑥) and 𝑦(𝑥). A general form of this
equation is

𝐴(𝑥) 𝑦′(𝑥) + 𝐵(𝑥) 𝑦(𝑥) + 𝐶(𝑥) = 0;

where 𝐴 ∶ X → ℝ, 𝐵 ∶ X → ℝ, and 𝐶 ∶ X → ℝ.

• an ODE is non-linear  if 𝑦′(𝑥) enters equation (1.1) is non-linear: example (𝑦′(𝑥))2 =
𝑓(𝑦(𝑥), 𝑥). In most applied math literature, an ODE in explicit form 𝑦′(𝑥) = 𝑓(𝑦, 𝑥) is called
non-linear if function 𝑓(⋅) is a non-linear function.

Fifth, we can distinguish quasi-linear ODE’s between regular and singular equations. If the
coefficient function 𝐴(𝑦) ≠ 0 for every 𝑦 ∈ Y then we cay that the ODE is regular. In this case,
a quasi-linear ODE can be writen in the explicit form 𝑦′(𝑥) = 𝑓(𝑦(𝑥)) for 𝑥 ∈ X ⊆ ℝ. However, if
there is at least a value for 𝑦, say 𝑦𝑠 such that 𝐴(𝑦𝑠) = 0 then we say that the ODE is singular.

Sixth, consider an autonomous ODE in explicit form 𝑦′(𝑥) = 𝑓(𝑦(𝑥)). We have assumed until
now that function 𝑓(⋅) is continuous and differentiable. In the case in which 𝑓(𝑦) is not continuous
or differentiable we say that ODE is discontinuous. For instance

𝑦′(𝑥) =
⎧{
⎨{⎩

𝑓1(𝑦(𝑥), 𝑥) if  ℎ(𝑦(𝑥), 𝑥) ≤ 0
𝑓2(𝑦(𝑥), 𝑥) if  ℎ(𝑦(𝑥), 𝑥) > 0.

 

1.3 Solving ODEs

 
In the scalar ODE in explicit form

𝑦′(𝑥) ≡ 𝑑𝑦(𝑥)
𝑑𝑥 =  𝑓(𝑦(𝑥), 𝑥), 𝑥 ∈ ℝ.

a solution exists if there is at least an element in the set of functions 𝒴, that solves the ODE. Solving
a scalar ODE means finding a function, say 𝜙𝒴, such that 𝜙 ∶ X → Y such that 𝜙′(𝑥) = 𝑓(𝜙(𝑥), 𝑥, 𝜑).
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The question of the existence and uniqueness of solutions is related to number of elements of 𝒴
that satisfy the differential equation.

In general, the known function 𝑓(⋅) constrains the properties of the elements of set 𝒴.
If function𝑓(⋅) is continuous and differentiable, then the solution of solutions of the differential

equation are elements of the space of continuous and differentiable functions.
Most non-linear differential equations do not have explicit, exact or closed-form solutions.

This is not the case for linear equations of type

𝑦′(𝑥) = 𝑎(𝑥, 𝜑) 𝑦(𝑥) + 𝑏(𝑥, 𝜑),

  which can be solved explicitly (see chapter 2).
The qualitative theory of differential equations essentially addresses the solution of non-linear

ODEs by using knowledge about the solution of related linear equations.

1.4 ODE and ODE problems

 
In general a model (or a problem) involving an ODE takes the form

⎧{
⎨{⎩

𝐹(𝑦′(𝑥), 𝑦(𝑥), 𝑥) = 0
F[𝑦]  = constant

 

  where F[𝑦] is a functional over 𝑦 ∈ 𝒴, F ∶ ℱ → ℝ, where ℱ is the set of functions 𝑦(⋅).
To distinguish the solution to an ODE from the solution to a model (or a problem) involving

an ODE, we call general solution  to the solution of an ODE and particular solution  to the
solution of the latter. Although linear scalar ODE have one unique solution, models (or problems)
involving them may not have solutions (if the constraint cannot be satisfied by the solution of
the ODE). That is, the fact that a general solution exists and is unique does not imply that the
particular solution exists.

The characterization of the solution of a model featuring an ODE has a close relationship to
the type of side conditions which are assumed. For instance, in models in which the independent
variable is not time the constraint takes the form ∫X  𝛽(𝑦(𝑥), 𝑥)𝑑𝑥 = 0. In general we have moment
conditions, and we are interested in some global characteristics of the solution curve.

In models in which the independent variable is time the constraint sometimes takes to form
∫T  𝛿(𝑡−𝑡0)𝑦(𝑡)𝑑𝑥 = 𝑦𝑡0

where 𝛿(⋅) is Dirac’s delta generalized function. In this case we fix the value
of the function for a particular value of the independent variable time, and want to characterize the
evolution of the solution within set Y across time. This leads to the stability and bifurcation analysis
of the model: stability regarding some fixed points of Y, existence of invariant sets, dependence of
the solution on parameters.
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1.5 Backward and forward ODE

Consider a particular point 𝑥0 ∈ X ⊆ ℝ, because ℝ has an order structure. We can classify further
the ODE in the integral from as a forward ODE if

𝑦(𝑥) = 𝑦(𝑥0) + ∫
𝑥

𝑥0

 𝑓(𝑦(𝑠), 𝑠) 𝑑𝑠

  or as a backward ODE if

𝑦(𝑥0) = 𝑦(𝑥) + ∫
𝑥0

𝑥
 𝑓(𝑦(𝑠), 𝑠) 𝑑𝑠.

In economics, when the independent variable is time, this distinction is very important. It distin-
guishes the dynamics generated from past events, usually related to stocks or quantities variables,
from anticipated events, usually related to prices or return variables.



Chapter 2

Scalar linear ODE

 
A linear scalar ODE in explicit form is an ODE in which 𝑓(⋅) is a linear function of 𝑦. The

most general form is

𝑦′(𝑥) = 𝑓(𝑦(𝑥), 𝑥) ≡ 𝑎(𝑥) 𝑦 + 𝑏(𝑥), 𝑦 ∶ X ⊆ ℝ → Y ⊆ ℝ (2.1)

where 𝑎(⋅) and 𝑏(⋅) are known functions over X. Linear ODE’s have explicit solutions. Its existence
allow for an analytic derivation of the solution. In addition, we address the qualitative (or geomet-
rical) properties of the solutions, and to the associated problems. We also present the particular
definitions and characterizations which have been used in economics.

In section 2.1  we deal with autonomous equations and in section 2.2 equations.

2.1 Autonomous equations

   
In subsection 2.1.1 we present analytical solution to scalar linear equations over an arbitrary

real domain X. In subssection 2.1.2  we deal with problems associated to that equation. In
subsection 2.1.3 we address the particular characterization of autonomous scalar ODEs in which
the independent variable is time. This provides a first approach to dynamic systems in subsection
2.1.4.  Subsection presents problems for time-dependent ODEs 2.1.5, and subsection 2.1.6.

2.1.1 Analytical solutions for an arbitrary independent variable

    In this section we assume that the independent variable is an arbitrary number 𝑥 ∈ X ⊆ ℝ.
We start with the scalar linear autonomous ODE

𝑦′(𝑥) = 𝑎 𝑦(𝑥) + 𝑏, 𝑥 ∈ ℝ.

  If 𝑏 = 0 the equation is homogeneous and if 𝑏 ≠ 0 the equation is non-homogeneous. The
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reason for this is simple: while 𝑓(𝑦) = 𝑎 𝑦 is an homogeneous function, 𝑓(𝑦) = 𝑎 𝑦 + 𝑏 is non-
homogenous.1

We start with the simplest ODE, the homogeneous equation,

 𝑦′(𝑥) = 𝑎 𝑦(𝑥), 𝑥 ∈ ℝ  (2.2)

  with an arbitrary real coefficient, 𝑎 ∈ ℝ.
There are several methods for solving this equation2. We present two methods that will be

useful in subsequent chapters: the methods of separation of variables and recursive integration
method.

Proposition 1. The unique solution of ODE (2.2) is a function 𝑦

𝑦(𝑥) = 𝑦(𝑥0) 𝑒𝑎 (𝑥−𝑥0) if  𝑎 ≠ 0 (2.3a)

𝑦(𝑥) = 𝑦(𝑥0) if  𝑎 = 0 (2.3b)

where 𝑦(𝑥0) is the arbitrary element of Y for an arbitrary 𝑥0 ∈ X.

Proof. Using separation of variables approach. It involves four steps: first, as 𝑦′(𝑥) ≡ 𝑑𝑦(𝑥)/𝑑𝑥 we
can write equation (2.2) in an equivalent way, by separating 𝑦 from 𝑥

𝑑𝑦
𝑦 = 𝑎 𝑑𝑥.

  Second, we integrate both sides of the equation by quadrature, assuming that 𝑥 ≥ 𝑥0,

∫
𝑦(𝑥)

𝑦(𝑥0)

𝑑𝑦
𝑦 = ∫

𝑥

𝑥0

𝑎 𝑑𝑠.

