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Chapter 3

Planar linear ODE

3.1 Introduction

In this chapter we deal the planar ordinary differential equation (ODE) over function y ∶ X ⊆ ℝ  →
Y ⊆ ℝ2 of type

F(∇y(𝑥), y(𝑥), 𝑥) = 0.

  The equation is planar because the range of y is two-dimensional, y ∈ Y  ⊆ ℝ2,

y(𝑥) ≡ ( 𝑦1(𝑥)
𝑦2(𝑥) )  

  it is ordinary because the domain of the independent variable has dimension one, 𝑥 ∈ 𝕏 ⊂ ℝ, and
it is differential because it assumes a variational approach to modelling, that is it is a functional
equation containing the gradient

∇y ≡   ( 𝑦′
1(𝑥)

𝑦′
2(𝑥) )   = ( 𝑑𝑦1(𝑥)

𝑑𝑥  
𝑑𝑦2(𝑥)

𝑑𝑥
) .

In this chapter we will consider the following case:

Definition 1. A planar linear autonomous ordinary differential equation is a functional
equation is the following equation: in matrix form

∇y(𝑥) = A y(𝑥) + B (3.1)

   where the coefficient matrices A ∈ ℝ2×2 and B ∈ ℝ2 have constant elements,

A ≡ (𝑎11 𝑎12
𝑎21 𝑎22

) , B ≡ (𝑏1
𝑏2

) .  (3.2)

  or in expanded form

𝑦′
1(𝑥) = 𝑎11 𝑦1(𝑥) + 𝑎12 𝑦2(𝑥) + 𝑏1

𝑦′
2(𝑥) = 𝑎21 𝑦1(𝑥) + 𝑎22 𝑦2(𝑥) + 𝑏2.

(3.3)

3



Paulo Brito Advanced Mathematical Economics 2022/2023 4

Furthermore, if B = 0 then the ODE is called homogeneous,  and if B ≠ 0 it is called non-
homogeneous.

As with the scalar linear ODE, equation (3.1) (or in form (3.3)) has explicit solutions. However,
given its dimension the solutions are more complex. In this chapter we present the general solutions
of ODE (3.1) for any independent variable. In the next chapter we consider the case in which
the independent variable is time and present the important results on the dynamics that can be
generated by a time-dependent ODE.

The content of the chapter is the following: in section 3.2 we review some useful algebra results,
in section 3.3 we derive the matrix exponential function. In sections 3.4 and 3.5 we solve the
homogeneous and non-homogeneous ODE, respectively.

3.2 Two dimensional matrix algebra results

Matrix A, in equation (3.2) fundamentally determines the solution to differential equation (3.1).
It also allows for the characterization of its dynamics as we will see in the next chapter.

It is possible to classify any matrix A as being:

1. a canonical matrix  similar to one of the following three matrices, called the Jordan
canonical forms1 

ΛΛΛ1 = (𝜆− 0
0 𝜆+

) , ΛΛΛ2 = (𝜆 1
0 𝜆) , or ΛΛΛ3 = ( 𝛼 𝛽

−𝛽 𝛼) (3.4)

  belonging to ℝ2×2, because 𝜆−, 𝜆+ 𝛼 and 𝛽 are real numbers. Matrix ΛΛΛ3 can also be written
as

ΛΛΛ𝑐
3 = (𝛼 − 𝛽 𝑖 0

0 𝛼 + 𝛽 𝑖) ∈ ℂ2×2

  where 𝑖 =
√

−1 is the imaginary number.

2. or, a non-canonical matrix if is of one of the two following forms  

A𝑑 ≡ ( 𝜆 0
0 𝜆) , or Aℎ ≡ ( 𝛼 𝛽

𝛽 𝛼) (3.5)

where 𝜆, 𝛼 and 𝛽 are real numbers.

 
Two matrices are said to be similar  if they have the same spectrum. The spectrum of

matrix  A is a tuple belonging to ℂ2 (the space of two-dimensional complex numbers)

 𝜎(A) = {𝜆 ∈ ℂ2 ∶ det (A − 𝜆 I) = 0}. 
1See the appendix 3.A.1 where we gather some useful results from matrix algebra.
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  where I is the (2 × 2) identity matrix.
The elements of 𝜎(A) are called the eigenvalues of A.
In order to determine the spectrum, we need to find the characteristic polynomial  associated

to matrix A, which is the square polynomial in 𝜆

det (A − 𝜆 I) = 𝜆2 − trace(A)  𝜆 + det (A),

  whose coefficients are the trace and the determinant of A,

trace(A)  = 𝑎11 + 𝑎22, and det (A)  = 𝑎11 𝑎22 − 𝑎12 𝑎21.

  Equation det (A − 𝜆 I) = 0 is called characteristic equation. The eigenvalues of matrix A are
the solutions to the characteristic equation:

⎧{
⎨{⎩

 𝜆− = trace(A)
2 − √Δ(A),

𝜆+ = trace(A)
2 + √Δ(A)

(3.6)

  where

Δ(A) ≡ (trace(A)
2 )

2
− det (A)

  is called the discriminant of matrix A.

Eigenvalues of A  
Finding the eigenvalues allows us to classify any matrix according to three criteria:

1.  the sign of the discriminant allows us to determine if the eigenvalues are real or complex
numbers, and to find the Jordan canonical form of matrix A we can call ΛΛΛ;

2. the sign of the trace and the determinant allows us to sign the eigenvalues if they are real or
the sign of their real part if they are complex;

3. their genericity, i.e., the robustness of the classification provided by the previous two criteria
to small change in the elements of A

First, the two eigenvalues are real if Δ(A) ≥ 0 and they are complex conjugate if Δ(A) < 0.
In particular, if Δ(A) > 0 the eigenvalues are real and distinct and satisfy 𝜆− < 𝜆+, if Δ(A) = 0
the eigenvalues are real and multiple and satisfy 𝜆 = 𝜆− = 𝜆+ = trace(A)

2 , and if Δ(A) < 0 they
are complex conjugate and satisfy

𝜆± = 𝛼 ± 𝛽 𝑖, for 𝑖 ≡
√

−1

  where 𝛼 = trace(A)
2 and 𝛽 = √|Δ(A)|.

Second, the signs of the real part of both eigenvalues is the same if det (A)  > 0 and it is
different if det (A)  < 0. In the first case they are both positive if det (A)  > 0 and trace(A) > 0
and they are both negative if det (A)  > 0 and trace(A) < 0.
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detA

tr(A)

∆(A)=0 ∆(A)=0

λ− < 0 < λ+

λ− < λ+ < 0 0 < λ− < λ+

α± β i (α < 0) α± β i (α > 0)

±β i

λ− < 0 = λ+ λ− = 0 < λ+

λ− = λ+ < 0 λ− = λ+ > 0

λ− = λ+ = 0

Figure 3.1: Eigenvalues of A in the (trace(A), det (A)) space. The gray area corresponds to the
existence of complex conjugate eigenvalues.

Third, the eigenvalues are generic in the sense that they will not change their type or sign
for small changes in the elements of the coefficient matrix A if Δ(A) ≠ 0, or det (A)  ≠ 0, or
trace(A) ≠ 0 and det (A)  ≥ 0, and they are not generic otherwise, that is if Δ(A) = 0, or
det (A)  = 0, or trace(A) = 0 and det (A)  ≥ 0.

Figure 3.1, shows all the possible relevant cases. There are five generic cases (corresponding to
two-dimensional subsets), four non-generic cases of co-dimension-one (corresponding to lines) and
two co-dimension-two case (the origin). It displays all the following cases:

1. the five generic cases are: (1) if trace(A) > 0, det (A)  > 0 and Δ(A) > 0 the two eigenvalues
are real, different and positive, 𝜆+ > 𝜆−  > 0; (2) if trace(A) > 0, det (A)  > 0 and Δ(A) < 0
the two eigenvalues are complex conjugate with positive real parts 𝜆±  = 𝛼 ± 𝛽 𝑖 with 𝛼 > 0;
(3) if trace(A) < 0, det (A)  > 0 and Δ(A) > 0 the two eigenvalues are real, different, and
negative 0 > 𝜆+ > 𝜆−; (4) if trace(A) < 0, det (A)  > 0 and Δ(A) < 0 the two eigenvalues are
complex conjugate with negative real parts, 𝜆±  = 𝛼 ± 𝛽 𝑖 with 𝛼 < 0; or (5) if det (A)  < 0
the two eigenvalues are real and with opposite signs 𝜆+ > 0 > 𝜆−;

2. the six non-generic cases: (1) if trace(A) > 0 and Δ(A) = 0 the two eigenvalues are real,
equal and positive 𝜆+ = 𝜆−  > 0; (2) if trace(A) < 0 and Δ(A) = 0 the two eigenvalues
are real, equal and negative 𝜆+ = 𝜆−  < 0; (3) if trace(A) = 0 and det (A)  > 0 then the
two eigenvalues are complex conjugate with zero real part, 𝜆±  = ±𝛽 𝑖; (4) if trace(A) > 0
and det (A)  = 0 the two eigenvalues are real one is positive and the other is equal to zero,
𝜆+ > 0 = 𝜆−; (5) (4) if trace(A) < 0 and det (A)  = 0 the two eigenvalues are real one is
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negative and the other is equal to zero, 𝜆+ = 0 < 𝜆−; or (6) if trace(A) = det (A)  = 0 both
eigenvalues are real and equal to zero, 𝜆+ = 𝜆− = 0.

 
Therefore 𝜎(A) ∈ ℝ2 if Δ(A) ≥ 0 and 𝜎(A) ∈ ℂ2 if Δ(A) < 0.
There is a useful result on the relationship between the coefficients of the characteristic equation

with elementary operations between the eigenvalues of any matrix A:

𝜆− + 𝜆+ = trace(A), (3.7a)

𝜆− 𝜆+ = det (A). (3.7b)

Clearly, det (A) < 0 is a sufficient condition for the existence of two real eigenvalues and is
a necessary and sufficient condition for 𝜆− < 0 < 𝜆+. This is a very useful result for economic
models.

Canonical matrices  
There is a close relationship between the discriminant of a matrix A, which is not in a non-

canonical form as in equation (3.5), and to its similar Jordan canonical form2, which we call the
Jordan canonical form of A.  

Lemma 1. Jordan canonical form of a matrix A The Jordan canonical form of A is deter-
mined by the sign of the discriminant Δ(A): if Δ(A) > 0 then the Jordan canonical form of A is
ΛΛΛ1, if Δ(A) = 0 the Jordan canonical of A is ΛΛΛ2, and if Δ(A) < 0 the Jordan canonical form of
A is ΛΛΛ3.

Given any matrix A, and its Jordan canonical form, given in equation (3.4), the fundamental
theorem of Algebra states that there is a (non-singular) linear operator P ∈ ℝ2×2 such that the
following relationship holds

A = PΛΛΛ P−1 ⇔ ΛΛΛ = P−1 A P. (3.8)

Matrix P is called the eigenvector matrix  associated to matrix A.
The fact that any matrix A has a one-to-one relationship with one of the Jordan canonical forms

allows us to reduce the determination of the general solution of a planar ODE to the solution of a
simpler ODE in which the coefficient matrix is its Jordan canonical form. Next, we can transform
back to the original ODE by using P as an operator.

Non-canonical matrices  
For non-canonical matrices, represented in equation (3.5), the spectra are: first, in the case of

matrix A𝑑 there are multiple eigenvalues, 𝜎(A𝑑) = { 𝜆, 𝜆}, although the matrix is not of the form
ΛΛΛ2; and, second, in the case of matrix Aℎ the spectrum is 𝜎(Aℎ) = { 𝛼 + 𝛽, 𝛼 − 𝛽} which are two
real and distinct numbers.

2See the appendix 3.A.1.
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3.3 The two-dimensional matrix exponential function

 
We saw that the (general) solution of the scalar linear homogeneous equation 𝑦′(𝑥) = 𝑎 𝑦 is

𝑦(𝑥) = 𝑦(𝑥0) 𝑒𝑎𝑥 where 𝑦(𝑥0) is an arbitrary element of Y ⊆ ℝ for 𝑥 = 𝑥0 ∈ X. Recall that the
exponential function has the series representation

𝑒𝜆𝑥 ≡
∞

∑
𝑛=0

(𝜆𝑥)𝑛

𝑛! = 1 + 𝜆𝑥 + 1
2 (𝜆𝑥)2 + 1

6 (𝜆𝑥)3 + …

For the planar problem we can also define a matrix exponential function

eAx  ≡
+∞
∑
𝑛=0

1
𝑛!A

𝑛𝑥𝑛 = I + A𝑥 + 1
2 A2𝑥2 + … (3.9)

which is a mapping eAx ∶ X  → ℝ2×2 with the following properties:3

Lemma 2 (Properties of matrix exponentials eAx). Matrix exponential function eAx, defined in
equation (3.9) has the following properties:

(i) semigroup property: eA(x+s) = eAxeAs

(ii) inverse of the matrix exponencial is the the exponential of the inverse: (eAx)−1 = e−Ax

(iii) the time derivative commutes: 𝑑
𝑑𝑥eAx = AeAx = eAxA

(iv) if matrices A and B commute, (i.e., if A B = B A) then e(A+B)x = eAxeBx

(v) Let P be a non-singular and square matrix. Then

e𝛬𝛬𝛬x = eP−1APx = P−1eAxP.

From Lemma 2 (v) as P−1AP = ΛΛΛ then e𝛬𝛬𝛬x  = eP−1APx  = P−1eAxP or, equivalently

eAx = P e𝛬𝛬𝛬x P−1,   (3.10)

  where ΛΛΛ is the Jordan canonical form of A.
Therefore, given any matrix A, the exponential matrix eAx is a (2 × 2) dimensional function

of 𝑥. It depends on 𝑥 because , and it depends on 𝑥 because eAx is a linear transformation of e𝛬𝛬𝛬x

performed by the operator matrix P.
This is an important result which means that the types of solutions, and the associated phase

diagrams, can be completely enumerated.
The exponential matrices for the Jordan canonical forms are:

3See Hirsch and Smale (1974).



Paulo Brito Advanced Mathematical Economics 2022/2023 9

Lemma 3 (Matrix exponential functions for Jordan canonical forms). Let ΛΛΛ be a matrix in an
arbitrary Jordan canonical form, as in equation (3.4), and let 𝜆−, 𝜆+, 𝜆, 𝛼 and 𝛽 be real numbers.
Then,

• If ΛΛΛ = ΛΛΛ1 then

 e𝛬𝛬𝛬x = e𝛬𝛬𝛬1x = (𝑒𝜆−𝑥 0
0 𝑒𝜆+𝑥) . (3.11)

• If ΛΛΛ = ΛΛΛ2 then

 e𝛬𝛬𝛬x = e𝛬𝛬𝛬2x = 𝑒𝜆𝑥 (1 𝑥
0 1) . (3.12)

• If ΛΛΛ = ΛΛΛ3 then

 e𝛬𝛬𝛬x = e𝛬𝛬𝛬3x = 𝑒𝛼𝑥 ( cos 𝛽 𝑥 sin 𝛽 𝑥
− sin 𝛽 𝑥 cos 𝛽 𝑥) or  (𝑒(𝛼+𝛽 𝑖) 𝑥 0

0 𝑒(𝛼−𝛽 𝑖) 𝑥) (3.13)

Proof. Consider the definition of matrix exponential, equation (3.9) and the Jordan canonical form
matrices in equation (3.4). In the first case, we have

e𝛬𝛬𝛬1x  = I2 + ΛΛΛ1𝑥 + 1
2 (ΛΛΛ1)2𝑥2 + … = (1 0

0 1) + (𝜆−𝑥 0
0 𝜆+𝑥) + 1

2  (𝜆2
−𝑥2 0
0 𝜆2

+𝑥2) + …

  then, performing the matrix additions,

e𝛬𝛬𝛬1x   = (1 + 𝜆−𝑥 + 1
2𝜆2

−𝑥2 + … 0
0 1 + 𝜆+𝑥 + 1

2𝜆2
+𝑥2 + …) = (𝑒𝜆−𝑥 0

0 𝑒𝜆+𝑥)

because 𝑒𝑦 = ∑+∞
𝑛=0

𝑦𝑛

𝑛! . That result is straightforward to obtain because the Jordan matrix is
diagonal. This is not the case for Jordan matrix ΛΛΛ2, though. But if we decompose ΛΛΛ2 as

 ΛΛΛ2 = ΛΛΛ2,1 + ΛΛΛ2,2  = (𝜆 0
0 𝜆) + (0 1

0 0)

and because the two matrices commute, i.e. ΛΛΛ2,1ΛΛΛ2,2 = ΛΛΛ2,2ΛΛΛ2,1, then applying property (iv) of
Lemma 2 we obtain

e𝛬𝛬𝛬2x = e(𝛬𝛬𝛬2,1+𝛬𝛬𝛬2,2)x = e𝛬𝛬𝛬2,1x e𝛬𝛬𝛬2,2x

  where

e𝛬𝛬𝛬2,1x  = (𝑒𝜆𝑥 0
0 𝑒𝜆𝑥) = 𝑒𝜆𝑥I2.