  Third, we simplify both sides of the equation by computing the elementary integrals

∫
𝑦(𝑥)

𝑦(𝑥0)
𝑑 ln(𝑦) = 𝑎 ∫

𝑥

𝑥0

𝑑𝑠 ⟺ ln(𝑦(𝑥)) − ln(𝑦(𝑥0)) = 𝑎 (𝑥 − 𝑥0).

  Taking exponentials of the two sides, we find equation (2.3a) if 𝑎 ≠ 0 and equation (2.3b) In the
special case in which 𝑎 = 0

Proof.   It is instructive3 to use another method of proof, by observing that the equation (2.2) can
be written as

𝑦(𝑥) = 𝑦(𝑥0) + ∫
𝑥

𝑥0

𝑎 𝑦(𝑠)𝑑𝑠,

1Recall that function 𝑓(𝑥) is homogeneous of degree 𝑛 if multiplying the independent variable by an arbitrary
real number 𝜆 then the value of the function multiplied by 𝜆𝑛, that is 𝑓(𝜆 𝑥) = 𝜆𝑛 𝑓(𝑥).

2There are several methods we can employ to find the proof (separation of variables, Laplace transforms, Fourier
transforms, transforming into an integral equation, using the concept of generating function, just to name a few).
See Zwillinger (1998)

3When we deal with planar ODE’s or stochastic differential equations.
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  substituting 𝑦(𝑠) inside the integral yields

𝑦(𝑥) = 𝑦(𝑥0) + ∫
𝑥

𝑥0

𝑎 (𝑦(𝑥0) + ∫
𝑠

𝑥0

𝑎 𝑦(𝑠′) 𝑑𝑠′) 𝑑𝑠

= 𝑦(𝑥0) + 𝑎 𝑦(𝑥0) ∫
𝑥

𝑥0

𝑑𝑠 + ∫
𝑥

𝑥0

∫
𝑠

𝑥0

𝑎2 𝑦(𝑠′) 𝑑𝑠′) 𝑑𝑠

= 𝑦(𝑥0) + 𝑎 𝑦(𝑥0) (𝑥 − 𝑥0) + ∫
𝑥

𝑥0

∫
𝑠

𝑥0

𝑎2 𝑦(𝑠′) 𝑑𝑠′ 𝑑𝑠

  factoring and substituting again the solution 𝑦(𝑠′) inside the integral yields

𝑦(𝑥) = 𝑦(𝑥0) (1 + 𝑎 (𝑥 − 𝑥0)) + ∫
𝑥

𝑥0

∫
𝑠

𝑥0

 𝑎2 (𝑦(𝑥0) + ∫
𝑠′

𝑥0

𝑎 𝑦(𝑠″) 𝑑𝑠″) 𝑑𝑠′ 𝑑𝑠

= 𝑦(𝑥0) (1 + 𝑎 (𝑥 − 𝑥0) + 𝑎2 ∫
𝑥

𝑥0

∫
𝑠

𝑥0

𝑑𝑠′ 𝑑𝑠) + ∫
𝑥

𝑥0

∫
𝑠

𝑥0

∫
𝑠′

𝑥0

𝑎3 𝑦(𝑠″) 𝑑𝑠″ 𝑑𝑠′ 𝑑𝑠

= 𝑦(𝑥0) (1 + 𝑎 (𝑥 − 𝑥0) + 𝑎2 (𝑥 − 𝑥0)2

2 ) + ∫
𝑥

𝑥0

∫
𝑠

𝑥0

∫
𝑠′

𝑥0

𝑎3 𝑦(𝑠″) 𝑑𝑠″ 𝑑𝑠′ 𝑑𝑠.

  If we continue we find
𝑦(𝑥) = 𝑦(𝑥0)

∞
∑
𝑛=0

𝑎𝑛 (𝑥 − 𝑥0)𝑛

𝑛!
  which is the series representation of the exponential in solution (2.3a).

 
Equation (??) is called a general solution. As it can be seen it depends on an arbitrary point

(𝑥0, 𝑦(𝑥0)) in the space X × Y, that is on an arbitrary value for the independent variable and the
associated value for the dependent variable. This should be intuitive given the fact that we are
using variational approach for uncovering the economic phenomenon that the we want to study.

The ODE formalism describes the change in the dependent variable from a marginal change in
the independent variable. We will see next how the complete specification of the behavior or 𝑦 is
provided by a side-condition.

Now consider a scalar linear autonomous non-homogeneous  ODE

 𝑦′(𝑥) = 𝑎 𝑦(𝑥) + 𝑏, 𝑥 ∈ ℝ  (2.4)

  with an arbitrary real coefficient, 𝑎 ∈ ℝ and 𝑏 ≠ 0.

Proposition 2.   Consider the ODE (2.4) where 𝑏 is a non-zero real number, The unique solution
of that ODE is function 𝑦

𝑦(𝑥) = ̄𝑦 + (𝑦(𝑥0) − ̄𝑦) 𝑒𝑎 (𝑥−𝑥0) if  𝑎 ≠ 0 (2.5a)

𝑦(𝑥) = 𝑦(𝑥0) + 𝑏 (𝑥 − 𝑥0) if  𝑎 = 0 (2.5b)

where
̄𝑦  = − 𝑏

𝑎
  where 𝑦(𝑥0) is the arbitrary element of Y for an arbitrary 𝑥0 ∈ X.
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Proof. First assume that 𝑎 ≠ 0. Then, there is a number ̄𝑦  = −𝑏/𝑎 such that if 𝑦(𝑥) = ̄𝑦 then
𝑑 ̄𝑦/𝑑𝑥 = 0. Introduce a change in variables 𝑧(𝑥) = 𝑦(𝑥) − ̄𝑦. Then 𝑧′(𝑥) = 𝑦′(𝑥) = 𝑎 𝑦(𝑥) + 𝑏 =
𝑎 (𝑧(𝑥)+ ̄𝑦)+𝑏 = 𝑎 𝑧(𝑥) form the definition of ̄𝑦. We already know that the solution of 𝑧′(𝑥) = 𝑎 𝑧(𝑥)
is 𝑧(𝑥) = 𝑧(𝑥0) 𝑒𝑎 (𝑥−𝑥0). Mapping back to 𝑦 we have

𝑦(𝑥) − ̄𝑦  =  𝑧(𝑥0) 𝑒𝑎 (𝑥−𝑥0) − ̄𝑦  = (𝑦(𝑥0) − ̄𝑦) 𝑒𝑎 (𝑥−𝑥0) − ̄𝑦.

  Then 𝑦(𝑥) = ̄𝑦 + (𝑦(𝑥0) − ̄𝑦) 𝑒𝑎 (𝑥−𝑥0) if 𝑎 ≠ 0, as in equation (2.5a).
Now assume that 𝑎 = 0. Using l’Hôpital’s rule.

𝑦(𝑥) = lim
𝑎→0

( 𝑦(𝑥0)𝑒𝑎 (𝑥−𝑥0) − 𝑏 (1 − 𝑒𝑎 (𝑥−𝑥0))
𝑎  )

= 𝑦(𝑥0) − lim
𝑎→0

𝑑
𝑑𝑎  𝑏 (1 − 𝑒𝑎 (𝑥−𝑥0))

𝑑
𝑑𝑎 𝑎

=

= 𝑦(𝑥0) − −𝑏(𝑥 − 𝑥0)
1 ,

  yields equation (2.5b)

2.1.2 Problems involving autonomous ODEs

  
The choice of pair (𝑥0, 𝑦(𝑥0)), in any of the equations (2.19) and (2.21), and therefore the exact

determination of their solution, depends on the side conditions we impose. We can generically say
that they take the form of a functional.

If we assume that X = [𝑥, ̄𝑥] the side conditions take generically the form of a functional

  ∫
�̄�

𝑥
𝐶(𝑦(𝑥), 𝑥) 𝑑𝑥 = constant (2.6)

where 𝐶(⋅) is a known function.  A problem involving the (2.4) ODE can be defined as

⎧{
⎨{⎩

𝑦′(𝑥) = 𝑎 𝑦 + 𝑏
∫�̄�
𝑥 𝐶(𝑦(𝑥), 𝑥) 𝑑𝑥 = constant

(2.7)

Although we know that the differential equation has an unique solution, the solution to the problem
may not exist.