  Using again formula (3.9) for matrix ΛΛΛ2,2 we get

e𝛬𝛬𝛬2,2x  = (1 0
0 1) + (0 𝑥

0 0) + 𝑥2

2   (0 0
0 0) + …   = (1 𝑥

0 1)
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therefore multiplying by matrix e𝛬𝛬𝛬2,1x yields (3.12).
In the third case, ΛΛΛ3 is again non-diagonal, but it can also be decomposed into the sum of two

matrices, ΛΛΛ3,1 and ΛΛΛ3,2, that commute

ΛΛΛ3 = ΛΛΛ3,1  + ΛΛΛ3,2 = (𝛼 0
0 𝛼) + ( 0 𝛽

−𝛽 0) .

  Applying again property (iv) of Lemma 2 we get

e𝛬𝛬𝛬3x  = e𝛬𝛬𝛬3,1x e𝛬𝛬𝛬3,2x,

  where

e𝛬𝛬𝛬3,1x = 𝑒𝛼𝑥 (1 0
0 1) .

  Using again formula (3.9) for matrix ΛΛΛ3,2 we get

e𝛬𝛬𝛬3,2x = (1 0
0 1) + ( 0 𝛽 𝑥

−𝛽 𝑥 0 ) + 𝑥2

2   (𝛽2 𝑥2 0
0 −𝛽2 𝑥2) + …   = ( cos 𝛽 𝑥 sin 𝛽 𝑥

− sin 𝛽 𝑥 cos 𝛽 𝑥) ,

  because sin 𝑦 = ∑+∞
𝑛=0

𝑦2𝑛+1

(2𝑛 + 1) and cos 𝑦 = ∑+∞
𝑛=0

𝑦2𝑛

(2𝑛), we obtain (3.13).

For non-canonical matrices we have to specifically determine their exponential matrix:

Lemma 4 (Matrix exponential functions for non-canonical matrices). Let matrix A be in one of
the two non-canonical forms, as in equation (3.5). Then their matrices exponential functions are:

1. If A = A𝑑, then

eAdx = 𝑒𝜆𝑥 (1  0
0 1) (3.14)

 

2. if A = Aℎ, then 4

eAℎ𝑡 = 𝑒𝛼 𝑥 (cosh (𝛽 𝑥)  sinh (𝛽 𝑥) 
sinh (𝛽 𝑥)  cosh (𝛽 𝑥) ) (3.15)

 

Proof. We know that A = PΛΛΛP−1, where ΛΛΛ is the Jordan form of A. Then eAx  = eP𝛬𝛬𝛬P−1x =
Pe�xP−1 by property (v) of Lemma 2. Matrix A = A𝑑 has two equal real eigenvalues equal to 𝜆
and, because it is diagonal it satisfies A𝑑 P𝑑 = P𝑑 A𝑑. Therefore P𝑑 = I and

eA𝑑𝑥 = P 𝑒𝜆𝑥 I P−1 = 𝑒𝜆𝑥 I.

Matrix A = Aℎ has the real spectrum 𝜎 = { 𝛼 + 𝛽, 𝛼 − 𝛽} and has eigenvector matrix

Pℎ = (1 −1
1 1 )

4Recall cosh (𝛽 𝑥)  = 1
2 (𝑒𝛽𝑥 + 𝑒−𝛽𝑥) and sinh (𝛽 𝑥)  = 1

2 (𝑒𝛽𝑥 − 𝑒−𝛽𝑥)
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  Therefore, the exponential matrix is

eAℎ𝑥 = (1 −1
1 1 ) (𝑒(𝛼+𝛽)𝑥 0

0 𝑒(𝛼+𝛽)𝑥) (1 −1
1 1 )

−1

  which, expanding the matrix multiplication, yields matrix (3.15).

Summing up, the matrix exponential function can be reduced to two formal cases:

1. if matrix A is canonical, the matrix exponential is given by equation (3.10), which depends
on the matrix exponential of its Jordan canonical form, which take one of following three
forms (3.11), (3.12), or (3.13), depending on the spectrum of A;

2. if matrix A is non-canonical, as in equation (3.5), its matrix exponential function is either
given by equation (3.14) or (3.15).

3.4 The homogeneous planar ODE

In this section we present the general solution to the homogeneous linear planar ODE, that is to
equation

∇y = A y, 𝑦 ∶ X ⊆ ℝ → Y ⊆ ℝ2. (3.16)

Proposition 1 (General solution to the homogenous ODE (3.16)).   Consider the ODE (3.16),
for any real matrix A ∈ ℝ2×2. The unique solution is the mapping ΦΦΦ ∶ X  × Y → Y ⊆ ℝ2,

y(𝑥) = ΦΦΦ(𝑥, 𝑥0, y(𝑥0)) ≡ eA (𝑥−𝑥0) y(𝑥0) for  𝑥 ≥ 𝑥0 ∈ X (3.17)

where y(𝑥0) ∈ Y is arbitrary.

Proof. We can verify that the solution to equation (3.16) is (3.17). The derivative of (3.17) satisfies,
from Lemma 2 (iii),

𝑑
𝑑𝑥y(𝑥) = 𝑑

𝑑𝑥eA (𝑥−𝑥0)y(𝑥0) = A eA (𝑥−𝑥0)y(𝑥0) = A y(𝑥),

for any real matrix A.

We see that the solution is of the form y(𝑥) = Ψ(𝑥, 𝑥0) y(𝑥0) where

Ψ(𝑥, 𝑥0) = eA (𝑥−𝑥0)

  is the matrix exponential function which encodes the dependence of the general solution of
the ODE to the independent variable 𝑥.

Next we presents the several cases for matrix Ψ(𝑥, 𝑥0), starting in subsection 3.4.1 with the
cases in which A is in the canonical Jordan form or it is a non-canonical matrix, and continuing in
subsection 3.4.2 with the general cases in which matrix A is not in the Jordan canonical form, but
is similar to a Jordan canonical form.

We will see in the next chapter that the first cases contain the fundamental types of dynamic
systems generated by planar linear ODE’s.
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3.4.1 A in a Jordan canonical form

 
Consider the ODE (3.16), such that A ∈ { ΛΛΛ1, ΛΛΛ2,ΛΛΛ3}. From results in section 3.3 the matrix

exponentials are

Ψ(𝑥) ∈ {  (𝑒𝜆−𝑥 0
0 𝑒𝜆+𝑥) , (𝑒𝜆𝑥 𝑥

0 𝑒𝜆𝑥) , 𝑒𝛼𝑥 ( cos 𝛽𝑥 sin 𝛽𝑥
− sin 𝛽𝑥 cos 𝛽𝑥) }. (3.18)

If A ∈ { A𝑑, Aℎ} the matrix exponentials are

Ψ(𝑥) ∈ { (𝑒𝜆𝑥 0
0 𝑒𝜆𝑥) , 𝑒𝛼𝑥 (cosh 𝛽𝑥 sinh 𝛽𝑥

sinh 𝛽𝑥 cosh 𝛽𝑥) }. (3.19)

We can gat more intuition if we expand equation (3.16), we have the following cases:

1. if A = ΛΛΛ1, the ODE takes the form

⎧{
⎨{⎩

𝑦′
1 = 𝜆− 𝑦1,

𝑦′
2 = 𝜆+ 𝑦2,

  and has the solution

 y(𝑥) = (𝑒𝜆−(𝑥−𝑥0) 0
0 𝑒𝜆+(𝑥−𝑥0)) y(𝑥0) = (𝑒𝜆−(𝑥−𝑥0) 𝑦1(𝑥0)

𝑒𝜆+(𝑥−𝑥0)𝑦2(𝑥0)) (3.20)

2. if A = ΛΛΛ2 , the ODE takes the form

⎧{
⎨{⎩

𝑦′
1 = 𝜆 𝑦1 + 𝑦2,

𝑦′
2 = 𝜆 𝑦2

  and has the solution

y(𝑥) = (𝑒𝜆(𝑥−𝑥0) 𝑥 − 𝑥0
0 𝑒𝜆(𝑥−𝑥0)) y(𝑥0)  = (𝑒𝜆(𝑥−𝑥0) 𝑦1(𝑥0) + 𝑦2(𝑥0) (𝑥 − 𝑥0)

𝑒𝜆(𝑥−𝑥0) 𝑦2(𝑥0) ) (3.21)

3. if A = ΛΛΛ3 , the ODE takes the form

⎧{
⎨{⎩

 𝑦′
1 = 𝛼 𝑦1 + 𝛽 𝑦2,

𝑦′
2 = −𝛽 𝑦1 + 𝛼 𝑦2;

and has the solution

y(𝑥) = 𝑒𝛼(𝑥−𝑥0) ( cos 𝛽(𝑥 − 𝑥0) sin 𝛽(𝑥 − 𝑥0)
− sin 𝛽(𝑥 − 𝑥0) cos 𝛽(𝑥 − 𝑥0)) y(𝑥0)

= 𝑒𝛼(𝑥−𝑥0) ( 𝑦1(𝑥0) cos 𝛽(𝑥 − 𝑥0) + 𝑦2(𝑥0) sin 𝛽(𝑥 − 𝑥0)
−𝑦1(𝑥0) sin 𝛽(𝑥 − 𝑥0) + 𝑦2(𝑥0) cos 𝛽(𝑥 − 𝑥0)) .

(3.22)
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The other two cases, i.e., if A = A𝑑 or A = Aℎ have obvious solutions.
Observe that, while solution (3.21) correspond to a non-generic case, at it is relative to the

case in which Δ(A) = 0, the other two cases are relative to both generic and non-generic cases.
Therefore, we can have the following non-generic cases:

1. if A = ΛΛΛ1 and det (A)  = 0,

 y(𝑥) = ( 𝑦1(𝑥0)
𝑒𝜆+(𝑥−𝑥0)𝑦2(𝑥0)) , if  trace(A)  > 0, or  y(𝑥) = (𝑒𝜆−(𝑥−𝑥0)𝑦1(𝑥0)

𝑦2(𝑥0) ) , if  trace(A)  < 0

(3.23)

2. if A = ΛΛΛ1 and det (A)  = trace(A)  = 0,

y(𝑥) = (𝑦1(𝑥0)
𝑦2(𝑥0)) (3.24)

3. if A = ΛΛΛ3 and trace(A)  = 0

y(𝑥) = ( 𝑦1(𝑥0) cos 𝛽(𝑥 − 𝑥0) + 𝑦2(𝑥0) sin 𝛽(𝑥 − 𝑥0)
−𝑦1(𝑥0) sin 𝛽(𝑥 − 𝑥0) + 𝑦2(𝑥0) cos 𝛽(𝑥 − 𝑥0)) . (3.25)

In the first two cases we observe that at least one element of y is constant, that is, depends only
on the arbitrary element 𝑥0 ∈ X. in the second case the solutions trace out circular curves in 𝑌 ,
passing through a point y(𝑥0).

3.4.2 General A matrix

 
In this section we consider any (canonical) matrix A, with the exception of cases A𝑑 and Aℎ,

in equation (3.5). Equation (3.17) provides the general solution.
The superposition principle establishes a relationship between the solution of a ODE with

a generic coefficient matrix A, and an associated ODE whose coefficient matrix is the Jordan
canonical form associated to A, which we denote by ΛΛΛ.

Lemma 5 (Superposition principle).   Consider the coefficient matrix A and let P and ΛΛΛ be its
associated eigenvector matrix and Jordan canonical form. Then, then the solution of ODE (3.35),
 with general coefficient matrix A, is

y(𝑥) = P w(𝑥), for any  𝑥 ∈ X (3.26)

  where w is the solution of the ODE w′ = ΛΛΛ w, that is w(𝑥) = Ψ(𝑥, 𝑥0) w(𝑥0) where Ψ(𝑥, 𝑥0) is
one of the matrices in equation (3.18) and w(𝑥0) = P−1  y(𝑥0).

Proof. Recall the transformation A = PΛΛΛ P−1 where matrix P is non-singular. Then equation
(3.37) yields w(𝑥) = P−1y(𝑥). Taking derivatives for 𝑥 we find w′ = 𝑑w

𝑑𝑥   = P−1 y′ = P−1 Ay =
P−1 A Py = ΛΛΛw. Equation w′ = ΛΛΛ w has solution w(𝑥) = Ψ(𝑥, 𝑥0) w(𝑥0), where Ψ(𝑥, 𝑥0) is the
form in (3.18) which is the matrix exponential for the Jordan form which is similar to A.
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We call this transformation the superposition principle because the general solution to an ODE,
with a general coefficient matrix, can be written as the sum of two general solutions. In the
particular case in which matrix A has two real distinct eigenvalues, i.e., when Δ(A) > 0, the
solution can be written as

y(𝑥) = P1 𝑤1(𝑥) + P2 𝑤2(𝑥)

  where P1 and P2 are the eigenvectors of matrix A.5 This property is useful for characterizing
the dynamics of the solution of an ODE when time is the independent variable.

An alternative form of the solution of a linear homogeneous ODE is

y(𝑥) = P Ψ(𝑥, 𝑥0) P−1  y(𝑥0), for any  𝑥, 𝑥0 ∈ X

where Ψ(𝑥, 𝑥0) is the matrix exponential associated to A which is given in equation (3.18).

3.5 Non-homogeneous equation

In this section we present solutions to the autonomous non-homogenous planar linear ODE

∇y = A y + B,   (3.27)

where B can be any real vector. In subsection 3.5.1 we assume that matrix A is in a Jordan
canonical form, that is A = ΛΛΛ where ΛΛΛ ∈ { ΛΛΛ1,ΛΛΛ2,ΛΛΛ3}, and in subsection 3.5.2 we consider an
arbitrary coefficient matrix A.

3.5.1 A in a Jordan canonical form

 
In this subsection we present the unique solutions of the planar linear ODE

 ∇y = ΛΛΛy + B. (3.28)

  It can take only one of the three expanded forms

⎧{
⎨{⎩

 𝑦′
1 = 𝜆− 𝑦1 + 𝑏1,

𝑦′
2 = 𝜆+ 𝑦2 + 𝑏2,

⎧{
⎨{⎩

 𝑦′
1 = 𝜆 𝑦1 + 𝑦2 + 𝑏1,

𝑦′
2 = 𝜆 𝑦2 + 𝑏2,

and
⎧{
⎨{⎩

 𝑦′
1 = 𝛼 𝑦1 + 𝛽 𝑦2 + 𝑏1,

𝑦′
2 = −𝛽 𝑦1 + 𝛼 𝑦2 + 𝑏2

.

To study this equation it is useful to consider its set of invariant solutions, i.e., solutions in
Y which are independent from 𝑥 ∈ 𝑛X, 

ȳ  = {y ∈ Y ∶ ΛΛΛy + B = 0}. 

  We show next that this set is non-empty, meaning invariant. solutions always exist, but it can
contain several elements, meaning that invariant solutions may not be unique.

5Recall the the eigenvector matrix is the concatenation of the those two eigenvectors, P = P1|P2.
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Lemma 6. An invariant state always exists, and has the form

ȳ  = −ΛΛΛ+ B + (I − ΛΛΛ+ ΛΛΛ) y (3.29)

where ΛΛΛ+ is the Moore-Penrose inverse of ΛΛΛ and y is an arbitrary element of Y. If det (ΛΛΛ) ≠ 0 the
invariant state is unique, and if det (ΛΛΛ) = 0 there is an infinite number of invariant states.

Proof. See (Magnus and Neudecker, 1988, p36).

The following cases are possible.
Non-degenerate case If det (ΛΛΛ) ≠ 0 then the Moore-Penrose inverse is the classical inverse,

that is
ΛΛΛ+ = ΛΛΛ−1 = adj⊤(ΛΛΛ)

det (ΛΛΛ) ,

where adj⊤(ΛΛΛ) is the transposed of the adjoint matrix ΛΛΛ. The classic inverse satisfies the property
ΛΛΛ−1 ΛΛΛ = I. Then, the invariant state is unique, and from equation (3.29), it is

ȳ = −ΛΛΛ−1 B.

  If B = 0 then the invariant state is ȳ  = 0. In both cases, the invariant state is a single point
in the set Y.

Degenerate cases If det (ΛΛΛ) = 0 then Δ(ΛΛΛ) > 0. Then all the eigenvalues are real, which
means that the Jordan matrix ΛΛΛ is diagonal, and it has at least one eigenvalue which is equal to
zero. There is one zero eigenvalue if trace(A) ≠ 0 and two zero eigenvalues if trace(A) = 0. This
means that the Jordan matrix can only be one of the following three cases

ΛΛΛ ∈ { (𝜆− 0
0 0) , (0 0

0 𝜆+
) , (0 0

0 0) }.  (3.30)

The associated Moore-Penrose inverses are

 ΛΛΛ+ ∈ { ⎛⎜
⎝

1
𝜆−

  0
0 0

⎞⎟
⎠

, ⎛⎜
⎝

0 0
0 1

𝜆+

⎞⎟
⎠

, (0 0
0 0) }. (3.31)

  Therefore, substituting those matrices in equation (3.29) we find

I − ΛΛΛ+ ΛΛΛ ∈ {  (0 0
0 1) , (1 0

0 0) , (1 0
0 1) } 

  and there is always an infinite number of invariant states depending on the arbitrary element
y ∈ Y. It is useful to consider further two possibilities: first, if trace(A) ≠ 0 from equation (3.29),
we find the invariant states are

ȳ  = ⎛⎜
⎝

− 𝑏1
𝜆−
𝑦2

⎞⎟
⎠

, or ȳ  = ⎛⎜⎜
⎝

𝑦1

− 𝑏2
𝜆+

⎞⎟⎟
⎠

. (3.32)
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  In both cases the set of invariant states defines a one-dimensional linear manifold (i.e, a line)
in the two-dimensional set Y: in the first case it is the line defined by 𝑦1 = − 𝑏1

𝜆−
(a vertical line in

a Cartesian diagram), and in the second it is the line defined by 𝑦2 = − 𝑏2
𝜆+

(a horizontal line in a

Cartesian diagram); and, second, if trace(ΛΛΛ) = 0 there is also an infinite number of invariant states

ȳ = (𝑦1
𝑦2

) = Y, (3.33)

  which means that the set of invariant states is coincident with set Y, i.e., ȳ  = Y, which we can
see as a two-dimensional manifold  (a surface).

Corollary 1. An invariant state always exists. Furthermore, it is unique if det (ΛΛΛ) ≠ 0, and there
is an infinite number if det (ΛΛΛ) = 0.

 
Next, we obtain a general form for the solution of ODE (3.28), for any matrices ΛΛΛ and B.

Proposition 2 (General solution to the non-homogenous ODE (3.28)). Consider the ODE (3.28)
for an arbitrary real vector B ∈ ℝ2. The solution to the ODE always exists and is uniquely given
by

y(𝑥) = −ΛΛΛ+  B +  eΛΛΛ (𝑥−𝑥0) (y(𝑥0) + ΛΛΛ+  B) + (I − ΛΛΛ+ ΛΛΛ) B (𝑥 − 𝑥0), for 𝑥, 𝑥0 ∈ X (3.34)

where eΛΛΛ (𝑥−𝑥0) is the appropriate matrix exponential given in equation (3.18), y(𝑥0) is an arbitrary
element of Y, associated to an arbitrary 𝑥0 ∈ X.

Proof. We start with the case in which det (ΛΛΛ)  ≠ 0. Then again, matrix ΛΛΛ has a unique classical
inverse, ΛΛΛ+ = ΛΛΛ−1, which implies that ȳ = −ΛΛΛ−1 B and I  − ΛΛΛ+ΛΛΛ = 0. Define z(𝑥) = y(𝑥) − ȳ
where y is given in equation (3.29). Then ∇z = ∇y = ΛΛΛ y + B = ΛΛΛ (y −  ȳ ) = ΛΛΛ z, yields a
homogenous ODE ∇z = ΛΛΛ z, whose solution is, from equation (3.17), z(𝑥) = 𝑒ΛΛΛ(𝑥−𝑥0)z(𝑥0). Going
back to the original variables we have

y(𝑥) = −ΛΛΛ−1 B + 𝑒ΛΛΛ(𝑥−𝑥0) (y(𝑥0) + ΛΛΛ−1 B)

   If det (A) = 0 the coefficient matrix takes one of the forms in equation (3.30). Therefore, the
ODE’s can take one of the following forms

⎧{
⎨{⎩

𝑦′
1 = 𝜆− 𝑦1 + 𝑏1,

𝑦′
2 = 𝑏2,  

⎧{
⎨{⎩

𝑦′
1 = 𝑏1,

𝑦′
2 = 𝜆+ 𝑦2 + 𝑏2,  

or 
⎧{
⎨{⎩

𝑦′
1 = 𝑏1,

𝑦′
2 = 𝑏2.  

  Using the results for the scalar ODE, the solutions are

 
⎧{
⎨{⎩

𝑦1(𝑥) = − 𝑏1
𝜆−

  + 𝑒𝜆−(𝑥−𝑥0) (𝑦1(𝑥0) + 𝑏1
𝜆−

)

𝑦2(𝑥) = 𝑦2(𝑥0) + 𝑏2 (𝑥 − 𝑥0)  

⎧{
⎨{⎩

𝑦1(𝑥) = 𝑦1(𝑥0) + 𝑏1 (𝑥 − 𝑥0)
𝑦2(𝑥) = − 𝑏2

𝜆+
+ 𝑒𝜆+(𝑥−𝑥0) (𝑦2(𝑥0) + 𝑏2

𝜆+
)

or 

⎧{
⎨{⎩

𝑦1(𝑥) = 𝑦1(𝑥0) + 𝑏1 (𝑥 − 𝑥0)
𝑦2(𝑥) = 𝑦2(𝑥0) + 𝑏2(𝑥 − 𝑥0).  
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  If we consider that: first, the invariant states in the first and second cases are the same we
obtained in equation (3.32) , for the first two cases, and (3.33) for the third case; second, the
exponential matrices are, respectively

(𝑒𝜆−𝑥 0
0 1) , (1 0

0 𝑒𝜆+𝑥) , or (1 0
0 1) ;

  third, their Jordan matrices in equation (3.30); and, at last, their Moore-Penrose inverses iin
equation (3.31), then we see that equation (3.34) is the matrix form encompassing all cases.

If det (A) ≠ 0 then the solution can be written as

y(𝑥) = ȳ + Ψ(𝑥, 𝑥0) (y(𝑥0) − ȳ), 𝑥, 𝑥0 ∈ X

  where ȳ  = −ΛΛΛ−1  B is the unique invariant state, and Ψ(𝑥, 𝑥0) = 𝑒ΛΛΛ(𝑥−𝑥0) is the matrix expo-
nential.

3.5.2 Generic A matrix

 
In this section we solve the general planar ODE

∇y = Ay + B (3.35)

where matrix A is not necessarily in a Jordan canonical form and B can be any real vector. This
covers both the homogenous case in which B = 0 and the non-homogeneous case in which B ≠ 0.

Proposition 3 (Invariant state for the non-homogenous ODE (3.35)). invariant states for equation
(3.35) exist and are given by

 ȳ = −A+ B + (I − A+ A) y, (3.36)

where A+ = PΛΛΛ+ P−1 is the Moore-Penrose inverse of A, and y is an arbitrary element of Y.

Proof. Multiplying equation (3.37) by P we get

ȳ  = P w̄
= −PΛΛΛ+ P−1 B + P(I − ΛΛΛ+ ΛΛΛ) w(0)
= −𝐴+ B + P(I − ΛΛΛ+ ΛΛΛ) P−1 y(0)
= −𝐴+B + (P P−1 − PΛΛΛ+ ΛΛΛ P−1 ) y(0)
= −𝐴+B + (I − A+ P P−1  A) y(0)
= −𝐴+B + (I − A+  A) y(0)

 

In order to find the solution of the ODE (3.35), we start by presenting two useful results:
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Lemma 7. Consider the coefficient matrix A and let P and ΛΛΛ be its associated eigenvector matrix
and Jordan canonical form. Then, the ODE (3.35) with general coefficient matrix A can be
transformed into an ODE with coefficient matrix ΛΛΛ

y(𝑥) = P w(𝑥) (3.37)

  where P is the eigenvector matrix associated to A and w(𝑥) is the solution of the ODE

∇w = ΛΛΛ w + P−1 B (3.38)

Proof. Recall that any matrix satisfies A = PΛΛΛ P−1 where matrix P is non-singular. Then we can
introduce a unique linear transformation w(𝑥) = P−1y(𝑥). Then

∇w = P−1 ∇y = P−1 (Ay + B) = ΛΛΛP−1y + P−1B = ΛΛΛw + P−1B.
 

Lemma 8. The solution to the ODE transformed coordinates w, equation (3.38) is

w(𝑥) = w̄  + eΛΛΛ(𝑥−𝑥0)(w(𝑥0) − w̄) + (I − ΛΛΛ+ ΛΛΛ) P−1 B (𝑥 − 𝑥0) (3.39)

  where
w̄  = −ΛΛΛ+ P−1 B + (I − ΛΛΛ+ ΛΛΛ) w(0)

  and w(𝑥0) = P−1 y(𝑥0) for an arbitrary y(𝑥0).
Proof. ODE (3.38) is a non-homogeneous ODE in which the coefficient matrix is in the Jordan
canonical form. Comparing with equation (3.28) we find that instead of B we now have P−1B. By
performing this substitution in the solution to the last ODE, in equation (3.34) we find the solution
of the transformed ODE in equation (3.39).

The general solution to equation (3.35) exists and is uniquely given in the next proposition:

Proposition 4 (Solution for the non-homogenous ODE (3.35)). Consider the ODE (3.35) for any
matrix A ∈ ℝ2×2 and vector B ∈ ℝ2. The solution to the ODE always exist and is uniquely given
by

y(𝑥) = ȳ +  eA (𝑥−𝑥0) (y(𝑥0) − ȳ) + (I − A+ A) B (𝑥 − 𝑥0), for 𝑥, 𝑥0 ∈ X, (3.40)

where the invariant state ȳ is given in equation (3.36), and y(𝑥0) is an arbitrary element of y for
𝑥 = 𝑥0.

Proof. Multiplying equation (3.37) by P we get the inverse transformation y(𝑥) = P w(𝑥). Using
the solution for the transformed variables in equation (3.39) yields

𝑦(𝑥) = P w̄ + PeΛΛΛ(𝑥−𝑥0)(w(0) − w̄) + P(I − ΛΛΛ+ ΛΛΛ) P−1 B (𝑥 − 𝑥0)
= ȳ  + PeΛΛΛ(𝑥−𝑥0)P−1(y(𝑥0) − ȳ) + P(I − ΛΛΛ+ ΛΛΛ) P−1 B (𝑥 − 𝑥0)
= ȳ + 𝑒A(𝑥−𝑥0)(y(0) − ȳ) + (I − PΛΛΛ+ ΛΛΛ P−1 ) B (𝑥 − 𝑥0)

  which gives equation (3.40).

Next we present the specific forms for the ODE (3.35).
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Solutions for det (A)  ≠ 0 cases

If det (A)  ≠ 0 then A+ = A−1 then there is a unique invariant state

̄𝑦 = −A−1 B.

  Expanding the previous formula, we have

( ̄𝑦1
̄𝑦2
) = − 1

det (A)   ( 𝑎22 𝑏1 − 𝑎12 𝑏2
−𝑎21 𝑏1 − 𝑎11 𝑏2

) .

  The solution (3.40) takes the particular form

 y(𝑥) = ȳ  + eA(𝑥−𝑥0) (y(𝑥0) − ȳ), (3.41)

  where eA𝑡 = P eΛΛΛ𝑡 P−1, where eΛΛΛ𝑡 is the matrix exponential of the Jordan canonical form which
is similar to A. It is useful in applications to write the solution (3.41) as

y(𝑥) = y + P eΛΛΛ𝑥 k(𝑥0)

where k(𝑥0) = P−1(y(𝑥0) − ȳ). Writing the eigenvector matrix P as 6 

P = P−|P+  = ( 𝑃 −
1 𝑃 +

1
𝑃 −

2 𝑃 +
2

) ,  

then

k(𝑥0) = (𝑘1(𝑥0)
𝑘2(𝑥0)) = 1

det (P)   ( 𝑃 +
2 −𝑃 +

1
−𝑃 −

2 𝑃 −
1

) (𝑦1(𝑥0) − 𝑦1
𝑦2(𝑥0) − 𝑦2

) .

in which y(𝑥0) is an arbitrary element of y for 𝑥 = 𝑥0.
Then the solution for the non-degenerate cases can take the following forms

1. If Δ(A) > 0 then the Jordan canonical form of matrix A is ΛΛΛ1 and the general solution is

y(𝑥) = y + 𝑘1(𝑥0) P− 𝑒𝜆−(𝑥−𝑥0) + 𝑘2(𝑥0) P+ 𝑒𝜆+(𝑥−𝑥0)

where P− (P+) is the simple eigenvector associated with 𝜆− (𝜆+). More specifically

( 𝑦1(𝑥)
𝑦2(𝑥) ) = (𝑦1

𝑦2
) + 𝑘1(𝑥0)  (𝑃 −

1
𝑃 −

2
) 𝑒𝜆−(𝑥−𝑥0) + 𝑘2(𝑥0)   (𝑃 +

1
𝑃 +

2
) 𝑒𝜆+(𝑥−𝑥0). (3.42)

 

2. If Δ(A) = 0 then the Jordan canonical form of matrix A is ΛΛΛ2. The general solution is

y(𝑥) = y + 𝑒𝜆(𝑥−𝑥0) (P1(𝑘1(𝑥0) + 𝑘2(𝑥0) (𝑥 − 𝑥0)) + 𝑘2(𝑥0) P2)

where P1 is a simple eigenvector and P2 is a generalized eigenvector (see the Appendix), or,
equivalently

(𝑦1(𝑥)
𝑦2(𝑥)) = (𝑦1

𝑦2
) + 𝑒𝜆(𝑥−𝑥0) ((𝑘1(𝑥0) + 𝑘2(𝑥0) (𝑥 − 𝑥0))  (𝑃 −

1
𝑃 −

2
) + 𝑘2(𝑥0)  (𝑃 +

1
𝑃 +

2
))

6Recall that P𝑗 is the solution of the homogeneous system (A − 𝜆𝑗I) P𝑗 = 0.
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3. If Δ(A) < 0 then the Jordan canonical form of matrix A is ΛΛΛ3. The general solution is

y(𝑥) =y + 𝑒𝛼(𝑥−𝑥0)((𝑘1(𝑥0) cos 𝛽(𝑥 − 𝑥0) + 𝑘2(𝑥0) sin 𝛽(𝑥 − 𝑥0))P1+

+ (𝑘2(𝑥0) cos 𝛽(𝑥 − 𝑥0) − 𝑘1(𝑥0) sin 𝛽(𝑥 − 𝑥0))P2).

  where P is a eigenvector (see the Appendix for the determination of the eigenvector matrix
in the case in which the eigenvectors are complex) or, equivalently,

  ( 𝑦1(𝑥)
𝑦2(𝑥) ) = (𝑦1

𝑦2
) + 𝑒𝛼(𝑥−𝑥0){  𝑘1(𝑥0) (𝑃 1

1 cos 𝛽(𝑥 − 𝑥0) − 𝑃 2
1 sin 𝛽(𝑥 − 𝑥0)

𝑃 1
2 cos 𝛽(𝑥 − 𝑥0) − 𝑃 2

2 sin 𝛽(𝑥 − 𝑥0)) +

+  𝑘2(𝑥0) (𝑃 1
1 sin 𝛽(𝑥 − 𝑥0) + 𝑃 2

1 cos 𝛽(𝑥 − 𝑥0)
𝑃 1

2 sin 𝛽(𝑥 − 𝑥0) + 𝑃 2
2 cos 𝛽(𝑥 − 𝑥0)) }.

Solutions for det (A)  = 0 cases

Degenerate cases occur for det (A)  = 0 implying that A+ ≠ A−1 and that the Jordan canonical
form is diagonal (i.e, of type ΛΛΛ1 in which one or two of the eigenvalues are equal to zero).