If it exists, we call it a particular solution�, which is � which is an exact solution for 𝑦(⋅).
The solution to poblem (2.7), if it exists, is of the form

𝑦(𝑥) = 𝑣(𝑥, ̄𝑥) 𝑒𝑎 (𝑥−𝑥)

  where 𝑣(𝑥, ̄𝑥) is a function of the two limit of X.
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Example: exponential distribution Let X = [0, ∞) and consider the problem

⎧{
⎨{⎩

𝑦′(𝑥) = 𝑎 𝑦 𝑥 ∈ [0, ∞)
∫∞
0   𝑦(𝑥) 𝑑𝑥 = 1

  We say that the general solution of the ODE is 𝑦(𝑥) = 𝑦(0) 𝑒𝑎 𝑥, taking 𝑥0 = 0, where 𝑦(0) is an
arbitrary value for the solution associated to 𝑥 = 0. Substituting in the side condition we have,
formally,

∫
∞

0
  𝑦(0) 𝑒𝑎 𝑥  𝑑𝑥 = 1

which we will need to solve for 𝑦(0). However: if 𝑎 ≥ 0 there is no real number that solves that
equation, and if 𝑎 < 0 we can find a real number that solves it. Therefore, the solution to the
problem will only exist for 𝑎 < 0. In this case, we find 𝑦(0) = −𝑎. Therefore, the particular
solution is

𝑦(𝑥) = −𝑎 𝑒𝑎 𝑥, 𝑥 ∈ [0, ∞) for  𝑎 < 0.
  □

The functional (2.6) is sufficiently general to encompass cases in which we fix a value for 𝑦, as
𝑦(𝑥0) = 𝑦0, for a particular point 𝑥0 in the domain (or its closure) X. For instance, for the side
condition

∫
�̄�

𝑥
𝛿(𝑥 − 𝑥0) 𝑦(𝑥) 𝑑𝑥 = 𝑦0

where 𝑦0 is a know number. If the solution exists, we can find 𝑦(𝑥0) by solving

∫
�̄�

𝑥
𝛿(𝑥 − 𝑥0) 𝑦(𝑥0) 𝑒𝑎 (𝑥−𝑥0) 𝑑𝑥 = 𝑦0.

Example: exponential distribution Let X = [0, ∞) and consider the problem

⎧{
⎨{⎩

𝑦′(𝑥) = 𝑎 𝑦 𝑥 ∈ [0, ∞)
∫∞
0   𝛿(𝑥)𝑦(𝑥) 𝑑𝑥 = 1

The solution is 𝑦(𝑥) = 𝑒𝑎 𝑥 for any real number 𝑎. □

2.1.3 Scalar autonomous ODEs with time as the independent variable

Most applications of differential equations have time, 𝑡, as the independent variable. In this case,
the convention is to use Newton’s notation for the derivative, i.e., ̇𝑦 ≡ 𝑑𝑦(𝑡)

𝑑𝑡 and write the general
scalar linear ODE as

̇𝑦 = 𝑎(𝑡) 𝑦 + 𝑏(𝑡), 𝑡 ∈ T ⊆ ℝ+  (2.8)

   where 𝑦 ∶ T → ℝ. This is a non-autonomous and non-homogeneous equation.4

4If we redefine the independent variable as 𝑡 = 𝜏 we can transform the non-autonomous scalar linear ODE into
a planar non-linear equation: ̇𝑦1 = 𝜆(𝑦2)𝑦1 + 𝛽(𝑦2) ̇𝑦2 = 1 where 𝑦2(𝑡) = 𝑡. This means that the behavior of the
solution when the coefficients are functions of time can be quite different.
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The existence and uniqueness of solutions for linear ODE has already been established in the
previous section (becaue we are able to find explicit solutions) to the ODE and to ODE problems.
However, in the case of time dependent ODEs there is a rich geometrical theory for the characteri-
zation of the solutions. That is, we can describe the process (𝑦(𝑡))𝑡∈T without the nedd to explicitly
solving the ODE. As most non-linear ODEs do not have explicit solutions, the characterization of
their solutions may be possible by comparing them, at least locally, to the linear ODEs. In partic-
ular, the qualitative theory for ODE is based upon the local approximation of non-linear ODE by
linear ODE and by verifying conditions under which a non-linear ODE is (topologically) equivalent
to a linear ODE (at least locally).

Next we present solutions to autonomous equations, present the qualitative theory of the solu-
tions of linear present solutions to non-autonomous equations, and describe their main applications
to economics.

Analytical solution

 
A scalar ODE is autonomous if the coefficients are constant, i.e, they are independent of the

exogenous variable 𝑡,
̇𝑦 = 𝑎 𝑦 + 𝑏 (2.9)

  where (𝑎, 𝑏) ∈ Φ ⊆ ℝ2 are known constants. From now on we let initial value of the independent
variable be equal to zero, that is 𝑡0 = 0.

Using the results of the previous section, we can state (without proof) that

Proposition 3 (Solutions to equation (2.8)). For a given pair of parameters (𝑎, 𝑏) ∈ Φ the solution
is a unique mapping 𝜙 ∶ T × Y × Φ → Y. In particular,

𝑦(𝑡) = 𝜙(𝑡, 𝑦(0); 𝑎, 𝑏) =

⎧{{{
⎨{{{⎩

𝑦(0) 𝑒𝑎 𝑡 − 𝑏
𝑎 (1 − 𝑒𝑎 𝑡) if  𝑎 ≠ 0, and  𝑏 ≠ 0

𝑦(0) 𝑒𝑎 𝑡  if  𝑎 ≠ 0, and  𝑏 = 0
𝑦(0) + 𝑏 𝑡 if  𝑎 = 0, and  𝑏 ≠ 0
𝑦(0)  if  𝑎 = 𝑏 = 0

for any  𝑡 ∈ T, (2.10)

where 𝑦(𝑡 | 𝑡 = 0) = 𝑦(0) is an arbitrary element of Y.

 
The solution of a scalar linear a autonomous ODE is a function 𝑦(𝑡) = 𝜙(𝑡, 𝑦(0); 𝑎, 𝑏) of time and

on an arbitrary element of Y, whose behavior depends on the parameters 𝑎 and 𝑏. Characterizing
the dynamics generated by the ODE means tracking the behavior of the path (𝑦(𝑡))

𝑡∈T
traveled

within Y when time independent variable changes from 𝑡 = 0 to 𝑡 = ∞.

Geometrical representation
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̄𝑦 𝑡

𝑦(𝑡)
�̇� = 𝜆 𝑦

ℬ
̄𝑦 𝑦

̇𝑦

Figure 2.1: Trajectories (left) and phase diagram (right) of ODE ̇𝑦 = 𝑎𝑦 for 𝑎 < 0

̄𝑦 𝑡

𝑦(𝑡)
�̇� = 𝜆 𝑦

̄𝑦 𝑦

̇𝑦

Figure 2.2: Trajectories (left) and phase diagram (right) of ODE ̇𝑦 = 𝑎𝑦 for 𝑎 > 0

The trajectories for the autonomous and homogeneous ODE ̇𝑦  = 𝑎 𝑦 for different initial values
𝑦(0) are represented in the left panels of figures 2.1, for the case in which 𝑎 < 0, and in 2.2, for
the case in which 𝑎 > 0. We observe that when 𝑎 < 0, independently of 𝑦(0), all the trajectories
converge to 𝑦 = 0, asymptotically, and that when 𝑎 > 0, all the trajectories diverge to +∞ if
𝑦(0) > 0 and to −∞ if 𝑦(0) < 0. However, in both cases if 𝑦(0) = 0 the trajectories are stationary,
that is 𝑦(𝑡) = 0 for any 𝑡 ∈ [0, ∞).

The trajectories for the autonomous and non-homogeneous ODE ̇𝑦  = 𝑎 𝑦+𝑏 for different values
initial values 𝑦(0) are represented in the left panels of figures 2.3, for the case in which 𝑎 < 0 and
𝑏 > 0, and in 2.4, for the case in which 𝑎 > 0 and 𝑏 < 0. The qualitative behavior of the trajectories,
in the sense of being convergent or divergent in time, comparing to the homogeneous ODE, is the
same but can be quantitatively different. That is, we observe that when 𝑎 < 0, independently of
𝑦(0), all the trajectories converge to a point 𝑦 = −𝑏/𝑎, asymptotically, and that when 𝑎 > 0, all
the trajectories again diverge to +∞ if 𝑦(0) > −𝑏/𝑎 and to −∞ if 𝑦(0) < −𝑏/𝑎. However, in both
cases if 𝑦(0) = −𝑏/𝑎 the trajectories are stationary, that is 𝑦(𝑡) = −𝑏/𝑎 for any 𝑡 ∈ [0, ∞).

The case 𝑎 = 𝑏 = 0 , where ̇𝑦 = 0, with solution 𝑦(𝑡) = 𝑦(0) a constant is thus a degenerate case
in which the solution is always  time-invariant, i.e., it is independent from the exogenous variable
𝑡 and from the initial point 𝑦(0). Intuitively we can say that there are no dynamics, or that this
corresponds to a boundary case between stability and instability.
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̄𝑦

𝑡

𝑦(𝑡)

�̇� = 𝜆 𝑦 + 𝛽

ℬ

̄𝑦 𝑦

̇𝑦

Figure 2.3: Trajectories (left) and phase diagram (right) of ODE ̇𝑦 = 𝑎 𝑦 + 𝑏 for 𝑎 < 0 and 𝑏 > 0

̄𝑦

𝑡

𝑦(𝑡)
�̇� = 𝜆 𝑦 + 𝛽

̄𝑦 𝑦

̇𝑦

Figure 2.4: Trajectories (left) and phase diagram (right) of ODE ̇𝑦 = 𝑎 𝑦 + 𝑏 for 𝑎 > 0 and 𝑏 < 0
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2.1.4 Qualitative theory and dynamics

  
This dynamics of the equation is determined by function 𝑓(𝑦) = 𝑎 𝑦 + 𝑏.
To introduce qualitative dynamics analysis we introduce some definitions.