As A = PΛΛΛ P−1 then A+ = PΛΛΛ+ P−1 and A+ A = PΛΛΛ+ P−1 PΛΛΛ P−1 = PΛΛΛ+ ΛΛΛ P−1 where
ΛΛΛ is one of the Jordan forms in equation (3.30) and ΛΛΛ+ is the associated the Moore-Penrose in
equation (3.31), depending on the trace being trace(A) ≠ 0 or trace(A) = 0.

First observe that (3.40) can be expanded as

y(𝑥) = −PΛΛΛ+ P−1 B +  eA (𝑥−𝑥0) (y(0) + PΛΛΛ+ P−1 B) + (I − PΛΛΛ+ ΛΛΛ P−1) B (𝑥 − 𝑥0),

  where we can see that there are some components which are independent from the particular
Jordan form in equation (3.30) and others which depend on the particular Jordan form.

For the first case we have B̃ = P−1 B and w(0) = P−1 y(0), and write their expansion as

B̃ = (�̃�−
�̃�+

)   = 1
det (P) (−𝑃 −

2 𝑏1 + 𝑃 −
1 𝑏2

𝑃 +
2 𝑏1 − 𝑃 +

1 𝑏2
)

  and

w(𝑥0) = (𝑤−(𝑥0)
𝑤+(𝑥0))   = 1

det (P) (−𝑃 −
2 𝑦1(𝑥0) + 𝑃 −

1 𝑦2(𝑥0)
𝑃 +

2 𝑦1(𝑥0) − 𝑃 +
1 𝑦2(𝑥0) )

  For the second case we have, if 𝜆− < 0 = 𝜆+,

I − PΛΛΛ+ ΛΛΛ P−1 = 1
det (P) (−𝑃 −

2 𝑃 +
1 𝑃 −

1 𝑃 +
1

−𝑃 −
2 𝑃 +

2 𝑃 −
1 𝑃 +

2
)

  for the case in which 𝜆− = 0 < 𝜆+ we have

I − PΛΛΛ+ ΛΛΛ P−1 = 1
det (P) (𝑃 +

2 𝑃 −
1 −𝑃 +

1 𝑃 −
1

𝑃 +
2 𝑃 −

2 −𝑃 +
1 𝑃 −

2
)

  and for 𝜆− = 𝜆+ = 0 we have I − PΛΛΛ+ ΛΛΛ P−1 = I.
Therefore the solutions become
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1. if 𝜆− < 0 = 𝜆+

y(𝑥) = P+𝑤+(𝑥0) − P− �̃�−
𝜆−

+ (𝑃 −
1 𝑒𝜆−(𝑥−𝑥0)

𝑃 −
2

) (𝑤−(𝑥0) +  
̃𝑏−

𝜆−
) − P+ ̃𝑏+ 

 

2. if 𝜆− = 0 < 𝜆+

y(𝑥) = P−𝑤−(𝑥0) − P+ �̃�+
𝜆+

+ ( 𝑃 +
1

𝑃 +
2 𝑒𝜆+(𝑥−𝑥0)) (𝑤+(𝑥0) +  

̃𝑏+
𝜆+

) − P− ̃𝑏− 

 

3. for 𝜆− = 𝜆+ = 0
y(𝑥) = P (w(𝑥0) − �̃�−). 

 

 

3.6 Applications

 

3.6.1 A firm’s allocation of sales across locations

Consider the problem a firm located at 𝑥 = 0, producing the quantity 𝜇, wants to distributed in a
circular area of given length 𝐿, X = [− 𝐿

2 , 𝐿
2 ]. The firm is a price taker has faces two types of costs

when trying to moving output: it has a quadratic investment cost to be able to set up a network
of stores, etc; and second has a transport cost which is proportional to the output to be displaced.
Denoting by 𝑦(𝑥) the sales at location 𝑥 and by 𝑢(𝑥) the investment cost to be able to delivery to
location 𝑥, and it the firm wants to maximize the profit, the firm’s problem becomes:

 

max
𝑢(⋅)

  ∫
𝐿/2

−𝐿/2

  𝑝 𝑦(𝑥) − 1
2 (𝑢(𝑥))2 𝑑𝑥

subject to 
𝑦′(𝑥) = 𝑢(𝑥) − 𝛿 𝑦(𝑥)

∫
𝐿/2

−𝐿/2

𝑦(𝑥) 𝑑𝑥 = 𝜇

𝑦(−𝐿
2 ) = 𝑦(𝐿

2 )

(3.43)

The optimality conditions are (see chapter on optimal control)

⎧{{{
⎨{{{⎩

𝑦′(𝑥) = 𝑢(𝑥) − 𝛿 𝑦(𝑥) for  𝑥 ∈ X

𝑢′(𝑥) = 𝑢(𝑥) − 𝑝, for  𝑥 ∈ X

∫𝐿/2

−𝐿/2
𝑦(𝑥) 𝑑𝑥 = 𝜇, for  𝑥 ∈ X

𝑦(−𝐿
2 ) = 𝑦(𝐿

2 ) for  𝑥 ∈ {−𝐿
2 , 𝐿

2  }. 
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  Next, we want to use the previous theory to finding the solution to this problem. First, we write
the planar differential equation in matrix form

( 𝑦′(𝑥)
𝑢′(𝑥)) = (  − 𝛿 1

0 𝛿) + (  0
−𝑝)

The coefficient matrix has det = −𝛿2 and therefore is non-singular. Its Jordan canonical form and
eigenvector matrix is

ΛΛΛ = (  − 𝛿 0
0 𝛿) , P = ( 1 1

0 2 𝛿)

Furthermore, the invariant state is

(  ̄𝑦 
�̄� ) = −A−1  B = 𝑝

𝛿2   ( 1
𝛿 )

  Taking 𝑥0 = 0, the general solution for the planar differential equations is, using (3.42) because
our ODE is non-homogeneous and non-singular

( 𝑦(𝑥)
𝑢(𝑥)) = 𝑝

𝛿2 ( 1
𝛿 ) + 𝑘1 ( 1

0 ) 𝑒−𝛿 𝑥  + 𝑘2 (  1
2 𝛿) 𝑒𝛿 𝑥 

where 𝑘1 and 𝑘2 are arbitrary constants.
To find the particular solution, i.e., to determine the values for the arbitrary constants 𝑘1 and

𝑘2 we use the two side-conditions, which only involve the variable 𝑦(⋅)
Using the first side-condition we find

∫
𝐿/2

−𝐿/2

𝑦(𝑥) 𝑑𝑥 = 𝜇 ⟺ 𝑝 𝐿
𝛿2 + 𝑘1

𝛿  (𝑒𝛿𝐿/2 −  𝑒−𝛿𝐿/2) + 𝑘2
𝛿  (𝑒𝛿𝐿/2 −  𝑒−𝛿𝐿/2) = 𝜇.

and, using the second side-condition yiedls

𝑦(−𝐿
2 ) = 𝑦(𝐿

2 ) ⟺ 𝑘1 = 𝑘2.

Therefore,

𝑘1 = 𝑘2 = 𝜇𝛿2 − 𝑝 𝐿
2 𝛿 (𝑒𝛿 𝐿/2 − 𝑒−𝛿 𝐿/2)

−1
.

Them optimal distribution of output accross region X is

𝑦∗(𝑥) = 𝑝
𝛿2   + 𝜇𝛿2 − 𝑝 𝐿

2 𝛿 ( 𝑒−𝛿 𝑥  + 𝑒𝛿 𝑥

𝑒𝛿 𝐿/2 − 𝑒−𝛿 𝐿/2
) (3.44)

  which is illustrated in Figure 3.2 for particular values of the parameters.
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Figure 3.2: Solution, in equation (3.44) for 𝑝 = 1, 𝛿 = 0.5, 𝐿 = 4 and 𝜇 = 5.

3.7 References

Mathematics: Perko (1996) 
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3.A Appendix

3.A.1 Review of matrix algebra

Consider matrix A of order 2 with real entries

A = (𝑎11 𝑎12
𝑎21 𝑎22

)

  that is A ∈ ℝ2×2. The trace  and the determinanx  of A are, respectively,

trace(A) = 𝑎11 + 𝑎22, det (A) = 𝑎11𝑎22 − 𝑎12𝑎21.

  The kernel (or null space) of matrix A is a vector v defined as

kern(A) = { v ∶ Av = 0}

  The dimension of the kernel gives a measure of the linear independence between the rows of A.
The characteristic polynomial of matrix A is

det (A − 𝜆I2) = 𝜆2 − trace(A)𝜆 + det (A) (3.45)

where 𝜆 ∈ ℂ is an eigenvalue, which is complex valued.
The spectrum of A is the set of eigenvalues

𝜎(A) ≡ {  𝜆 ∈ ℂ ∶ det (A − 𝜆I2)  = 0} 

  The eigenvalues of any 2 × 2 matrix A are

𝜆+ = trace(A)
2 + Δ(A) 1

2 , 𝜆− = trace(A)
2 − Δ(A) 1

2 (3.46)

where the discriminant is

Δ(A) ≡ (trace(A)
2 )

2
− det (A).

A useful result on the relationship between the eigenvalues and the trace and the determinant
of A:

Lemma 9. Let 𝜆+ and 𝜆− be the eigenvalues of a 2 × 2 matrix A. Then they are verify:

𝜆+ + 𝜆− = trace(A)
𝜆+𝜆− = det (A).

Three cases can occur:

1. if Δ(A) > 0 then 𝜆+ and 𝜆− are real and distinct and 𝜆+ > 𝜆−

2. if Δ(A) = 0 then 𝜆+ = 𝜆− = 𝜆 = trace(A)/2 are real and multiple,
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3. if Δ(A) < 0 then 𝜆+ and 𝜆− are complex conjugate 𝜆+ = 𝛼 + 𝛽𝑖 and 𝜆− = 𝛼 − 𝛽𝑖 where
𝛼 = tr(𝐴)

2 and 𝛽 = √|Δ(A)| and 𝑖 =
√

−1.

In the last case, we can write the eigenvalues in polar coordinates as

𝜆+ = 𝑟(cos 𝜃 + sin 𝜃𝑖), 𝜆− = 𝑟(cos 𝜃 − sin 𝜃𝑖)

where 𝑟 = √𝛼2 + 𝛽2 and tan 𝜃 = 𝛽/𝛼, or

𝛼 = 𝑟 cos 𝜃, 𝛽 = 𝑟 sin 𝜃

Jordan canonical forms Two matrices A and A′ with the equal eigenvalues are called similar.
This allows for classifying matrices according to their eigenvalues.

The Jordan canonical forms for 2 × 2 matrices are

ΛΛΛ1 = (𝜆− 0
0 𝜆+

) , ΛΛΛ2 = (𝜆 1
0 𝜆) , ΛΛΛ3 = ( 𝛼 𝛽

−𝛽 𝛼) . (3.47)

Lemma 10 (Jordan canonical from of matrix A). Consider any 2 × 2 matrix with real entries and
its discriminant Δ(A). Then

1. If Δ(A) > 0 then the Jordan canonical form associated to A is ΛΛΛ1.

2. If Δ(A) = 0 then the Jordan canonical form associated to A is ΛΛΛ2.

3. If Δ(A) < 0 then the Jordan canonical form associated to A is ΛΛΛ3.

The Jordan canonical form ΛΛΛ3 can also be represented by a diagonal matrix with complex entries

ΛΛΛ3 = (𝛼 + 𝛽𝑖 0
0 𝛼 − 𝛽𝑖) .

  In this sense, if Δ(A) ≠ 0 then matrix A is diagonalizable and it is not diagonalizable if Δ(A) = 0.
Figure 3.1 presents the different cases in a (trace(A), det(A)) diagram.

It has the following information:

• Jordan canonical forms are associated to the following areas: ΛΛΛ1 is outside the parabola; ΛΛΛ3
is inside the parabola, and ΛΛΛ2 is represented by the parabola;

• in the positive orthant the two eigenvalues have positive real parts, in the negative orthant
they have negative real parts and bellow the abcissa there are two real eigenvalues with
opposite signs;

• the abcissa corresponds to the locus of points in which there is at least one zero-valued
eigenvalue, the upper part of the ordinate corresponds to complex eigenvalues with zero real
part, and the origin to the case in which there are two eigenvalues equal to zero.
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Eigenvectors of A

Lemma 11. Let A be a 2 × 2 matrix with real entries. Then, there exists a non-singular matrix
P such that

A = PΛΛΛP−1

where ΛΛΛ is the Jordan canonical form of A, and matrix P is a 2×2 eigenvector matrix associated
to A.

There are two types of eigenvectors:

1. simple eigenvectors if Δ(A) ≠ 0. In this case the eigenvector is P = (P−, P+) concatenat-
ing the eigenvectors P− and P+ associated to the eigenvalues 𝜆+ and 𝜆−, which are obtained
from solving the homogeneous system

 (A − 𝜆𝑗I2)P𝑗 = 0, 𝑗 = 1, 2

  where I2 is the identity matrix of order 2. Observe that P𝑗 = kern(A − 𝜆𝑗I2), i.e, it is the
null space of matrix (A − 𝜆𝑗I2);

2. generalized eigenvectors if Δ(A) = 0, that is, when we have multiple eigenvalues 𝜆+ =
𝜆− = 𝜆. In this case we determine P = (P1, P2) where P1 is a simple eigenvalue and P2 is a
generalized eigenvalue. They are obtained in the following way: first, P1 solves (A−𝜆I)P1 =
0, where I = I2; second, (a) if (A−𝜆I)2 ≠ 0 we determine P2 from (A−𝜆I)2P2 = 0; however,
(b) if (A − 𝜆I)2 = 0 then we determine P2 from (A − 𝜆I)P2 = P1.

When Δ(A) < 0 we can use one of the following two approaches:

1. either we write the Jordan matrix as a complex-valued matrix

Λ3 = (𝛼 + 𝛽𝑖 0
0 𝛼 − 𝛽𝑖)

  and compute P𝑗 as a complex-valued vector from

 (A − 𝜆𝑗I2)P𝑗 = 0,

 

2. or we write the Jordan matrix as a real-valued matrix as in equation (3.47) and compute
P as a real-valued matrix by setting P = (u, v) where Q = u + v𝑖 is the solution of the
homogeneous system

(A − (𝛼 + 𝛽𝑖)I2)Q = 0

 

Conclusion: given a matrix A, we can find matrices ΛΛΛ and P such that A = PΛP−1 where P
is invertible. Equivalently Λ = P−1AP.
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Proposition 5. The eigenvector matrices associated to the Jordan canonical forms are:

( 1 0
0 1) , (1 1

0 1) , ( 1 1
−1 1) (3.48)

for Λ = ΛΛΛ1, ΛΛΛ = ΛΛΛ2 and ΛΛΛ = ΛΛΛ3, respectively

Proof. For ΛΛΛ = ΛΛΛ1, because (ΛΛΛ1 − 𝜆+I)P− = 0 and (ΛΛΛ1 − 𝜆−I)P+ = 0 are

(0 0
0 𝜆− − 𝜆+

) (𝑃 −
1

𝑃 −
2

) = (0
0) , (𝜆+ − 𝜆− 0

0 0) (𝑃 +
1

𝑃 +
2

) = (0
0)

then we get P = (P−P+) = I, because 𝜆+ ≠ 𝜆−. For ΛΛΛ = ΛΛΛ2 we determine the simple eigenvector
from (ΛΛΛ2 − 𝜆I)P− = 0. To determine the second eigenvector as (𝜆− − 𝜆I)2 = 0, because

(𝜆− − 𝜆I)2 = (0 1
0 0)

2

= (0 0
0 0) ,

then we use (ΛΛΛ2 − 𝜆I)P2 = P1,

(0 1
0 0) (𝑃 −

1
𝑃 −

2
) = (0

0) , (0 1
0 0) (𝑃 +

1
𝑃 +

2
) = (𝑃 −

1
𝑃 −

2
) ,

to get P1 = (1, 0) and P2 = (1, 1).
For ΛΛΛ = ΛΛΛ3 consider eigenvalue 𝜆+ = 𝛼 + 𝛽𝑖 and assume that there is a complex vector

z = (𝑢1 + 𝑣1𝑖
𝑢2 + 𝑣2𝑖)

that solves (Λ3 − (𝛼 + 𝛽𝑖)𝐼)z = 0, that is 7

⎧{
⎨{⎩

𝛽 (𝑢2 + 𝑣1 + (𝑣2 − 𝑢1)𝑖) = 0
𝛽 ((𝑣2 − 𝑢1) − (𝑢2 + 𝑣1)𝑖) = 0

then we should have 𝑢1 = 𝑣2 and 𝑢2 = −𝑣1. We can arbitrarily set 𝑢1 = 1 and 𝑣1 = 1, in
P1 = (𝑢1, 𝑢2)⊤ and P2 = (𝑣1, 𝑣2)⊤, to get the third eigenvector matrix.