Definition 1. A steady state  (or equilibrium point ): it is an element in range of 𝑦, Y, such
that 𝑓(𝑦) = 0, that is

̄𝑦 = {𝑦 ∈ Y ∶ 𝑓(𝑦) = 0}. 

 

A steady state can be characterized according to its stability properties

Definition 2.   A the steady state is asymptotically stable  if for any 𝑦 = 𝑦(𝑥0) ∈ Y the flow
generated by the ODE ̇𝑦  = 𝑓(𝑦), that we can denote by (𝑦(𝑡))𝑡∈T, has the property

lim
𝑡→∞

𝑦(𝑡) = 𝑦(∞) = ̄𝑦.

  A steady state is unstable if for any 𝑦 = 𝑦(𝑥0) in a neighborhood of ̄𝑦, 𝑦(𝑡) does not converge to
̄𝑦.

This definition allows for introducing a partition over set Y, among invariant subsets, which
are partitions of set Y containing the whole solution path (𝑦(𝑡))𝑡∈T.

Definition 3.   We call attractor set (or basin of attraction) to the invariant subset of Y such
that the solution will converge to the steady state and repelling set to the invariant subset of Y
such that the solution will not converge to the steady state.

Definition 4. A phase diagram is a graphical representation of the set Y in which we rep-
resent the steady states, and the invariant sets. The invariant sets representation includes the
representation of the variation of the solution with increasing time.

We start by applying those definitions to the homogeneous equation ̇𝑦  = 𝑎 𝑦.
The existence and number of steady states depend on 𝑎

̄𝑦 =
⎧{
⎨{⎩

𝑦(0), if 𝑎 = 0
0, if 𝑎 ≠ 0.

  In the first case there is an infinite number  of steady states, consisting in all points in Y, and
in the second there is a single  steady state if 0 ∈ Y, or no steady state if 0 ∉ Y.

When there is a steady state, that is, when 𝑎 ≠ 0 and 0 ∈ Y, we can characterize its stability
properties:

• if 𝑎 < 0 then lim𝑡→∞ 𝑦(𝑡) = 0 = ̄𝑦, for any 𝑦(0), then the equilibrium point is asymptotically
stable;
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• if 𝑎 > 0 then

lim
𝑡→∞

𝑦(𝑡) =
⎧{
⎨{⎩

±∞ , if 𝑦(0) ≠ 0
0 , if 𝑦(0) = 0

  and the equilibrium point ̄𝑦 is unstable. In this case we say the solution can be non-
stationary if 𝑦(0) ≠ 0

Therefore, if 𝑎 ≠ 0, and ̄𝑦 = 0 ∈ Y, there are only two kinds of possible invariant sets:

• if 𝑎 < 0 the basin of attraction for ̄𝑦 is the whole set Y and Y is the attraction set. Then
we say ̄𝑦 is globally asymptotically stable;

• if 𝑎 > 0 then ̄𝑦 is repelling and unstable and Y is the unstable invariant set.

The right-hand panel in Figures 2.1 and 2.2 illustrate the phase diagram for the asymptotically
stable and unstable cases, respectively. In the first case we label the basin of attraction of ̄𝑦 by ℬ.

For the non-homogeneous equation ̇𝑦  = 𝑎 𝑦 + 𝑏 the qualitative dynamics is similar, except for
the case in which 𝑎 = 0. For 𝑎 ≠ 0, and assuming that −𝑏/𝑎 ∈ 𝑛Y, there are only some quantitative
differences:

• the steady state is also unique, although it is shifted from ̄𝑦 = 0, if 𝑏 = 0, to ̄𝑦 = −𝑏/𝑎, if
𝑏 ≠ 0;

• the stability behavior is qualitatively the same but now relative to the equilibrium point
̄𝑦 = −𝑏/𝑎: it is asymptotically stable if 𝑎 < 0 and it is unstable if 𝑎 > 0.

The right-hand panel in Figures 2.3 and 2.4 illustrate the phase diagram for the asymptotically
stable and unstable cases, respectively. In the first case we label the basin of attraction of ̄𝑦 by ℬ.

The dynamics are qualitatively different when 𝑎 = 0. While in the homogenous case (i.e., if
𝑏 = 0) the solution is stationary and there is an infinite number of steady states (all the elements
of Y) in the non-homogeneous case (i.e, if 𝑏 ≠ 0) there are no steady states  and the solution
of the ODE is always non-stationary.

Table 2.1, which we can call a bifurcation table, summarizes the main types of dynamics for
the scalar linear autonomous ODE:

Table 2.1: Types of dynamics for the linear scalar ODE

  𝑎 < 0 𝑎 = 0 𝑎 > 0
𝑏 = 0 one steady state infinite number of steady states one steady state
𝑏 ≠ 0 asymptotically stable no steady states unstable
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2.1.5 Problems for time-dependent scalar ODEs

We can also draw a distinction between an ODE and a problem involving an ODE. Again, to get
an intuition of the difference, observe that equations (2.10) involve a dependence on an arbitrary
point 𝑦(0) ∈ Y, which is the reason why called general solutions.

In the case of time-dependent ODE’s the side constraint is usually defined by a constraint on
the solution for a specific point in time5

The evolution described by the ODE can be done forward in time (if we know the initial point) or
backward in time (if we know a terminal point). With this additional information we can sometimes
uniquely determine a forward or a backward path. An ODE problem involving side-conditions
and the solution it is called particular solution6 In the first case, we call the ODE a forward
ODE  because the solution will be obtained from future instants (assuming that the present time
is 𝑡 = 0) and in the second case we call the ODE a backward ODE.

We can have several types of side-conditions but in economics the two most common conditions
are initial conditions, if the point (𝑡, 𝑦(𝑡)) = (0, 𝑦0) is know, or terminal conditions, if the point
(𝑡, 𝑦(𝑡)) = (𝑇 , 𝑦𝑇 ) for finite-time problems where T = [0, 𝑇 ], or if lim𝑡→∞  𝑦(𝑡) = 𝑦∞ for infinite-time
problems where T = [0, ∞),

In the first case, we have an initial-value problem

{
̇𝑦  = 𝑎 𝑦 + 𝑏 for  𝑡 ∈ T 
𝑦(0) = 𝑦0 for  𝑡 = 0, 𝑦0 ∈ Y 

(2.11a)
(2.11b)

  While 𝑦(0) represents function 𝑦(𝑡) evaluated at 𝑡 = 0, 𝑦0 is a number belonging to the range of
𝑦. If 𝑎 ≠ 0 the solution is unique. If furthermore, 𝑏 ≠ 0 the solution to the previous problem is
(prove this)

𝑦(𝑡) = ̄𝑦  + (𝑦0 − ̄𝑦) 𝑒𝑎 𝑡, 𝑡 ∈ T

  for ̄𝑦  = −𝑏/𝑎.
A common terminal-value problem is the following

{
̇𝑦  = 𝑎 𝑦 + 𝑏 for  𝑡 ∈ T 
𝑦(𝑇 ) = 𝑦𝑇 for  𝑡 = 𝑇 , 𝑦𝑇 ∈ Y 

(2.12a)
(2.12b)

  While 𝑦(𝑇 ) represents function 𝑦(𝑡) evaluated at 𝑡 = 𝑇 , 𝑦𝑇 is a number belonging to the range
of 𝑦. If 𝑎 ≠ 0 and 𝑏 ≠ 0 the solution is unique

𝑦(𝑡) = ̄𝑦  + (𝑦𝑇 − ̄𝑦) 𝑒−𝑎 (𝑇 −𝑡), 𝑡 ∈ T = [0, 𝑇 ].

  In this case, we observe that 𝑦(0) = ̄𝑦  + (𝑦𝑇 − ̄𝑦) 𝑒−𝑎 𝑇 becomes endogenous.
5Which is equivalent to having a side constraint which is a functional over a Dirac-delta.
6Again, although the solution to a linear ODE always exists, the solution to an ODE problem may not exist if the

side conditions are incompatible with the general solution of the ODE.
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A common infinite-horizon terminal-value problem in economics is the following

⎧{
⎨{⎩

̇𝑦  = 𝑎 𝑦 + 𝑏 for  𝑡 ∈ T  = [0, ∞)
lim

𝑡→∞
 𝑒−𝜇 𝑡  𝑦(𝑡) = 0 where  𝜇 > 0 

(2.13a)
(2.13b)

  We can prove that solutions always exist, but are not necessarily unique. Specifically: (1) if 𝑎 < 𝜇
there is an infinite number of solutions

𝑦(𝑡) = ̄𝑦  + (𝑦(0) − ̄𝑦) 𝑒𝑎 𝑡, 𝑡 ∈ [0, ∞)

  where 𝑦(0) is an arbitrary value for 𝑦. In this case we say that the solution to the problem is
indeterminate; (2) if 𝑎 ≥ 𝜇 then the solution is unique and stationary

𝑦(𝑡) = ̄𝑦 for all  𝑡 ∈ [0, ∞).

  In this case we say that the solution to the problem is determinate.
To prove this: first, take the appropriate solution to the ODE (2.13a) from equation (2.10),

𝑦(𝑡) = ̄𝑦  + (𝑦(0) − ̄𝑦) 𝑒𝑎 𝑡, 𝑡 ∈ T = [0, ∞)

  where 𝑦(0) is an arbitrary number from Y; second, write

  lim
𝑡→∞

 𝑒−𝜇 𝑡  𝑦(𝑡) = lim
𝑡→∞

 𝑒−𝜇 𝑡( ̄𝑦  + (𝑦(0) − ̄𝑦) 𝑒𝑎 𝑡)

= 0 + lim
𝑡→∞

(𝑦(0) − ̄𝑦) 𝑒(𝑎−𝜇) 𝑡,
 

  at last, from equation (2.13b) we should have

lim
𝑡→∞

(𝑦(0) − ̄𝑦) 𝑒(𝑎−𝜇) 𝑡 = 0,

  which is verified for any 𝑦(0) − ̄𝑦 if 𝑎 − 𝜇 < 0 and only for 𝑦(0) − ̄𝑦 = 0 if 𝑎 − 𝜇 ≥ 0.
Therefore, uniqueness (and existence) of the solution of an ODE is not the same as uniqueness of

a problem involving an ODE. And this distinction has important conceptual differences in economic
applications

2.1.6 Economic applications

 
In macro-economic and growth models we use the following classification of variables and eco-

nomic equilibrium

• pre-determined  and non-pre-determined  variables: the first are observed and the sec-
ond are anticipated, that is, we have information for 𝑡 = 0 for the first type of variables and
we have asymptotic beliefs on the second type of variables;

• stationary or non-stationary variables if they converge to a constant or are unbounded
asymptotically (i.e., when 𝑡 → ∞);
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• determinacy  or indeterminacy if an equilibrium or a state of the economy modelled by
a differential equation is unique or not

The relationship between them depends on the existence or not of a steady state and on their
stability properties, for states within set Y.

For instance

• if a variable is pre-determined the trajectory described by the solution is always determinate,
however, it can be stationary (if 𝑎 < 0) or non-stationary (if 𝑎 > 0). The first case is common
in models with adaptative expectations, v.g. ̇𝑝 = 𝜆( ̄𝑝 − 𝑝), for 𝜆 > 0 and 𝑝 is the log of
price. The second case is common in endogenous growth models in which the GDP dynamics
is given by ̇𝑦 = 𝐴𝑦, where 𝑦 is GDP per capita;

• if a variable is non-predetermined the trajectory can be determinate if 𝑦(0) is determined
uniquely and is indeterminate if 𝑦(0) can be any value within set Y. For scalar models the
solutions are usually stationary if the terminal condition is of the type lim𝑡→∞ 𝑦(𝑡)𝑒−𝜇𝑡 = 0
for 𝜇 > 0.

Table 2.2 summarizes this concepts, used in dynamic general equilibrium models (DGE).

Table 2.2: Classification of equilibrium paths in DGE models

𝑦 𝑎 < 0 𝑎 = 0 𝑎 > 0
pre-determined determined and stable determined and stationary determined and non-stationary
non- pre-determined indeterminate ambiguous determined

Example: budget constraint dynamics
A fundamental differential equation in economics is the budget constraint equation. Let 𝑎(𝑡) ∈ 𝑅

be the asset position of an economic entity7  at time 𝑡, which is a stock variable which can be read
in its balance. If 𝑎 > 0 we say the agent is a net creditor and if 𝑎 < 0 it is a net debtor. Assume that
the the asset has an instantaneous return 𝑟(𝑡) and that the entity has a flow of non-financial income
denoted by 𝑦(𝑡) and a flow of expenditures denoted by 𝑒(𝑡). One of the iron ”laws” of economics is
that the change in the asset position, or investment, is equal to savings. Savings, denoted by 𝑠(𝑡),
is equal to total income minus expenditure. Therefore

̇𝑎(𝑡) = 𝑠(𝑡) = 𝑟(𝑡) 𝑎(𝑡) + 𝑦(𝑡) − 𝑒(𝑡), for every  𝑡 ∈ T.  (2.14)

Let us assume that all the exogenous variables are constant and parametrically given.

̇𝑎(𝑡) = 𝑠(𝑡) = 𝑟 𝑎(𝑡) + 𝑦 − 𝑒, for every  𝑡 ∈ T.  (2.15)
7It can be a household, a the government, or an economy. In the first case, 𝑛 represents the net asset position, in

the second it is usually the government debt, and in the third the net asset position of a country regarding the rest
of the world.
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We can answer the question: given an initial asset position 𝑎(0) = 𝑎0 what will be the asset
positions in the future ? How will they change for constant, permanent variations in any of the
parameters 𝑟, 𝑦 or 𝑒 or in the initial level 𝑎0 ? We see (2.15)  as a forward equation and answer
those questions by solving the initial-value problem

{
̇𝑎(𝑡) = 𝑟 𝑎(𝑡) + 𝑦 − 𝑒 for  𝑡 ∈ T 

𝑎(0) = 𝑎0 for  𝑡 = 0 
(2.16a)
(2.16b)

  The solution is
𝑎(𝑡) = ̄𝑎  + (𝑎0 − ̄𝑎)𝑒𝑟 𝑡, ̄𝑎  = −𝑦 − 𝑒

𝑟 𝑡 ∈ [0, ∞). 

  If 𝑟 > 0 we can see that the process (𝑎(𝑡))𝑡∈[0,∞) is unstable: if 𝑎0 > ̄𝑎, then lim𝑡→∞  𝑎(𝑡) = +∞
and the agent will become a very large (indeed unboundedly large) creditor; if 𝑎0 < ̄𝑎, then
lim𝑡→∞  𝑎(𝑡) = −∞ and the agent will become a very large (indeed unboundly large) debtor; or if
𝑎0 = ̄𝑎 its asset position will be stationary 𝑎(𝑡) = ̄𝑎 for any 𝑡.

Some times, 𝑎 represents a ratio of debt over another indexing variable (as population, prices,
GDP, etc). In this case, 𝑟 represent the interest rate net of rate of growth of the indexing, which
makes possible that 𝑟 ≤ 0. In this case, particularly when 𝑟 < 0 the dynamics change radically:
the process for (𝑎(𝑡))𝑡∈[0,∞) becomes asymptotically stable and converges to ̄𝑎, for any initial asset
position 𝑎0.

We can see how the solution of the equation changes with variations in the parameters. For
instance, we call finding 𝜕𝑎(𝑡)

𝜕𝑟 an exercise of comparative dynamics. This should not be confused

with finding 𝜕 ̄𝑎
𝜕𝑟 which is a comparative statics exercise.

A different question is: what is the sustainable level of the asset position 𝑎(0) ? The question
posed like this is close to meaningless, before we translate mathematically ”sustainability” by some
criterium. One commonly used is: we say that the asset position is sustainable if the asymptotic
present value of 𝑎 is equal to zero, that is

⎧{
⎨{⎩

̇𝑎(𝑡) = 𝑟 𝑎(𝑡) + 𝑦 − 𝑒 for  𝑡 ∈ T = [0, ∞)
lim

𝑡→∞
 𝑎(𝑡)𝑒−𝜌 𝑡  = 0, 𝜌 > 0 

(2.17a)
(2.17b)

  Using our previous example, the answer depends on the relationship between 𝑟 and 𝜌: if 𝑟 < 𝜌
then the solution is

𝑎(𝑡) = ̄𝑎  + (𝑎(0) − ̄𝑎)𝑒𝑟 𝑡, ̄𝑎  = −𝑦 − 𝑒
𝑟 𝑡 ∈ [0, ∞). 

  any initial asset position, 𝑎(0) is sustainable; however if 𝑟 ≥ 𝜌 then the solution is

𝑎(𝑡) = ̄𝑎, for all  𝑡 ∈ [0, ∞),

  which means that 𝑎(0) = ̄𝑎. If the entity is an initial debtor, say 𝑎0 < 0 then this level of
debt is sustainable only if it satisfies, for every point in time, 𝑦 − 𝑒 = −𝑟𝑎0 > 0, i.e, its income is
permanently higher than its expenditure.
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2.2 Non-autonomous equations

   
In subsection 2.2.1 we present analytical solutions for non-autonomous equations over an arbi-

trary real domain X. In subsection 2.1.3 we address the particular characterization of autonomous
scalar ODEs in which the independent variable is time. In all subsections, we also study related
problems and provide some examples.