 

Eigenspaces As matrix P is non singular it forms a basis for vector space A. Then vector space
A can be seen as a direct sum A = ℰ1 ⊕ ℰ2 where

ℰ1 = {eigenspace associated with 𝜆+}
ℰ2 = { eigenspace associated with 𝜆−}. 

7We use the rules for sums and multiplications of complex numbers: if 𝑥1 = 𝑎1 + 𝑏1𝑖 and 𝑥2 = 𝑎2 + 𝑏2𝑖, then
𝑥1 + 𝑥2 = (𝑎1 + 𝑎2) + (𝑏1 + 𝑏2)𝑖 and 𝑥1𝑥2 = (𝑎1𝑎2 − 𝑏1𝑏2) + (𝑎1𝑏2 + 𝑎2𝑏1)𝑖 because 𝑖2 = −1.



Chapter 4

Planar linear autonomous ODE
dynamics

4.1 Introduction

This chapter considers planar linear autonomous ordinary differential equations having time as the
independent variable. In th eprevious chapter, we have already presented complete analytical, or
explicit, solutions to this equation for a generic independent variable. In this chapter we present
a qualitative (or geometric) characterization of its solution. This also constitutes an introduction
to the ODE approach to dynamic systems, which has an important branch in applied mathematics
and is crucial for the understanding of economic dynamics.

Knowledge of the dynamics of the linear planar ODE is not only interesting per se, but also
because, from the Grobman-Hartmann theorem (see chapter on non-linear ODEs), it provides
conditions under which the dynamics of non-linear ODEs can be (at least locally) qualitatively
characterized from the properties of an associated linear ODE.

A large proportion of dynamic systems in economics are either linear or have a dynamics which is
topologically equivalent to a linear ODE. In particular, we will see that a thorough characterizations
of the solution to optimal control problems, which cannot be obtained explicitly in most models,
can be achieved by linearization, i.e., by approximating unknown solutions by solutions provided
by an equivalent linear ODE.

Planar ODEs feature some new types of dynamics, when compared to the scalar case: first,
although asymptotic stability and (global) instability cases can exist, as in the scalar case, the
existence of saddle point dynamics (or conditional stability) is a new type of dynamics for the
planar case; second in addition to monotonic solution paths, as in the scalar case, several types of
non-monotonic solution paths can exist in the planar case. The saddle-point case is a very common
type of dynamics in both macroeconomics and growth theory and charaterizes solutions of most
optimal control problems.

The general (autonomous) linear planar ordinary differential equation, is a linear func-
tional equation over the two-dimensional variable over the set T ⊆ ℝ+, y ∶ T → ℝ2, and its

28
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derivative, ̇𝑦 ∶ T → ℝ2, where T = [𝑡0, ∞), usually 𝑡0 = 0, where

y(𝑡) = (𝑦1(𝑡)
𝑦2(𝑡)) , ẏ(𝑡) ≡ ( ̇𝑦1(𝑡)

̇𝑦2(𝑡)) ,

In explicit matrix form, the ODE is

ẏ = Ay + B, y ∶ T ⊆ ℝ+ → y ⊆ ℝ2. (4.1)

where A ∈ ℝ2×2, is areal values matrix, and B ∈ ℝ2×1 is a real valued vector

A ≡ (𝑎11 𝑎12
𝑎21 𝑎22

) , B ≡ (𝑏1
𝑏2

) .  (4.2)

 
We showed in chapter 3 that an explicit solution to the ODE always exists, and can take one

of the two following general forms. First. if if det (A)  ≠ 0 there is an unique stationary (i.e.,
time-independent solution) ȳ  = −A−1  B, if ȳ  ∈ Y, such that

 y(𝑡) = ΦΦΦ(𝑡; 𝑡0, y(𝑡0); A, B) ≡ ȳ  + eA(𝑡−𝑡0) (y(𝑡0) − ̄𝑦), (4.3)

  where 𝑡0 is an arbitrarily fixed point in time and y(𝑡0) ∈ Y is an arbitrary value associated with
𝑡 = 𝑡0 Second, if det (A)  = 0 the solution is

 y(𝑡) = ΦΦΦ(𝑡; 𝑡0, y(𝑡0); A, B) ≡ ȳ  + eA(𝑡−𝑡0) (y(𝑡0) − ̄𝑦) + (I − A+ A)B(𝑡 − 𝑡0) (4.4)

where ȳ  = −A+ B + (I − A+ A)y(𝑡0) and A+  = PΛΛΛ+ P−1, where ΛΛΛ+ is the Moore-Penrose
inverse of the Jordan canonical form associated with A. In this case, there is either an infinite
number of steady states or a steady state does not exist.

Equations (4.3) or (4.4) are also called general solution to the ODE. They trace out a family of
trajectories (y(𝑡))

T
, which have three main features that will concern us in the rest of this chapter.

First, the type of of its behavior over time, which is detremined by the the algebraic properties of
matrix A. Second, the location, and sometimes the existence, of steady states, which also depends
on vector B. At last, its consistency and dependence from the side-conditions regarding the pair
(𝑡, y(𝑡)) = (0, y(0)), which should be introduced when we specify a model, or a problem which
encompassses the ODE.

As we saw, a solution to the ODE always exists and are unique, and solutions to problems
involving ODEs always exist but may not be unique.

For scalar ODE’s, we saw that for going from general solutions to particular solutions, which
are completely specified functions, we have to introduce one side condition. When time is an in-
dependent variable, the side condition took the form of an initial or a terminal condition. For
planar ODE’s obtaining particular solutions, or completely specified solutions, we need to in-
troduce two  side conditions. If the two side conditions involve known values at time 𝑡0 = 0, as
y(𝑡0) = y0, we say we have an initial-value problem, if there is one side condition for the initial
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value and another for the terminal (if 𝑇 is finite) or asymptotic (if 𝑇 → ∞) the problem can be
called mixed-value problem, and if the two conditions are on the terminal or asymptotic state
we can call it terminal-value problem.1  The previous ODE’s can be called forward, backward,
and forward-backward equations, respectively.

In most of this chapter we consider instead equation (4.1) in the expanded form

̇𝑦1 = 𝑎11𝑦1 + 𝑎12𝑦2 + 𝑏1

̇𝑦2 = 𝑎21𝑦1 + 𝑎22𝑦2 + 𝑏2.
(4.5)

This chapter proceeds as follows. In section 4.2 we present the geometrical approach to solving
linear planar ODEs. In section 4.3 the algebraic solutions of the ODE is characterized from the
eigenvalues of matrix A, section 4.4 is a brief introduction to bifurcation analysis, section 4.5 shows
how to transform second order scalar ODEs into a linear planar ODE. The last two sections present
the main types of ODE problems, in section 4.6, and the main structures of problem in economics,
in section 4.7.

 

4.2 The geometry of planar ODE’s

 
The geometric approach for solving ODE consists in drawing a phase diagram. As for scalar

ODE’s a geometrical representation by a phase diagram is a way characterizing the qualitative
properties of the solution in the space Y. Indeed is a way of ”solving” the ODE equation without
performing algebraic or numerical computations.

Figure 4.1 and table 4.1 present all possible phase diagrams for a planar linear autonomous
ODE, which is called a bifurcation diagram, whose detailed derivation is one of the purposes of
this chapter. A bifurcation diagram represents all the possible phase diagrams which an ODE can
have, depending on the values of its parameters.

A phase diagram for planar autonomous ODE is a geometrical representation of the dynamics
in the two-dimensional space Y ⊆ ℝ2. It contains the following elements:

1. isoclines (or nullclines)  are the geometrical loci in the space Y such that one of the
variables 𝑦1 or 𝑦2 is constant. There are two isoclines, the first associated to 𝑦1 and the
second associated with 𝑦2

𝕀𝑦1
= { y ∈ Y ∶ ̇𝑦1 = 0}, and 𝕀𝑦2

= { y ∈ Y ∶ ̇𝑦2 = 0}.

Looking at equation (4.5) it should be evident that every isocline is a line in the space Y.
The steady states are the locus or loci where isoclines intersect or are coincident;

1If the independent variable is not time the last two cases are usually called boundary-value problems.
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detA

tr(A)

∆(A)=0 ∆(A)=0

saddle

stable node unstable node

stable focus unstable focus

center

saddle-node (stable) saddle-node (unstable)

stable node
with multiplicity

unstable node
with multiplicity

degenerate
saddle-node

Figure 4.1: Bifurcation diagram in the (trace𝐴, det 𝐴) space

2. the two isoclines divide the set Y into four quadrants 

Y++ = { y ∈ Y ∶ ̇𝑦1 > 0, ̇𝑦2 > 0} 
Y−+ = { y ∈ Y ∶ ̇𝑦1 < 0, ̇𝑦2 > 0} 
Y+− = { y ∈ Y ∶ ̇𝑦1 > 0, ̇𝑦2 < 0} 
Y−− = { y ∈ Y ∶ ̇𝑦1 < 0, ̇𝑦2 < 0}

,

where each quadrant represent a particular joint change in time for both variables (increasing
if ̇𝑦𝑗 > 0 and decreasing if ̇𝑦𝑗 < 0). This allows us to represent the direction of the forward
evolution of both variables in a grid of points in Y;

3. the vector field represents the resultant of those two directions, for every point, which
indicates the direction of evolution of the solution y(𝑡);

4. the eigenspaces  ℰ− and ℰ+ are lines in y whose slopes are given by those of the eigenvectors
P− and P+. Their representation allows us to have a geometric representation of the stable,
unstable and center manifolds, 𝒲𝑠, 𝒲𝑢, and 𝒲𝑐, which are lines or two-dimensional subsets
of Y. These subsets introduce another partition to set Y associated to the stability of the
solution, that is, to its convergence towards the steady state (when we are dealing with a
forward ODE);
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5. some representative trajectories, usually starting from points y(0) located in each one of the
four quadrants, which are called integral curves. They are parametric curves representing
the solution to the ODE within space Y, in which time is implicit. In order to take account
of the direction of the movement, they are usually represented with direction arrows showing
the direction of the solution over time.

4.2.1 Normal forms for planar linear ODE’s

 
Recalling results from chapter 3, we say a planar linear autonomous ODE’s is in a normal

form  if it is of the form
ẏ  = A y + B.

where, using the results from chapter 3, we assume A is in one of the three Jordan canonical forms
or it is equal to one of the two non-canonical matrices, that is A = {ΛΛΛ1,ΛΛΛ2,ΛΛΛ3,ΛΛΛ𝑑,ΛΛΛℎ}.

Associated to those matrices we have the following types of phase diagrams

• if A = ΛΛΛ1, and matrix A has two real and distinct eigenvalues we have a node if both
eigenvalues have the same sign and are non-zero, a saddle if they are real and have different
signs, or a saddle-node if there one zero eigenvalue;

• if A = ΛΛΛ2 matrix A has two equal real eigenvalues and we have a node with multiplicity;

• if A = ΛΛΛ3 matrix A has two complex conjugate eigenvalues we have a focus.

Figure 4.1 illustrates the four main types of phase diagrams that exist for a planar linear ODE,
which are determined by the algebraic properties of matrix A: nodes, if all eigenvalues are real
and do not have symmetric signs, saddles, if all eigenvalues are real and have symmetric signs,
foci if the two eigenvalues are complex conjugate with non-zero real parts, and centers if the two
eigenvalues are complex conjugate with zero real parts.

Next we present the main phase diagrams. We detail in the first case the construction of a
saddle, which is the most common phase diagram in economics. In the other phase diagrams we
point out the main differences.

4.2.2 Building a phase diagram

We show with a simple example two points: how to build the phase diagram and the reason of
calling the previous ODE normal forms.

We show with four examples how to represent geometrically a saddle, in particular how the
phase diagram changes when with A in a Jordan canonical form or in a similar matrix, and for
homogeneous or non-homogeneous sytems.

We start with the simplest case in which matrix A is a diagonal matrix, that is A = ΛΛΛ1, for a
homogeneous equation, i.e., for B = 0.
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Example 1 Consider the planar linear homogenous ODE where y ∈ Y = ℝ2.

̇𝑦1 = −3𝑦1

̇𝑦2 = 3𝑦2.
  The coefficient matrix A is the Jordan form ΛΛΛ1

A = (−3 0
0 3) .

We study the geometry of the solution by building the phase diagram in Figure 4.2. The next steps
are followed:

First, we build panel (a) by considering equation ̇𝑦1 = −3 𝑦1. As ̇𝑦1 = 0 if 𝑦1 = 0, and
̇𝑦1 < 0 ( ̇𝑦1 > 0) if 𝑦1 > 0 (𝑦1 < 0), then, for every value of 𝑦2, the isocline for the first equation

{ y ∶ 𝑦1 = 0} is the vertical axis. This isocline partitions set Y by separating the subset of Y, for
which 𝑦1 increases, from the subset of Y, for which 𝑦1 decreases, as the horizontal arrows show.

Second,we build panel (b) by considering equation ̇𝑦2 = 3 𝑦2. As ̇𝑦2 = 0 if 𝑦2 = 0, and ̇𝑦2 < 0
( ̇𝑦2 > 0) if 𝑦2 < 0 (𝑦2 > 0), then, for every value of 𝑦1, the isocline for the second equation
{y ∶ 𝑦2 = 0} is the horizontal axis. This isocline partitions set Y by separating the subset of Y, for
which 𝑦2 increases, from the subset of Y, for which 𝑦2 decreases, as the vertical arrows show.

Third, panel (c) superimposes the two previous diagrams, and shows the four quadrants we have
referred. It provides several insights on the dynamics of the ODE: (1) the two isoclines intersect
at a steady state, and because they intersect only once we conclude that the steady state exists,
it is unique, and in this case it is the origin (i.e., y  = (0, 0); (2) by depicting the resultant of the
arrows traced out in panels (a) and (b), passing to representative points in the diagram, we have
a geometric representation of the vector field.

At last, panel (d) shows the phase diagram, which includes some representative trajectories
where the ODE is interpreted as a forward ODE. It shpws that initial points located along the
horizontal axis converge to the steady state, which means that the stable manifold coincides with
the horizontal axis, i.e, to points y = (𝑦1, 0) for arbitrary 𝑦1; and that any initial point not
belonging to the horizontal axis will generate a flow that will converge to the vertical axis such that
lim𝑡→∞  y(𝑡) = (0, ±∞).

This geometric intuition is confirmed by the analytical solution of the ODE. We can use the
algebraic approach presented in this and in chapter 3.

Summing up, we shows that: (1) there is a unique steady state y  = (𝑦1, 𝑦2) = (0, 0); (2) as
trace(A)  = 0 and det (A)  = −9, the eigenvalues of the coefficient matrix are 𝜆− = −3 and 𝜆+ = 3,
and, therefore, the steady state is a saddle point; (3) the associated eigenvectors are P1 = (1, 0)⊤

and P2 = (0, 1)⊤; (4) this implies that the eigenspaces associated to the eigenvalues 𝜆− and 𝜆+ are

ℰ− = { y ∈ ℝ2 ∶ 𝑦2 = 0},  ℰ+ = { y ∈ ℝ2 ∶ 𝑦1 = 0};

  and, therefore, the center manifold 𝒲𝑐 is empty and the stable and unstable manifolds are both
of dimension 1 and are

𝒲𝑠 = ℰ−, 𝒲𝑢 = ℝ2/𝒲𝑠
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ẏ1 > 0
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ẏ2 > 0ẏ2 > 0
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ẏ2 > 0
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Figure 4.2: Example 1: Building the phase diagram.

  meaning that for any y ≠ (𝑦1(0), 0) the solution is unstable.
Furthermore, the (general) solution of the ODE is

(𝑦1(𝑡)
𝑦2(𝑡)) = (𝑦1(0) 𝑒−3𝑡

𝑦2(0) 𝑒3𝑡 ) = 𝑦1(0) (1
0) 𝑒−3𝑡 + 𝑦2(0) (0

1) 𝑒3𝑡, 𝑡 ∈ [0, ∞).

There are two types of particular solutions paths, (y(𝑡))𝑡∈T, exist if we observe that lim𝑡→∞  𝑒3𝑡  =
+∞ and lim𝑡→∞  𝑒−3𝑡  = 0:
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• if y(0) ∈ ℰ−, that is 𝑦2(0) = 0 the solutions are

(𝑦𝑠
1(𝑡)

𝑦𝑠
2(𝑡)) = (𝑦1(0)𝑒−3𝑡

0 ) , for 𝑡 ∈ [0, ∞).

They converge asymptotically to the steady state, that is

lim
𝑡→∞

  (𝑦𝑠
1(𝑡)

𝑦𝑠
2(𝑡)) = lim

𝑡→∞
  (𝑦1(0)𝑒−3𝑡

0 ) = (0
0)

These are trajectories belonging to 𝒲𝑠. In economics these trajectories are commonly called
saddle paths and are omnipresent in DGE models.

• if y(0) ∉ ℰ−, that is, if 𝑦2(0) ≠ 0, the solutions are unbounded

lim
𝑡→∞

  (𝑦1(𝑡)
𝑦2(𝑡)) = lim

𝑡→∞
 𝑦2(0) (0

1) 𝑒3𝑡 = ( 0
±∞)

These are trajectories belonging to 𝒲𝑢 which converge over time to the unstable manifold
ℰ+.

All these algebraic results confirm the qualitative intuition we obtained from drawing the phase
diagram, which is not only a geometrical representation of the ODE but also a powerful way to
obtain a fast intuition on the dynamics of a planar ODE.

Example 2 Consider the planar linear non-homogenous ODE where y ∈ Y = ℝ2,

̇𝑦1 = −3𝑦1 + 1
̇𝑦2 = 3𝑦2 − 1,

  where the coefficient matrix is equal to the one in Example 1, and the vector B ≠ 0,

A = (−3 0
0 3) , and  B = ( 1

−1) .

Figure 4.3 panel (a) shows the phase diagram. Comparing to example Example 1 (see Figure 4.2
panel (d)) we see that the two isoclines are shifted but keep the same slopes. This entails: first,
moving the steady state to the positive orthant away from the origin; second, the isocline have the
same slopes but ̇𝑦1 = 0 is shifted to the right, to 𝑦1 = 1

3 and ̇𝑦2 = 0 is shifted up to 𝑦2 = 1
3 ; and,

at last, the stable and unstable manifolds, ℰ− and ℰ+, are still coincident with the isoclines ̇𝑦2 = 0
and ̇𝑦1 = 0, respectively. The stable manifold is 𝒲𝑠 = { y ∶ 𝑦2 = 1

3}.
Therefore, now the steady state is shifted from y  = (0, 0) to y  = (1

3 , 1
3), and the general

solution to the ODE is now

  (𝑦1(𝑡)
𝑦2(𝑡)) = (

1
3
1
3
)   + ((𝑦1(0) − 1

3) 𝑒−3𝑡

(𝑦2(0) − 1
3) 𝑒3𝑡 )

= (
1
3
1
3
) + (𝑦1(0) − 1

3) (1
0) 𝑒−3𝑡 + (𝑦2(0) − 1

3) (0
1) 𝑒3𝑡, 𝑡 ∈ [0, ∞).

Again, there are two main types of trajectories:
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• if y(0) ∈ ℰ−, that is, if 𝑦2(0) = 1
3 , the trajectories (y(𝑡))𝑡∈T belong to the stable manifold,

𝒲𝑠,

(𝑦𝑠
1(𝑡)

𝑦𝑠
2(𝑡)) = (

1
3
1
3
) + ((𝑦1(0) − 1

3) 𝑒−3𝑡

0
) 𝑡 ∈ [0, ∞),

trace out the saddle path: while 𝑦2(𝑡) = ̄𝑦2 stays constant at the steady state level, 𝑦𝑠
1(𝑡)− ̄𝑦1 =

(𝑦𝑠
1(0) − ̄𝑦1) 𝑒−3𝑡 approaches asymptotically its steady state

lim
𝑡→∞

  (𝑦𝑠
1(𝑡)

𝑦𝑠
2(𝑡)) = (

1
3
1
3
) ,

• if y(0) ∉ ℰ−, that is, if 𝑦2(0) ≠ 1
3 , belongs to the unstable manifold, 𝒲𝑢 and

lim
𝑡→∞

  (𝑦1(𝑡)
𝑦2(𝑡)) = (

1
3
1
3
) + (𝑦2(0) − 1

3) (0
1) 𝑒3𝑡 = (

1
3

±∞) .

Example 3 Now we consider again an homogeneous ODE such that although the coefficient
matrix A is not in a Jordan canonical form but is similar to the coefficient matrices of Examples
1 and 2:

̇𝑦1 = −2𝑦1 + 5𝑦2,
̇𝑦2 = 𝑦1 + 2𝑦2,

(4.6)

where y ∈ Y = ℝ2. The phase diagram - see Figure 4.3 panel (c) - is built in the same way as in the
previous examples. As in Example 1 there is only one steady state in the origin and the steady state
is a saddle point. Now the isoclines are 𝕀𝑦1

  = {y ∶ −2𝑦1 + 5𝑦2 = 0} and 𝕀𝑦2
  = {y ∶ 𝑦1 + 2𝑦2 = 0}.

Differently from the previous examples, they are not coincident or parallel to the axes, and, as we
see next they are not coincident the eigenspaces.

In order to determine analytically the slopes of the eigenspaces and the solutions of the problem
we need to make use of our previous results. The coefficient matrix

A = (−2 5
1 2) .

  has trace(A) = 0 and det(A) = −9, which yield the same eigenvalues as in Examples 1 and 2:
𝜆− = −3 and 𝜆+ = 3. Furthermore, the fact det(A) ≠ 0 also implies that the steady state, y = 0
is unique.

The eigenvector matrix is now

P = (P−, P+) = (−5 1
1 1) .

 
The (general) solution of the equation, y(𝑡) = Pe𝛬𝛬𝛬t w(0), where w(0) = P−1  y(0), that is

(𝑤1(0)
𝑤2(0)) = 1

6  (−𝑦1(0) + 𝑦2(0)
𝑦1(0) + 5𝑦2(0)) .
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  is

y(𝑡) = 𝑤1(0) (−5
1 ) 𝑒−3𝑡 + 𝑤2(0) (1

1) 𝑒3𝑡, 𝑡 ∈ [0, ∞). (4.7)

 
Therefore, the eigenspaces2   are

ℰ− = {y ∈ Y ∶ 𝑦1 + 5 𝑦2 = 0} and  ℰ+ = {y ∈ Y ∶ 𝑦1 − 𝑦2 = 0},

  and the stable manifold is 𝒲𝑠 = ℰ−.
Again, there are two types of solution paths:

• if y(0) ∈ ℰ−, that is if 𝑤2(0) = 0, which is equivalent to having 𝑦2(0) = ̃𝑦2(0)  = −1
5  𝑦1(0),

the particular solutions are

y𝑠(𝑡) = 𝑦1(0) ( 1
−1

5
) 𝑒−3𝑡 𝑡 ∈ [0, ∞) (4.8)

  because �̃�1(0) = −1
6  (−𝑦1(0) + ̃𝑦2(0)) = −1

5𝑦1(0). They converge asymptotically to the
steady state, lim𝑡→∞  y𝑠(𝑡) = 0. Intuitively, we obtain the saddle path by canceling the
explosive effect of 𝑒3𝑡 on the solution, in order to have only te stabilizing effect of 𝑒−3𝑡.
Expanding equation (4.8) we have

𝑦𝑠
1(𝑡) = 𝑦1(0)𝑒−3𝑡,

𝑦𝑠
2(𝑡) = −1

5  𝑦1(0)𝑒−3𝑡
for any  𝑡 ∈ [0, ∞)

  which taking the common element 𝑦1(0)𝑒−3𝑡 yields

𝑦1(0)𝑒−3𝑡 = 𝑦𝑠
1(𝑡) = −5𝑦𝑠

2(𝑡)

  which confirms our previous conclusion on the slope of the stable manifold 𝒲𝑠.

• if y(0) ∉ ℰ−, that is if 𝑤2(0) ≠ 0, then

lim
𝑡→∞

 y(𝑡) = 𝑤2(0) (1
1) 𝑒3𝑡 = (∓∞

∓∞) ,

the solution diverges asymptotically to the direction defined by ℰ+, that is to a line 𝑦2(𝑡) =
𝑦1(𝑡).

Summing up, going from a matrix the Jordan form to a similar matrix not in the Jordan form
introduces a linear transformation on the more important loci, the isoclines and the eigenspaces,
consisting in their rotation and changing their relative slopes.

When looking at a phase diagram, one important property of the solutions can be noted: when
a trajectory cross one isocline, the related variable change direction. For instance, for trajectories
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(b) Phase diagram for example 3
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(c) Phase diagram for example 4

Figure 4.3: Phase diagrams for Examples 2, 3 and 4

crossing the isocline ̇𝑦1 = 0 variable 𝑦1(𝑡) changes from increasing (decreasing) over time to de-
creasing (increasing) over time. That is, at those points taking derivatives of the solution we will
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find 𝑑𝑦1(𝑡)
𝑑𝑡   = 0. The same is valid for 𝑦2(𝑡) when a trajectory crosses isocline ̇𝑦2 = 0.

Example 4 Consider the ODE,

̇𝑦1 = −2𝑦1 + 5𝑦2 − 1
5,

̇𝑦2 = 𝑦1 + 2𝑦2 − 4
5.

(4.9)

which is a non-homogeneous case of Example 3. It is a non-homogenous equation of type ẏ =
Ay + B, where matrix A is as in example (4.6). The phase diagram is in panel (d) of Figure 4.3.
If we compare with the homogeneous case, in panel (c) of the same Figure, we readily observe that
there is an upward shift of both isoclines ̇𝑦1 = 0 and ̇𝑦2 = 0. This is again the same difference we
noted when comparing the phase diagrams for Example 1 with Example 2.

Because of that property, we can take the solution of Example 3 and evaluate y(𝑡) in differences
from the new steady state, which is now

ȳ = −A−1B = (
2
5
1
5
) .

  Therefore, in this case the general solution is

y(𝑡) = (
2
5
1
5
) + 𝑤1(0) (−5

1 ) 𝑒−3𝑡 + 𝑤2(0) (1
1) 𝑒3𝑡, (4.10)

  where

  (𝑤1(0)
𝑤2(0)) = P−1  (𝑦1(0) − ̄𝑦1

𝑦2(0) − ̄𝑦2
)

= 1
6 (−(𝑦1(0) − ̄𝑦1) + (𝑦2(0) − ̄𝑦2)

(𝑦1(0) − ̄𝑦1) + 5 (𝑦2(0) − ̄𝑦2))

= 1
6 (−𝑦1(0) + 𝑦2(0) + 1

5
𝑦1(0) + 5 𝑦2(0) − 7

5
) .

 

  The eigenspaces are, thus,

ℰ− = {y ∶ 𝑦1 + 5 𝑦2 − 7
5 = 0}, ℰ+  = {y ∶ −𝑦1 + 𝑦2 + 1

5 = 0}

  The fixed point is again a saddle point and the stable manifold is again 𝒲𝑠 = ℰ−. The solutions
along the saddle path are again obtained by setting 𝑤2(0) = 0, yielding

y𝑠(𝑡) = (
2
5
1
5
) + ( − 1

5  𝑦1(0) + 2
15) (−5

1 ) 𝑒−3𝑡.

  The solutions such that 𝑤2(0) ≠ 0, i.e, in 𝒲𝑢 converge asymptotically to a parametric line
𝑦2(𝑡) = −1

5   + 𝑦1(𝑡).
2Recall that ℰ− = {y ∈ Y ∶ −𝑃 −

2 (𝑦1(0)  − ̄𝑦1) + 𝑃 −
1 (𝑦2(0)  − ̄𝑦2) = 0}, and ℰ+ = {y ∈ Y ∶ 𝑃 +

2 (𝑦1(0)  − ̄𝑦1) −
𝑃 +

1 (𝑦2(0)  − ̄𝑦2) = 0}.
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Conclusion  
Comparing the phase diagrams for the previous Examples 1, 2, 3 and 4, we conclude:

1. the homogeneous equation for the simplest saddle in which the coefficient matrix A is in
Jordan canonical form, is a diagonal matrix with non-zero real elements with opposite signs.
It displays the crucial elements allowing for a qualitative characterization of the dynamics:
there is a stable manifold, 𝒲𝑠, which is a one-dimensional linear manifold 3 in the 2 × 2 state
space Y, with a slope given by the eigenspace associated to the negative eigenvalue, all the
flows starting at that manifold will converge to the unique steady state. All the flow starting
outside 𝒲𝑠 will become unbounded and their trajectories will be attracted to ℰ+, which is
a one-dimensional linear manifold whose slope is given by the eigenvector associated to the
positive eigenvalue. Both manifolds cross at the steady state point, which in this case is the
origin;

2. the ODE for a homogeneous saddle, having a coefficient matrix which is not in the canonical
form, has the same type of phase diagram. However, it displays a rotation of the isoclines
and of both eigenspaces, still crossing at the origin. This is translated geometrically by the
fact that the eigenspaces may not be co-incident with the isoclines. Therefore main difference
is quantitative, not qualitative;

3. when the ODE is non-homogeneous, i.e., vector B ≠ 0, the only significant difference is that
the steady state is shifted out of the origin. Now the isoclines and the eigenspaces have the
same properties as in the previous two cases but refering to the shifted steady state, not the
origin.

From those properties we say that the case in Example 2 is the normal form of the saddle,
because it is the simples parametric case whose phase diagram is a saddle. However, the same form
of matrix A is consistent with other phase diagrams if we consider a diagonal matrix with arbitrary
real parameters.

Next we consider all the normal forms for planar linear autonomous ODE’s.

4.2.3 Nodes without multiplicity and saddles

 
Differential equations whose geometry is a node or a saddle have the following normal form

̇𝑦1 = 𝜆− 𝑦1 + 𝑏1 (4.11a)
̇𝑦2 = 𝜆+ 𝑦2 + 𝑏2 (4.11b)

where we assume that 𝜆−  ≤ 𝜆+. The solution, which we know exists and is unique, is a mapping
y ∶ T → Y ⊆ R2.

3A linear manifold corresponds to the set of points (𝑥, 𝑦) satisfying the linear equation 𝑎 𝑥 + 𝑏 𝑦 = 𝑐 where 𝑎, 𝑏
and 𝑐 are arbitrary real numbers.
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Proposition 1 (Nodes and saddles).   Consider the linear planar ODE specified by equations
(4.11a)-(4.11b) where 𝜆−, 𝜆+, 𝑏1, and 𝑏2 are all real numbers. Assume that 𝜆−  ≤ 𝜆+. Let

̄𝑦1 = − 𝑏1
𝜆−

, if 𝜆− ≠ 0. and ̄𝑦2 = − 𝑏2
𝜆+

, if 𝜆+ ≠ 0. A solution exists and is unique and can take the
following forms:

1. if 𝜆− ≠ 0 and 𝜆+ ≠ 0 the solution is

𝑦1(𝑡) = ̄𝑦1 + (𝑦1(0) − ̄𝑦1) 𝑒𝜆− 𝑡, (4.12a)
𝑦2(𝑡) = ̄𝑦2 + (𝑦2(0) − ̄𝑦2) 𝑒𝜆+ 𝑡,   (4.12b)

2. if 𝜆− < 0 = 𝜆+ the solution is

𝑦1(𝑡) = ̄𝑦1 + (𝑦1(0) − ̄𝑦1) 𝑒𝜆− 𝑡, (4.13a)
𝑦2(𝑡) = 𝑦2(0) + 𝑏2 𝑡, (4.13b)

3. if 𝜆− = 0 < 𝜆+ the solution is

𝑦1(𝑡) = 𝑦1(0) + 𝑏1 𝑡, (4.14a)
𝑦2(𝑡) = ̄𝑦2 + (𝑦2(0) − ̄𝑦2) 𝑒𝜆+ 𝑡, (4.14b)

4. if 𝜆− = 𝜆+ = 0 the solution is

𝑦1(𝑡) = 𝑦1(0) + 𝑏1 𝑡, (4.15a)
𝑦2(𝑡) = 𝑦2(0) + 𝑏2 𝑡, (4.15b)

where y(0) = (𝑦1(0), 𝑦2(0))⊤ is an arbitrary element of set Y.