2.2.1 Analytical solutions for an arbitrary independent variable

 
Let us start with the non-autonomous homogeneous  equation,

𝑦′(𝑥) = 𝑎(𝑥) 𝑦(𝑥), 𝑦 ∶ X →  Y (2.18)

  where both X are Y are subsets of ℝ. The coefficient function 𝑎(𝑥) is an arbitrary function
𝑎 ∶ X → ℝ. It can be a constant, piecewise constant, or be an arbitrary function of 𝑥.

Proposition 4. The unique solution of ODE (2.18) is a function 𝑦

𝑦(𝑥) = 𝑦(𝑥0) 𝑒∫𝑥
𝑥0

𝑎(𝑠) 𝑑𝑠, for any  𝑥, 𝑥0 ∈ X (2.19)

where 𝑥0 is an element of X and 𝑦(𝑥0) is the arbitrary element of Y associated to it.

Proof. We use the method of separation of variables to determine the solution for ODE (2.18).
Recalling that we denoted the derivative as 𝑑𝑦

𝑑𝑥 = 𝑦′(𝑥) we can write the ODE (2.18) as 𝑑𝑦
𝑑𝑥 = 𝑎(𝑥) 𝑦.

Using integration by quadratures we find

∫
𝑦(𝑥)

𝑦(𝑥0)
 𝑑𝑦

𝑦   = ∫
𝑥

𝑥0

𝑎(𝑠) 𝑑𝑠

  as the anti-derivative of 1
𝑦 is ln 𝑦 then ln ( 𝑦(𝑥)

𝑦(𝑥0)) = ∫𝑥
𝑥0

𝑎(𝑠) 𝑑𝑠 Taking exponentials for both sides
yields the general solution (2.19).

The non-autonomous and non-homogeneous scalar linear ODE is

𝑦′(𝑥) = 𝑎(𝑥)𝑦 + 𝑏(𝑥), 𝑦 ∶ X →  Y (2.20)

  where, again, both X are Y are subsets of ℝ.

Proposition 5. The unique solution of ODE (2.20) is a function 𝑦

𝑦(𝑥) = 𝑦(𝑥0) 𝑒∫𝑥
𝑥0

 𝑎(𝑠) 𝑑𝑠 + ∫
𝑥

𝑥0

𝑒∫𝑥
𝑠 𝑎(𝑧) 𝑑𝑧 𝑏(𝑠)𝑑𝑠 (2.21)

where 𝑥0 is an element of X and 𝑦(𝑥0) is the arbitrary element of Y associated to it.
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Proof. We apply the variation of constant method8. First, we consider the solution for the homo-
geneous equation, such that 𝑏(𝑥) = 0 for all 𝑥 ∈ X. From equation (2.19) its solution for the fixed
interval (𝑥0, 𝑥), such that 𝑥0 < 𝑥 is

𝑦ℎ(𝑥, 𝑦0) = 𝑦0 𝑒∫𝑥
𝑥0

𝑎(𝑠)𝑑𝑠.

  But we expect the solution to equation (2.20) to be, for an arbitrary 𝑥 > 𝑥0,

𝑦(𝑥) = 𝑦ℎ(𝑥, 𝑦0(𝑥)) = 𝑦0(𝑥) 𝑒∫𝑥
𝑥0

𝑎(𝑠)𝑑𝑠. (2.22)

  Taking derivatives for 𝑥 and using the Leibniz’s rule 9  we obtain

𝑦′(𝑥) = 𝑦′
0(𝑥) 𝑒∫𝑥

𝑥0
𝑎(𝑠)𝑑𝑠 + 𝑦0(𝑥) 𝑎(𝑥) 𝑒∫𝑥

𝑥0
𝑎(𝑠)𝑑𝑠 = 𝑦′

0(𝑥) 𝑒∫𝑥
𝑥0

𝑎(𝑠)𝑑𝑠 + 𝑎(𝑥) 𝑦(𝑥)

  which should be equal to equation (2.20). By equating the right-hand sides of both equations we
get the ODE

𝑦′
0(𝑥) = 𝑏(𝑥)𝑒− ∫𝑥

𝑥0
𝑎(𝑠)𝑑𝑠.

  As function 𝑦0(.) is continuous, from the fundamental theorem of calculus ∫𝑥
𝑥0

𝑦′
0(𝑠) 𝑑𝑠 = 𝑦0(𝑥) −

𝑦0(𝑥0), and

𝑦0(𝑥) = 𝑦0(𝑥0) + ∫
𝑥

𝑥0

𝑏(𝑠)𝑒− ∫𝑠
𝑥0

𝑎(𝑧)𝑑𝑧𝑑𝑠.

  Substituting in equation (2.22) and because 𝑦0(𝑥0) = 𝑦(𝑥0) we finally get solution (2.21)

Problems involving non-autonomous ODEs

  
The choice of pair (𝑥0, 𝑦(𝑥0)), in any of the equations (2.19) and (2.21), and therefore the exact

determination of their solution, depends on the side conditions we impose. We can generically
see that they take the form of a functional. Assuming that 𝑥 and ̄𝑥 denote the infimum and the
supremum of X, the side conditions take generically the form

∫
�̄�

𝑥
𝐶(𝑦(𝑥), 𝑥) 𝑑𝑥 = constant

where 𝐶(⋅) is a knwon function.  In this case we consider (2.19) in the form

𝑦(𝑥) = 𝑣(𝑥, ̄𝑥) 𝑒∫𝑥
𝑥  𝑎(𝑠) 𝑑𝑠

where  𝑣(𝑥, ̄𝑥) is a number.
8Due to Lagrange (1811).
9Let ℎ(𝑥) = ∫𝑏(𝑥)

𝑏(𝑥) 𝑓(𝑥, 𝑠)𝑑𝑠. The Leibniz rule states that 𝑑ℎ(𝑥)
𝑑𝑥   = 𝑏′(𝑥)𝑓(𝑥, 𝑏(𝑥)) − 𝑎′(𝑥)𝑓(𝑥, 𝑎(𝑥)) +

∫𝑏(𝑥)
𝑎(𝑥)

𝜕
𝜕𝑥 𝑓(𝑥, 𝑠) 𝑑𝑠.
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Analogously for equation (2.21), and solve

∫
�̄�

𝑥
𝐶(𝑣(𝑥, ̄𝑥) 𝑒∫𝑥

𝑥  𝑎(𝑠) 𝑑𝑠, 𝑥) 𝑑𝑥 = constant

  for 𝑣(𝑥, ̄𝑥). This would allows us to obtain a particular solution�� which is an exact solution
for 𝑦(⋅).

This approach is sufficiently general to encompass cases in which we fix a value for 𝑦, as 𝑦(𝑥0) =
𝑦0, for a particular point 𝑥0 in the domain (or its closure) X. For instance, for the side condition

∫
�̄�

𝑥
𝛿(𝑥 − 𝑥0) 𝑦(𝑥) 𝑑𝑥 = 𝑦0

where 𝑦0 is a know number. As

∫
�̄�

𝑥
𝛿(𝑥 − 𝑥0) 𝑦(𝑥) 𝑑𝑥 = 𝑦(𝑥0).

Then, the particular solution is
𝑦(𝑥) = 𝑦0 𝑒∫𝑥

𝑥  𝑎(𝑠) 𝑑𝑠.

 
Next we see some applications of models involving non-autonomous ODE’s, which include par-

ticular side constraints.

Some applications

Example: Utility theory
The generalized logarithmic function10

𝑢(𝑥) = ln𝜎(𝑥) ≡ 𝑥1−𝜎 − 1
1 − 𝜎 for  𝜎 > 0

  has many uses, not only in economics. In economics, in deterministic models it is called the iso-
elastic utility function, or, in stochastic models, it is called constant relative risk aversion (CRRA)
Bernoulli utility function CRRA.

Using the analysis in Pratt (1964) it can be showed that it is a solution of the problem

⎧{{{
⎨{{{⎩

−𝑢″(𝑥) 𝑥
𝑢′(𝑥)   = 𝜎, 𝑥 ∈ X = (0, ∞)

𝜎 ∫
∞

1
  𝑢′(𝑥)

𝑥   𝑑𝑥 = 1

𝑢(1) = 0

(2.23a)

(2.23b)

(2.23c)

The first equation is a definition of the relative risk aversion, as the symmetric of the elasticity of
𝑢(⋅) being a constant equal to 𝜎. The first constraint conditions the relative slope of 𝑢(⋅) on all

10If 𝜎 = 1 it can be shown that it is 𝑢(𝑥) = ln (𝑥).
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its domain and the last constraint fixes the value of utility of consumption at one (this condition
makes transparent that a logarithm is hidden behind the utility function).

Equation (2.23a) is a second order ODE. We can transform it into a first order ODE by defining
𝑧(𝑥) = ln 𝑢′(𝑥) ⟺ 𝑢′(𝑥) = 𝑒𝑧(𝑥). Then we obtain an the linear ODE

𝑧′(𝑥) = 𝑏(𝑥) ≡ −𝜎
𝑥.