Proof. As the two differential equations in system (4.12a)-(4.12b) are decoupled, we can apply
directly the solutions for the scalar equation. First, consider any 𝑗 such that 𝑗 = 1, 2 and let
𝜆𝑗 ≠ 0. If we define 𝑧𝑗(𝑡) = 𝑦𝑗 − ̄𝑦𝑗, where ̄𝑦𝑗 = − 𝑏𝑗

𝜆𝑗
is the steady state variable 𝑦𝑗, then

̇𝑧𝑗 = ̇𝑦𝑗 = 𝜆𝑗 𝑦𝑗 + 𝑏𝑗 = 𝜆𝑗 (𝑧𝑗 + ̄𝑦𝑗) + 𝑏𝑗 = 𝜆𝑗 𝑧𝑗. This scalar ODE has solution 𝑧𝑗(𝑡) = 𝑧𝑗(0) 𝑒𝜆𝑗 𝑡.
Making the inverse transformation, 𝑦𝑗(𝑡) = 𝑧𝑗(𝑡) + ̄𝑦𝑗, we find 𝑦𝑗(𝑡) = ̄𝑦𝑗 + (𝑦𝑗(0) − ̄𝑦𝑗) 𝑒𝜆𝑗 𝑡.
Second, consider any 𝑗 such that 𝑗 = 1, 2 and let 𝜆𝑗 = 0, which yields the differential equation

̇𝑦𝑗 = 𝑑𝑦𝑗(𝑡)
𝑑𝑡 = 𝑏𝑗, then 𝑑𝑦𝑡(𝑡) = 𝑏𝑗 𝑑𝑡. Integrating both sides, we find ∫𝑦(𝑡)

𝑦(0) 𝑑𝑦 = ∫𝑡
0 𝑏𝑗 𝑑𝑠. Then

𝑦𝑗(𝑡) − 𝑦𝑗(0) = 𝑏𝑗 𝑡.

Saddles

 
Let 𝜆− < 0 < 𝜆+ in equations (4.11a)-(4.11b). Then there is a unique steady state ȳ  =

( − 𝑏1
𝜆−

, − 𝑏2
𝜆+

), at it is a saddle point. It coincides with the origin, y  = 0, when B = 0. We already
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presented the phase diagram in Figure 4.2 panel (d), for the case in which B = 0, and in Figure
4.3 panel (a) for the case in which B ≠ 0

The (general) solution takes the form equations (4.12a)-(4.12b). The solutions can have two
types of asymptotic behavior:

lim
𝑡→∞

 y(𝑡) = y + lim
𝑡→∞

   ( 1
0 )   (𝑦1(0) − 𝑦1) 𝑒𝜆− 𝑡 = y if  y(0) ≠ y  ∈ ℰ−

or

lim
𝑡→∞

 y(𝑡) = y + lim
𝑡→∞

   ( 0
1 )   (𝑦2(0) − 𝑦2) 𝑒𝜆+ 𝑡 = (  𝑦1

±∞) if  y(0) ≠ y ∈ ℰ+

where ℰ− = 𝒲𝑠 is the stable manifold, which in this case is ℰ− = {y ∈ Y ∶ 𝑦2 = 0}. For this reason,
we say the solution displays conditional stability.

Stable nodes

 
Let 𝜆− < 𝜆+ < 0 in equations (4.11a)-(4.11b). Then there is again is a unique steady state ȳ

which is a stable node, coinciding or not with the origin depending on B being equal to zero or not.
The solution also takes the form of equations (4.12a)-(4.12b). However, for stable nodes the

solution has the asymptotic behavior

lim
𝑡→∞

 y(𝑡) = y(0) ≠ y ∈ Y.

  In this case we say that the solution is asymptotically stable: all the trajectories converge
monotonically to the steady state for any initial point y(0) ∈ Y. In this case the whole set Y is an
attractor set or a stable manifold. It is spanned by the two eigenspaces ℰ− and ℰ+ (Y = ℰ− ⊕ℰ+).

A representative phase diagrams is in Figure 4.4, which is drawn following the same steps as
in Figure 4.2. In this case there are some differences. First, the direction arrows for variable 𝑦2
are directed towards the isocline ̇𝑦2 = 0, because the coefficient in that equation is now negative,
and not positive as in the case of the saddle. This implies that the vector field points towards the
steady state. Second, the slope of the solution in space (𝑦1, 𝑦2) is

𝑦2(𝑡)
𝑦1(𝑡)   = 𝑦2(0)

𝑦1(0)  𝑒(𝜆+ −𝜆−)𝑡, for  𝑡 ∈ [0, ∞], (4.16)

  therefore, because (𝜆+  − 𝜆−) > 0 then all the trajectories, y(𝑡), converge asymptotically to the
vertical axis, that is to the eigenspace ℰ+, which is infinitely sloped. This is natural because, as 𝜆+
is smaller in absolute value than 𝜆−, the attracting force of 𝑦1 towards ̄𝑦1 is stronger, when starting
far away from the steady state, than the attracting force of 𝑦2 towards ̄𝑦2. That is

lim
𝑡→∞

 y(𝑡) = y + lim
𝑡→∞

  ( 0
1 )   (𝑦2(0) − 𝑦2) 𝑒𝜆+ 𝑡 = y, for any  y(0) ≠ y ∈ Y. 
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Figure 4.4: Phase diagrams for normal form stable nodes

Unstable node

 
Let 0 < 𝜆− < 𝜆+ in equations (4.11a)-(4.11b). Again there is a unique steady state ȳ which is

an unstable node, which coincides or not with the origin depending on B being equal to zero or
not.

The solution is formally given in equations (4.12a)-(4.12b), and has the asymptotic behavior

lim
𝑡→∞

 y(𝑡) = y + lim
𝑡→∞

 ( ( 1
0 )   (𝑦1(0) − 𝑦1) 𝑒𝜆− 𝑡 + ( 0

1 )   (𝑦2(0) − 𝑦2) 𝑒𝜆+ 𝑡)

= (  ± ∞
±∞ ) , for any  y(0) ≠ y ∈ Y. 

In this case we say that the solution is unstable: any initial deviation from the steady state
will generate a flow which is unbounded over time. The phase diagrams is in Figure 4.5. All the
trajectories will diverge along the direction of ℰ+, with maximum strength when they are away
from the steady state. In this case all set Y is a repeller set because any deviation from the
steady state will generate a flow which will be repelled away from it.

The phase diagram 4.5 represents the forward interpretation of the ODE with positive coeffi-
cients. However, if we invert the time direction, from forward to backwards, i.e., from 𝑡 = 0 to
𝑡 = −∞, the solution will be attracted to, or to a neighborhood of, the steady state. This property
is sometimes used in economics.
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Figure 4.5: Phase diagrams for normal form unstable nodes

Stable saddle-nodes

If 𝜆− < 0 = 𝜆+ in equations (4.11a)-(4.11b) two cases can occur: first, if 𝑏2 = 0 there will be an
infinite number of steady states along the line 𝑦1 = − 𝑏1

𝜆−
; second, if 𝑏2 ≠ 0 steady states do not

exist. In both cases the solution of the ODE is formally given in equations (4.13a)-(4.13b).
In the first case we say there is a stable saddle-node. There is an infinite number of steady

states, along the ̇𝑦1 = 0 isocline, i.e., for any value of y(0), the solution converges to a steady state
( ̄𝑦1, 𝑦2) where 𝑦2 is arbitrary. Therefore, the eigenspace ℰ+  = { y ∈ Y ∶ 𝑦1 = ̄𝑦1} attracts all the
trajectories.

Figure 4.6 panel (a) has a representation of the phase diagram for the stable saddle-node. The
reason for the name is that this is a boundary case between a saddle, for which 𝜆+ > 0, and a stable
node, for which 𝜆+ < 0. If we compare with Figures 4.4 and 4.5 we observe that that eigenspace ℰ+

attracts the trajectories that become unbounded asymptotically, for the saddle, and it attracts the
trajectories that converge asymptotically to the steady state, for the stable node. Therefore, the
case in which 𝜆+  = 0 is in the boundary between the saddle and the stable node cases, and we call
center manifold to the locus of equilibrium points it contains: therefore 𝒲𝑐 = { y ∶ 𝑦1 = ̄𝑦1}.

The change in the parameter close to 𝜆+ = 0 is called unfolding and we say that (𝜆+, y(𝜆+)) =
(0, y(0)) is a bifurcation point.

Figure 4.6 panel (b) shows the phase diagram for the case in which 𝜆− < 0 = 𝜆+ and 𝑏2 ≠ 0.
As we can see, in this case a steady state does not exist: in the limit lim𝑡→∞  y(𝑡) = ( ̄𝑦1, ±∞). All
the trajectories, and in particular trajectories in which 𝑦1(0) = ̄𝑦1, converge to the eigenspace ℰ+

and the value of 𝑦2 becomes unbounded: they converge to +∞ if 𝑏2 > 0 and to −∞ if 𝑏2 < 0.
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Figure 4.6: Phase diagrams case 𝜆−  < 0 = 𝜆+.

Unstable saddle-nodes

If 𝜆− = 0 < 𝜆+ in equations (4.11a)-(4.11b) two cases can occur: first, if 𝑏1 = 0 there will be an
infinite number of steady states along the line 𝑦2 = − 𝑏2

𝜆+
; second, if 𝑏1 ≠ 0 steady states do not

exist. In both cases the solution of the ODE is formally given in equations (4.14a)-(4.14b).
In the first case we say there is an unstable saddle-node. There is an infinite number of steady

states, along the ̇𝑦2 = 0 isocline. If the initial point satisfies y(0) = (𝑦1(0), ̄𝑦2) the solution is
stationary, that is it remains constant. However, any deviation of 𝑦2(0) from ̄𝑦2 will generate a
trajectory that becomes asymptotically unbounded. Therefore there will be an infinite number of
unstable steady states along the line ̇𝑦2 = 0, which co-incides with the eigenspace ℰ−  = {y ∈ Y ∶
𝑦2 = ̄𝑦2}.

Figure 4.7 panel (a) has a representation of the phase diagram for the unstable saddle-node.
The reason for the name is that this is a boundary case between a saddle, for which 𝜆− < 0, and
an unstable node, for which 𝜆− > 0. If we compare with Figures 4.4 and 4.5 we observe that that
eigenspace ℰ− defines a direction that repels the trajectories that become unbounded asymptotically,
for the saddle, and it also defines a direction that repels the trajectories that diverge asymptotically
from the steady state, for the unstable node. Therefore, the case in which 𝜆−  = 0 separates the
saddle from the unstable node cases, and we call again center manifold to the locus of equilibrium
points if contains: therefore 𝒲𝑐 = { y ∶ 𝑦2 = ̄𝑦2}.

The change in the parameter close to 𝜆− = 0 is called unfolding and we say that (𝜆−, y(𝜆−)) =
(0, y(0)) is a bifurcation point.

Figure 4.7 panel (b) shows the phase diagram for the case in which 𝜆− = 0 < 𝜆+ and 𝑏1 ≠ 0.
As we can see, in this case a steady state does not exist: the trajectories tend to diverge away from
ℰ−.
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Figure 4.7: Phase diagrams case 𝜆−  = 0 < 𝜆+.

Degenerate saddle-nodes

A degenerate saddle-node exists if 𝜆− = 𝜆+ = 0. The solution also takes the form of equations
(4.15a)-(4.15b). It is easy to see that three cases can occur:

1. if 𝑏1 = 𝑏2 = 0 then the solution is degenerate along the two dimensions,

y(𝑡)  =  y(0), for any  𝑡 ∈ [0, ∞)

that is, the solution is stationary for any arbitrary value y(0) ∈ Y. There is essentially no
dynamics. In the case all the state space, Y, can be seen as a center manifold: 𝒲𝑐  = Y.
This is the highest level of degeneracy that we can have. Furthermore, this case can be seen
as a degenerate case in the boundary of all possible phase diagrams for a planar linear ODE;

2. if 𝑏1 = 0 and 𝑏2 ≠ 0, or 𝑏1 ≠ 0 and 𝑏2 = 0 a steady state does not exist. However, while one
of the variables (𝑦1 in the first case and 𝑦2 in the second case) will be constant over time, the
other will become asymptotically unbounded (𝑦2 in the first case and 𝑦1 in the second case)
and follows a linear progression over time;

3. if 𝑏1 ≠ 0 and 𝑏2 ≠ 0 steady states does not exist as well. However, in this case both variables
diverge asymptotically.

 

4.2.4 Nodes with multiplicity
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Nodes with multiplicity are the geometric representation of planar linear ODE in which matrix
A has discriminant equal to zero, that is when A has the Jordan canonical form ΛΛΛ2. In this case
the normal form of the ODE is the following:

̇𝑦1 = 𝜆 𝑦1 + 𝑦2 + 𝑏1 (4.17a)
̇𝑦2 = 𝜆 𝑦2 + 𝑏2. (4.17b)

The general solution of this ODE is provided by the following proposition:

Proposition 2. Consider the linear planar ODE defined by equations (4.17a)-(4.17b) where 𝜆, 𝑏1
and 𝑏2 are real numbers. A solution exists and is unique and can take the following forms:

1. If 𝜆 ≠ 0 the solution is

𝑦1(𝑡) = ̄𝑦1 + (𝑦1(0) − ̄𝑦1 + (𝑦2(0) − ̄𝑦2) 𝑡) 𝑒𝜆 𝑡 (4.18a)

𝑦2(𝑡) = ̄𝑦2 + (𝑦2(0) − ̄𝑦2) 𝑒𝜆 𝑡 (4.18b)

where the steady state is

 ȳ = ( ̄𝑦1
̄𝑦2
) = ⎛⎜⎜

⎝

−(𝑏1
𝜆 − 𝑏2

𝜆2  )

−𝑏2
𝜆

⎞⎟⎟
⎠

(4.19)

2. if If 𝜆 = 0 the solution is

𝑦1(𝑡) = 𝑦1(0) + (𝑦2(0) + 𝑏1) 𝑡 + 𝑏2
2 𝑡2 (4.20a)

𝑦2(𝑡) = 𝑦2(0) + 𝑏2𝑡 (4.20b)

Proof. First consider the case in which 𝜆 ≠ 0. Using the same method as in the proof of Proposition
1 we find the solution of the ODE (4.17b) to be

𝑦2(𝑡) = −𝑏2
𝜆 + (𝑦2(0) + 𝑏2

𝜆 ) 𝑒𝜆 𝑡.

  Substituting in equation (4.17a) yields the scalar linear non-autonomous ODE

̇𝑦1 = 𝜆 𝑦1 + 𝑏1 − 𝑏2
𝜆 + (𝑦2(0) + 𝑏2

𝜆 ) 𝑒𝜆 𝑡.

  Integrating, we find

𝑦1(𝑡) = 𝑒𝜆 𝑡 (𝑦1(0) + ∫
𝑡

0
𝑒−𝜆 𝑠 (𝑏1 − 𝑏2

𝜆 + (𝑦2(0) + 𝑏2
𝜆 ) 𝑒𝜆 𝑠) 𝑑𝑠)

= 𝑒𝜆 𝑡 (𝑦1(0) + ∫
𝑡

0
𝑒−𝜆 𝑠 (𝑏1 − 𝑏2

𝜆 ) 𝑑𝑠 + ∫
𝑡

0
(𝑦2(0) + 𝑏2

𝜆 )𝑑𝑠 )

= 𝑒𝜆 𝑡 (𝑦1(0) + (𝑏1 − 𝑏2
𝜆 ) 1

𝜆(𝑒−𝜆 𝑡 − 1) + (𝑦2(0) + 𝑏2
𝜆 ) 𝑡 )

= −(𝑏1 − 𝑏2
𝜆 ) 1

𝜆 + (𝑦1(0) + (𝑏1 − 𝑏2
𝜆 ) 1

𝜆 + (𝑦2(0) + 𝑏2
𝜆 ) 𝑡) 𝑒𝜆 𝑡.
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  As at a steady state ẏ = 0, writing the system (4.17a)-(4.17b) in matrix notation, we find

(0
0) = (𝜆 1

0 𝜆) ȳ + (𝑏1
𝑏2

) .

  Solving for y we find the steady state as in equation (4.19), which means that the solution can
be written as in equations (4.18a)-(4.18b).

Now, let 𝜆 = 0. The solution of the ODE (4.17b) is 𝑦2(𝑡) = 𝑦2(0) + 𝑏2 𝑡 which implies that
equation (4.17a) becomes ̇𝑦1 = 𝑏1 + 𝑦2(0) + 𝑏2 𝑡, which has solution 𝑦1(𝑡) = 𝑦1(0) + (𝑏1 + 𝑦2(0)) 𝑡 +
𝑏2
2 𝑡2.