This equation has solution 𝑧(𝑥) = 𝑧(𝑥0) + ∫𝑥
𝑥0

𝑏(𝑠)𝑑𝑠, which we can prove simplifies to 𝑧(𝑥) =
𝑧(𝑥0) − 𝜎 ln ( 𝑥

𝑥0
), for an arbitrary 𝑥0 > 0. Therefore

𝑢′(𝑥) = 𝑒𝑧(𝑥)  = 𝑢′(𝑥0) ( 𝑥
𝑥0

)
−𝜎

 

which is again a linear differential equation. Solving it, and observing that 𝑢′(𝑥0) is an arbitrary
constant, yields

 
 𝑢(𝑥) = 𝑢(𝑥0) + 𝑢′(𝑥0) ∫

𝑥

𝑥0

( 𝑠
𝑥0

)
−𝜎

𝑑𝑠

= 𝑢(𝑥0) + 𝑢′(𝑥0)𝑥𝜎
0 ( 𝑥1−𝜎

1 − 𝜎  − 𝑥1−𝜎
0

1 − 𝜎).
  (2.24)

The two side conditions (2.23b) and (2.23c) allow us, in principle, to determine the arbitrary
constants 𝑢(𝑥0) and 𝑢′(𝑥0). First, using the expression obtained for 𝑢′(𝑥) we have

∫
∞

𝑥0

 𝑢′(𝑥)
𝑥 𝑑𝑥 = 𝑢′(𝑥0) 𝑥𝜎

0   ∫
∞

𝑥0

𝑥−𝜎−1  𝑑𝑥 = 𝑢′(𝑥0)
𝜎 ,  

  which, considering constraint (2.23b) for 𝑥0 = 1, we have 𝑢′(1)
𝜎 = 1

𝜎 that is, 𝑢′(1) = 1. Setting
again 𝑥0 = 1 in equation (2.24) we have

𝑢(𝑥) = 𝑢(1) + 𝑥1−𝜎 − 1
1 − 𝜎

which, upon introducing side-condition (2.23c) yields the generalized logarithm.
Example: the Gaussian distribution
We can derive the standard Gaussian probability density function from the ODE problem,

⎧{
⎨{⎩

𝑦′(𝑥) = −𝑥 𝑦(𝑥), for  𝑥 ∈ X = (−∞, ∞)

∫
∞

−∞
  𝑦(𝑥)  𝑑𝑥 = 1

(2.25a)

(2.25b)

  While equation (2.25a) means that the rate of decay between two adjacent points in X is equal
to the value of 𝑥 in which we measure it, equation (2.25b) constraints (𝑦(𝑥))X to be a distribution.

The solution to the problem is

𝑦(𝑥) = 𝑒− 𝑥2
2√

2 𝜋  (2.26)
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To prove this, we already know that the solution to equation (2.25a) is

𝑦(𝑥) = 𝑦(𝑥0) 𝑒− ∫𝑥
𝑥0

𝑠 𝑑𝑠  = 𝑦(𝑥0) 𝑒− 𝑥2
2 + 𝑥2

0
2 = 𝑦(𝑥0) 𝑒

𝑥2
0

2   𝑒− 𝑥2
2

  for an arbitrary point (𝑥0, 𝑦(𝑥0)). As11

∫
∞

−∞
  𝑦(𝑥)  𝑑𝑥 = 𝑦(𝑥0) 𝑒

𝑥2
0

2   ∫
∞

−∞
  𝑒− 𝑥2

2   𝑑𝑥 = 𝑦(𝑥0) 𝑒
𝑥2

0
2  

√
2𝜋 

if we substitute this general solution in the constraint (2.25b) we have 𝑦(𝑥0) 𝑒
𝑥2

0
2  

√
2𝜋  = 1, which

yields the standard Gaussian probability density function (2.26).

2.2.2 Scalar non-autonomous ODEs with time as the independent variable

The scalar linear non-autonomous having time as an independent variable, has been already written
in equation (2.8).

From Proposition 5  its general solution is, adapting equation (2.21)

𝑦(𝑡) = 𝑦(0) 𝑒∫𝑡
0  𝑎(𝑠) 𝑑𝑠, if  𝑏(𝑡) = 0 (2.27a)

𝑦(𝑡) = 𝑦(0) 𝑒∫𝑡
0  𝑎(𝑠) 𝑑𝑠 + ∫

𝑡

0
  𝑒∫𝑡

𝑠 𝑎(𝑧) 𝑑𝑧 𝑏(𝑠)𝑑𝑠, if  𝑏(𝑡) ≠ 0 (2.27b)

where 𝑦(0) is an arbitrary element of Y associated to it.
A common initial value problem  is

{
̇𝑦  = 𝑎(𝑡) 𝑦 + 𝑏(𝑡) for  𝑡 ∈ T 

𝑦(0) = 𝑦0 for  𝑡 = 0, 𝑦0 ∈ Y 
(2.28a)
(2.28b)

  has the solution
𝑦(𝑡) = 𝑦0 𝑒∫𝑡

0  𝑎(𝑠) 𝑑𝑠 + ∫
𝑡

0
  𝑒∫𝑡

𝑠 𝑎(𝑧) 𝑑𝑧 𝑏(𝑠)𝑑𝑠, 𝑡 ∈ T

 
Exercise: prove this.
A common terminal value problem is

⎧{
⎨{⎩

̇𝑦  = 𝑎(𝑡) 𝑦 + 𝑏(𝑡) for  𝑡 ∈ T 
lim

𝑡→∞
 𝑒− ∫𝑡

0 𝑎(𝑠)𝑑𝑠  𝑦(𝑡) = 0 for  𝑡 = 0, 𝑦0 ∈ Y .
(2.29a)

(2.29b)

  Has the solution
𝑦(𝑡) = − ∫

∞

𝑡
 𝑒− ∫𝑠

𝑡 𝑎(𝑧)𝑑𝑧𝑏(𝑠)𝑑𝑠

 
11The Gaussian integral is ∫∞

−∞   𝑒− 𝑥2
2   𝑑𝑥 =

√
2𝜋 .
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Example: Budget constraint We can now consider the budget constraint (2.14) with time
varying interest rate and primary surplus. A more realistic presentation, if we consider the dynamics
of the government debt, is

 𝑏(𝑡) = 𝑟(𝑡) 𝑏 + 𝑑(𝑡), for  𝑡 ∈ T (2.30)

where 𝑏 is the government debt, 𝑟 is the interest rate and 𝑑 = 𝑒 − 𝑦 is the primary deficit, the
difference between government expenditures (excluding the service of debt) and income (from taxes
and other sources). We assume all the variables are in nominal terms. If they are in real terms 𝑟
represents the real interest rate, and if they are deflated by the GDP, 𝑟 is the difference between
the nominal interest rate and the growth rate of the GDP.

We can include the ODE (2.30) in two different types of problems: initial or terminal value
problems. In the initial value problem the stock of debt, 𝑏(⋅), is defined as a pre-determined variable
and in the terminal value problem is defined as a non-predetermined variable.

In an initial value problem,

⎧{
⎨{⎩

𝑏(𝑡) = 𝑟(𝑡) 𝑏 + 𝑑(𝑡), for  𝑡 ∈ T

𝑏(0) = 𝑏0 given

we ask the question: given the initial level of debt 𝑏(0) = 𝑏0 and our forecast over the future paths
of the interest rate and the primary deficit, (𝑟(𝑡), 𝑑(𝑡))𝑡∈[0,∞), what will be the future behavior of
the government debt ?

The answer is
𝑏(𝑡) = 𝑏0 𝑒∫𝑡

0  𝑟(𝑠) 𝑑𝑠 + ∫
𝑡

0
  𝑒∫𝑡

𝑠 𝑟(𝑧) 𝑑𝑧 𝑑(𝑠)𝑑𝑠, 𝑡 ∈ T

 
A terminal value problem could be

⎧{
⎨{⎩

𝑏(𝑡) = 𝑟(𝑡) 𝑏 + 𝑑(𝑡), for  𝑡 ∈ T

lim𝑡→∞  𝑒− ∫𝑡
0  𝑟(𝑠) 𝑑𝑠 𝑏(𝑡) = 0

we ask the question: given our forecast over the future paths of the interest rate and the primary
deficit, (𝑟(𝑡), 𝑑(𝑡))𝑡∈[0,∞), what should be the initial level of debt such that the dynamics of debt is
sustainable (or solvent) ?

The answer is
𝑏(0) = − ∫

∞

0
  𝑒∫𝑡

𝑠 𝑟(𝑧) 𝑑𝑧 𝑑(𝑠)𝑑𝑠,

where the right-hand side term is the symmetric to the present value of the future primary deficits.
That is, if the present value of future primary deficits is negative (positive) the government should
be in a positive (negative) initial asset position -i.e., having a sovereign wealth or investment fund.

Another common application in economics is related to studying the effects of anticipated shocks
in exogenous variables. Again the perspectives, and questions, related to initial and terminal value
problems are different.

We can distinguish between:
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• non-anticipated and anticipated shocks

• temporary and permanent shocks

Example: anticipated shocks for a pre-determined variable Let us assume that 𝑦 is a
pre-determined variable, in which we know the value at time 𝑡 = 0, and assume there will be an
additive shock in a prescribed future date, 𝑡∗, in an exogenous variable that affects the dynamics
of 𝑦.

We can address this case through the initial value problem

⎧{
⎨{⎩

  ̇𝑦 = 𝑎𝑦 + 𝑏(𝑡), for 𝑡 ∈ [0, ∞)
𝑦(0) = 𝑦0 given, for 𝑡 = 0

(2.31)

where 𝑎 ≠ 0 by assumption and

𝑏(𝑡) =
⎧{
⎨{⎩

𝑏0 if 0 ≤ 𝑡 < 𝑡∗

𝑏1 if 𝑡∗ ≤ 𝑡 < ∞.

The solution to problem (2.31) is

𝑦(𝑡) =
⎧{
⎨{⎩

𝑦0𝑒𝑎𝑡 + 𝑏0
𝑎 (𝑒𝑎𝑡 − 1)   if 0 ≤ 𝑡 < 𝑡∗

𝑦0𝑒𝑎𝑡 + 𝑏0
𝑎 𝑒𝑎𝑡 + (𝑏1 − 𝑏0

𝑎  ) 𝑒𝑎(𝑡−𝑡∗) − 𝑏1
𝑎   if 𝑡∗ ≤ 𝑡 < ∞

and for the case in which 𝑏1 > 𝑏0 the solution is depicted in Figure 2.5.
Observe that the solution, at any point in time, is capitalizing on the past changes of the variable

𝑏(𝑡). It only responds to the shock after it is observed, at time 𝑡 = 𝑡∗ (𝑡 = 3 in the example in the
figure).
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2

4

6

8

10

Figure 2.5: Trajectories for problem (2.31)



Paulo Brito Advanced Mathematical Economics 2022/2023 28

Example: anticipated shock in an exogenous variable Let us assume that 𝑦 is a npn-
pre-determined variable and assume there will be an additive shock in a prescribed future data
in an exogenous variable that affects the dynamics of 𝑦. Assume that a rulling-out bubble, a
transversality or a sustainability condition should be satisfied.

We can address this case through the terminal value problem

⎧{
⎨{⎩

  ̇𝑦 = 𝑎𝑦 + 𝑏(𝑡), for 𝑡 ∈ [0, ∞)
lim𝑡→∞ 𝑦(𝑡)𝑒−𝑎𝑡 = 0, for 𝑡 = ∞

(2.32)

where 𝑎 > 0 and

𝑏(𝑡) =
⎧{
⎨{⎩

𝑏0 if 0 ≤ 𝑡 < 𝑡∗

𝑏1 if 𝑡∗ ≤ 𝑡 < ∞.
 

The solution to the problem is

𝑦(𝑡) =
⎧{
⎨{⎩

−𝑏0
𝑎   − (𝑏1 − 𝑏0

𝑎 )  𝑒𝑎(𝑡−𝑡∗)  if 0 ≤ 𝑡 < 𝑡∗

−𝑏1
𝑎 if 𝑡∗ ≤ 𝑡 < ∞

Now assume that we have a mixed initial-terminal value problem

⎧{{
⎨{{⎩

  ̇𝑦 = 𝑎𝑦 + 𝑏(𝑡), for 𝑡 ∈ [0, ∞)
𝑦(0) = 𝑦0 given 
lim𝑡→∞ 𝑦(𝑡)𝑒−𝑎𝑡 = 0, for 𝑡 = ∞

(2.33)

with the same assumptions for 𝑎 and 𝑏(𝑡). This problem has no solution in the space of continuous
functions of time. However, if we allow for solutions in the space of piecewise continuous functions
of time we have the following solution

𝑦(𝑡) =

⎧{{
⎨{{⎩

𝑦0 if 𝑡 = 0
−𝑏0

𝑎   − (𝑏1 − 𝑏0
𝑎 )  𝑒𝑎(𝑡−𝑡∗)  if 0 < 𝑡 < 𝑡∗

−𝑏1
𝑎 if 𝑡∗ ≤ 𝑡 < ∞.

We see that the solution is right continuous, such that

𝑦(0) = 𝑦0 ≠ 𝑦0+ = lim
𝑡↓0

𝑦(𝑡) = −𝑏0
𝑎   − (𝑏1 − 𝑏0

𝑎 )  𝑒−𝑎𝑡∗

which means there is a discontinuous jump of size 𝑦0+ − 𝑦0 at time 𝑡 = 0. See Figure 2.6.
Comparing to the initial-value problem we see that the solution has an anticipating feature: for

0 < 𝑡 < 𝑡∗ the solution depends on the expect value of the variable 𝑏(𝑡) after its change, 𝑏1, and
after the change, for 𝑡 ≥ 𝑡∗, it is not influenced by the value before the change, 𝑏0.

These two cases illustrate two fundamental types of dynamics in macro-economics. Dynamic
general equilibrium models have usualy both dynamics coupled.
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Figure 2.6: Trajectories for problem (2.32). At time 𝑡 = 0 there is a ”jump” from the initial value
𝑦0 to

2.2.3 Dynamics for scalar non-autonomous ODEs with time as the independent
variable

A scalar non-autonomous ODE (2.8) can or cannot have a steady state.
In the previous section, in problems (2.31) to (2.32), we saw cases in which the solution converged

to a steady state.
In this section we consider two equations, which are common in economics, in which the time

dependence is additive or multiplicative. We will show that there is convergence to a long-run
trajectory defined by function ̄𝑦(𝑡). We assume that variable 𝑦 is pre-determined.

Additive time dependent exogenous variable

 
Consider the linear scalar ODE

  ̇𝑦 = 𝜆 𝑦 + 𝑏 𝑧(𝑡), (2.34)

  where we assume that 𝜆 < 0 and 𝑧 is a time-dependent exogenous variable. Furthermore, assume
that 𝑧(𝑡) grows exponentially as 𝑧(𝑡) = 𝑒𝛾 𝑡, where 𝛾 > 0, and the initial value of the endogenous
variable 𝑦 is 𝑦(0) = 𝑦0 (given).

The solution to the initial value problem is

𝑦(𝑡) = 𝑒𝜆 𝑡  (𝑦(0) − 𝛽
𝛾 − 𝜆) + 𝛽

𝛾 − 𝜆𝑒𝛾 𝑡.  (2.35)

If 𝜆 < 0 we see that, for any initial value 𝑦(0) then

lim
𝑡→∞

 𝑦(𝑡) = ̄𝑦 (𝑡) ≡ 𝛽
𝛾 − 𝜆𝑒𝛾 𝑡.
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Figure 2.7: Trajectories for 𝑦(𝑡) and for ̄𝑦 from equation (2.33) 

Multiplicative time dependent exogenous variable

 
Next we consider the ODE

̇𝑦 = 𝑧(𝑡) 𝑦 (2.36)

in which the exogenous variable, 𝑧, enters multiplicatively. We take a common (mean reverting)
process for 𝑧 as given by equation ̇𝑧  = 𝛾 ( ̄𝑧  − 𝑧) where 𝛾 > 0. This equation has solution

𝑧(𝑡) = ̄𝑧  + (𝑧0 − ̄𝑧 ) 𝑒−𝛾 𝑡

featuring lim𝑡→∞  𝑧(𝑡) = ̄𝑧.
The solution to the initial-value problem is

𝑦(𝑡) = 𝑦(0) exp { ̄𝑧  𝑡 − 𝑧0 − ̄𝑧
𝛾 (𝑒−𝛾 𝑡 − 1)}  (2.37)

We can easily see that

lim
𝑡→∞

 𝑦(𝑡) = ̄𝑡  ≡ 𝑦(0) 𝑒
𝑧0 − ̄𝑧

𝛾   𝑒 ̄𝑧  𝑡 

  Figure 2.8 shows both the solution 𝑦(𝑡) and the long-run solution ̄𝑦(𝑡) in a logarithmic scale.
We see that the solution converges in the long-run to an exponential function with growth rate

̄𝑧

2.3 References

Mathematics: there is a huge literature on scalar linear ODE, but (Hale and Koçak, 1991, ch 1) is a
great modern textbook. See Hubbard (1994) on the history and meaning of differential equations.

Non-automomous equations: (Hale and Koçak, 1991, ch 2), John H. Hubbard (1991) 
Applications to economics: Gandolfo (1997).
Problem set on scalar linear ODEs.

https://pmbbrito.github.io/cursos/phd/ame/ame2223/ame2223_ps1.pdf
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Figure 2.8: Phase diagram and trajectories of equation ̇𝑦 = 𝜆𝑦 + 𝑏 for 𝜆 < 0 and 𝑏 > 0
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