Stable node with multiplicity

If 𝜆 < 0, in the planar linear ODE (4.17a)-(4.17b), then there is an unique steady state y  =
( − ( 𝑏1

𝜆 − 𝑏2
𝜆2  ), − 𝑏2

𝜆 ), independently of the vector B. The solutions are given in equations (4.18a)-
(4.18b).

The geometric representation of the dynamics is a stable node with multiplicity, which is de-
picted in 4.8 panel (a) for the case in which B = 0. We see that all trajectories converge to a
direction defined by the simple eigenvalue ℰ𝑠  = { y ∈ Y ∶ 𝑦2 = 𝑦2} (see the Appendix to chapter
3) in their convergence towards the steady state.

Differently from the stable node, instead of the existence of convergence to four potential di-
rections of approximation to the steady state, in this case there are only two directions of approx-
imation, one for trajectories starting from positive initial values for 𝑦2 and another for trajectories
starting from negative initial values of 𝑦2. This is the main consequence of the multiplicity of the
steady states.

This implies most trajectories are hump-shaped: while 𝑦2(𝑡) converges monotonically to
𝑦2(∞) = 𝑦2, variable 𝑦1, particularly if the initial point starts from a point in which 𝑦2(0) is
very different from 𝑦2, tends to change direction in the transition to the steady state (see 4.8 panel
(a)), when it crosses the ̇𝑦1 = 0 isocline.

Unstable node with multiplicity

If 𝜆 > 0, in the planar linear ODE (4.17a)-(4.17b), then there is an unique steady state y  =
( − ( 𝑏1

𝜆 − 𝑏2
𝜆2  ), − 𝑏2

𝜆 ), independently of the vector B. The solutions are formally given in equations
(4.18a)-(4.18b).

The geometric representation of the dynamics is a stable node with multiplicity, which is de-
picted in 4.8 panel (b) for the case in which B = 0. We see, again, that all trajectories converge to
a direction defined by the simple eigenvalue 𝒲𝑠  = { y ∈ Y ∶ 𝑦2 = 𝑦2}, in their increasing deviation
from the steady state. As the the stable case some unstable trajectories can be hump-shaped when
they cross the ̇𝑦2 = 0 isocline.
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Figure 4.8: Phase diagram nodes with multiplicity and B = 0

Degenerate node with multiplicity

If 𝜆 = 0, in the planar linear ODE (4.17a)-(4.17b), the formal solutions are given in equations
(4.20a)-(4.20b), there are three possible cases as regards the dynamics of the solution:

1. if 𝑏1 = 𝑏2 = 0 then the solution is y(𝑡) = y(0) for any 𝑡 ∈ [0, ∞), that is, it is stationary. This
means that there is an infinite number of steady states, as in the degenerate saddle-node;

2. if 𝑏1 ≠ 0 and 𝑏2 = 0 a steady state does not exist, although 𝑦2 is stationary, because 𝑦2(𝑡) =
𝑦2(0). The other variable changes over time in a linear way, for any 𝑦1(0), because 𝑦1(𝑡) =
𝑦1(0) + 𝑏1𝑡;

3. if 𝑏2 ≠ 0, for any 𝑏1 there is no steady state and the solution will change over time for both
variables.

 

4.2.5 Foci

 
Foci are the geometric representation of planar linear ODE in which matrix A has a negative

valued discriminant, that is when A has the Jordan canonical form ΛΛΛ3. In this case the normal
form of the ODE is the following:

̇𝑦1 = 𝛼 𝑦1 + 𝛽 𝑦2 + 𝑏1 (4.21a)
̇𝑦2 = −𝛽 𝑦1 + 𝛼 𝑦2 + 𝑏2 (4.21b)
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Proposition 3 (Foci).   Consider the linear planar ODE defined by equations (4.21a)-(4.21b)
where 𝛼, and 𝛽 ≠ 0 are real numbers. A solution exists and is unique and can take the following
forms:

1. if 𝛼 ≠ 0 the solution is

𝑦1(𝑡) = ̄𝑦1 + 𝑒𝛼 𝑡  ((𝑦1(0) − ̄𝑦1) cos(𝛽 𝑡) + (𝑦2(0) − ̄𝑦2) sin(𝛽 𝑡)) (4.22a)

𝑦2(𝑡) = ̄𝑦2 + 𝑒𝛼 𝑡  ( − (𝑦1(0) − ̄𝑦1) sin(𝛽 𝑡) + (𝑦2(0) − ̄𝑦2) cos(𝛽 𝑡)) (4.22b)

where the steady state is

 ȳ = ( ̄𝑦1
̄𝑦2
) = − 1

𝛼2 + 𝛽2 (𝛼 𝑏1 − 𝛽 𝑏2
𝛽 𝑏1 + 𝛼 𝑏2

) (4.23)

2. if 𝛼 = 0 the solution is

𝑦1(𝑡) = ̄𝑦1 + (𝑦1(0) − ̄𝑦1) cos(𝛽 𝑡) + (𝑦2(0) − ̄𝑦2) sin(𝛽 𝑡) (4.24a)
𝑦2(𝑡) = ̄𝑦2 − (𝑦1(0) − ̄𝑦1) sin(𝛽 𝑡) + (𝑦2(0) − ̄𝑦2) cos(𝛽 𝑡) (4.24b)

where the steady state is

 ȳ = ( ̄𝑦1
̄𝑦2
) = ⎛⎜⎜⎜

⎝

 𝑏2
𝛽   

−𝑏1
𝛽  

⎞⎟⎟⎟
⎠

. (4.25)

Proof. In this case we cannot solve each equation independently, as for the decoupled system in
Proposition 1 , or the recursive system in Proposition 2.

First, we transform the non-homogenous system (4.21a)-(4.21b) into a homogeneous system by
defining

𝑧1(𝑡) = 𝑦1(𝑡) − ̄𝑦1,
𝑧2(𝑡) = 𝑦2(𝑡) − ̄𝑦2,

(4.26)

  where the steady state, y in equation (4.23), is obtained by solving

( 𝛼 𝛽
−𝛽 𝛼) (𝑦1

𝑦2
) + (𝑏1

𝑏2
) = (0

0) .

Taking time derivatives of (4.26) we have the homogenous ODE

̇𝑧1 = 𝛼 𝑧1 + 𝛽 𝑧2

̇𝑧2 = −𝛽 𝑧1 + 𝛼 𝑧2.
  Next, we transform this planar ODE into an equivalent system of decoupled ODE (see the
Appendix to this chapter). We do this by passing from cartesian coordinates (𝑧1, 𝑧2) ∈ ℝ to polar
coordinates (𝑟, 𝜃) ∈ ℝ, through the transformation:

𝑧1(𝑡) = 𝑟(𝑡) cos(𝜃(𝑡)),
𝑧2(𝑡) = 𝑟(𝑡) sin(𝜃(𝑡)),

(4.27)
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  where 𝑟2 = 𝑧2
1 +𝑧2

2 measures the distance from a reference point (the radius) and 𝜃, is the angular

coordinate such that tan(𝜃) = sin(𝜃)
cos(𝜃)  = 𝑧1

𝑧2
, that is 𝜃 = arctan (𝑧1

𝑧2
).

(𝑟(𝑡)
𝜃(𝑡)) = ⎛⎜

⎝

√𝑧1(𝑡)2 + 𝑧2(𝑡)2 
arctan (𝑧1

𝑧2
).

⎞⎟
⎠

  Taking time-derivatives for both equations, yields

̇𝑟 = 1
2(𝑧2

1 + 𝑧2
2)

1
2 −1 (2 𝑧1 ̇𝑧1 + 2 𝑧2 ̇𝑧2) = 𝑧1 ̇𝑧1 + 𝑧2 ̇𝑧2 

𝑟 = 𝛼𝑧2
1 + 𝑧2

2
𝑟   = 𝛼 𝑟2

𝑟   = 𝛼 𝑟,

  and 4

̇𝜃 = 𝑧2 ̇𝑧1 − 𝑧1 ̇𝑧2
𝑧2

1 + 𝑧2
2

= −𝛽 𝑧2
1 + 𝑧2

2
𝑧2

1 + 𝑧2
2

= −𝛽.

  Solving the two linear decoupled differential equations ̇𝑟 = −𝛼𝑟 and ̇𝜃 = −𝛽, we find

𝑟(𝑡) = 𝑟(0) 𝑒𝛼 𝑡

𝜃(𝑡) = 𝜃(0) − 𝛽 𝑡.

  Using equation (4.27) for the inverse transformation, and observing that 𝑧1(0) = 𝑟(0) cos (𝜃(0))
and 𝑧2(0) = 𝑟(0) sin (𝜃(0)), we find 5

 

𝑧1(𝑡) = 𝑒𝛼 𝑡 𝑟(0) cos (𝜃(0) − 𝛽 𝑡) 
= 𝑒𝛼 𝑡(𝑟(0) cos (𝜃(0)) cos (𝛽 𝑡)   + 𝑟(0) sin (𝜃(0)) sin (𝛽 𝑡) )

= 𝑒𝛼 𝑡(𝑧1(0) cos (𝛽 𝑡)   + 𝑧2(0) sin (𝛽 𝑡) )

  and

 

𝑧2(𝑡) = 𝑒𝛼 𝑡 𝑟(0) sin (𝜃(0) − 𝛽 𝑡) 
= 𝑒𝛼 𝑡( − 𝑟(0) cos (𝜃(0)) sin (𝛽 𝑡)   + 𝑟(0) sin (𝜃(0)) cos (𝛽 𝑡) )

= 𝑒𝛼 𝑡( − 𝑧1(0) sin (𝛽 𝑡)   + 𝑧2(0) cos (𝛽 𝑡) ).

  If we apply the inverse transformation of (4.26) we obtain the solution to the differential equation
(4.24a)-(4.24b).

Stable focus

 
If 𝛼 < 0 and 𝛽 ≠ 0, in the planar linear ODE (4.21a)-(4.21b), then there is a unique steady state,

given in equation (4.23), for any vector B. The solutions are formally given in equations (4.22a)-
(4.22b). We can see, because lim𝑡→∞  𝑒𝛼𝑡 = 0, that, for any initial value y(0), the solution converges

4The derivative of arctan (𝑓(𝑥)
𝑔(𝑥) ) is 𝑑

𝑑𝑥 ( arctan (𝑓(𝑥)
𝑔(𝑥) )) = 𝑓′(𝑥) 𝑔(𝑥) − 𝑓(𝑥) 𝑔′(𝑥)

𝑓(𝑥)2 + 𝑔(𝑥)2 .
5Recall the following trigonometric equivalences: cos (𝑥 − 𝑦) = cos (𝑥) cos (𝑦) + sin (𝑥) sin (𝑦) and sin (𝑥 − 𝑦) =

− cos (𝑥) sin (𝑦) + sin (𝑥) cos (𝑦).
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asymptotically to the steady state. This is also a case in which there is (global) asymptotic stability,
but differently from the stable node, the trajectories are oscillatory (or at least hump shape). Figure
4.9 displays two phase diagrams for the stable focus: panel (a) shows the anti-clockwise case in
which 𝛽 < 0 and panel (b) shows the clockwise case in which 𝛽 > 0. In both cases trajectories
are oscillatory, but they can be hump-shaped if the initial point is close to the steady state and a
complete periodic trajectory is only materialized for one of the variables.

For the stable focus the steady state is, therefore, an attractor, meaning that the stable manifold
is coincident with the domain Y, 𝒲𝑠 = Y, and both the center and the unstable manifolds are
empty.

ẏ
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(a) Case 𝛽 < 0

ẏ1
=
0

ẏ
2 =

0

y1

y2

(b) Case 𝛽 > 0

Figure 4.9: Phase diagrams for stable foci with B = 0.

Unstable focus

If 𝛼 > 0 and 𝛽 ≠ 0, in the planar linear ODE (4.21a)-(4.21b), then there is a unique steady state,
given in equation (4.23), for any vector B. The solutions are formally given in equations (4.22a)-
(4.22b). We can see, because lim𝑡→∞  𝑒𝛼𝑡 = ∞, that, for any initial value y(0) different from the
steady state, the solution becomes unbounded in infinite time. This is also a case in which there
is (global) instability, but differently from the unstable node, the trajectories are oscillatory (or at
least hump shape). Figure 4.10 displays two phase diagrams for the unstable focus: panel (a) shows
the anti-clockwise case in which 𝛽 < 0 and panel (b) shows the clockwise case in which 𝛽 > 0. In
both cases trajectories are oscillatory, but they can be hump-shaped if the initial point is close to
the steady state and a complete periodic trajectory is only materialized for one of the variables. In

For the stable focus the steady state is a repeller, meaning that the unstable manifold is coin-
cident with the domain Y, 𝒲𝑢 = Y, and both the center and the stable manifolds are empty.
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Figure 4.10: Phase diagrams for unstable foci with B = 0.

Center

 
If 𝛼 = 0 and 𝛽 ≠ 0, in the planar linear ODE (4.21a)-(4.21b), then there is an unique steady

state presented in equation (4.25), independently of the vector B. The solutions are formally given
in equations (4.24a) -(4.24b). If y(0) ≠ y, we can see that the solution is periodic, meaning that
y(𝑡) = y(𝑡+𝑝), for any 𝑡 ∈ T, where 𝑝 is the amount of time required for a repetition of the solution.
This means that the solution is stable but not asymptotically stable: the distance between y(0)
and y is constant, that is it neither converges to zero nor becomes unbounded in infinite time.

Figure 4.11 displays two phase diagrams for the center: panel (a) shows the anti-clockwise case
in which 𝛽 < 0 and panel (b) shows the clockwise case in which 𝛽 > 0.

In this case the stable and unstable manifolds are both empty and the state space coincides
with the center manifold, 𝒲𝑐 = Y.

4.2.6 Non-canonical cases

In this subsection we present the solutions and the phase diagrams when matrix A is non-canonical.
Differently from the previous cases, this are not normal form cases, in the sense that they represent
the simplest cases for similar matrices, that is they represent irreducible cases.

Case Λ𝑑
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ẏ1 = 0

ẏ
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(a) Case 𝛽 < 0
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(b) Case 𝛽 > 0

Figure 4.11: Phase diagrams for centers, if B = 0.

If the coefficient matrix is the non-canonical case ΛΛΛ𝑑 the ODE system i

̇𝑦1 = 𝜆 𝑦1 + 𝑏1, (4.28a)
̇𝑦2 = 𝜆 𝑦2 + 𝑏2. (4.28b)

This appears to be similar to a node, in the sense that the two equations are uncoupled, but it is
not because the two coefficients affecting the variables 𝑦1 and 𝑦2 are equal. But they differ from
the node with multiplicity because the coefficient matrix is diagonal.

The solution is similar to the one of a node

𝑦1(𝑡) = ̄𝑦1 + (𝑦1(0) − ̄𝑦1) 𝑒𝜆 𝑡, (4.29a)
𝑦2(𝑡) = ̄𝑦2 + (𝑦2(0) − ̄𝑦2) 𝑒𝜆 𝑡,   (4.29b)

for 𝜆 ≠ 0 6  where

𝑦𝑗  = −𝑏𝑗
𝜆 , for  𝑗 = 1, 2. 

If 𝜆 ≠ 0 the steady state alway exists and is unique and the solutions, in equations (4.29a)-(4.29b)
are similar to the solutions for (non-degenerate) nodes. If 𝜆 = 0 this case is the same as a degenerate
node.

If 𝜆 < 0 the solutions are asymptotically stable and if 𝜆 > 0 they are unstable. Comparing the
phase diagram for the stable (unstable) case in Figure 4.12 with the phase diagram for the stable
(unstable) node in Figure 4.4 (4.5) the difference is obvious: the trajectories tend to be coincident
or equidistant with the two eigenspaces for all times. The qualitative dynamic properties tend to
be the same as for the stable or unstable nodes.

6If 𝜆 = 0 this reduces to the case of a degenerate saddle-node.
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Figure 4.12: Phase diagrams for a non-canonical 𝑑-ODE for B = 0.

Case Λℎ: hyperbolic case

 
The ODE for the hyperbolic case is

̇𝑦1 = 𝛼 𝑦1 + 𝛽 𝑦2 + 𝑏1 (4.30a)
̇𝑦2 = 𝛽 𝑦1 + 𝛼 𝑦2 + 𝑏2, (4.30b)

where 𝛽 ≠ 0.

Proposition 4 (Non-canonical case ΛΛΛℎ).   Consider the linear planar ODE defined by equations
(4.30a)-(4.30b) where 𝛼 and 𝛽 ≠ 0 are real numbers. A solution exists and is unique and can take
the following forms:

1. if 𝛼 ≠ 0 the solution is 7 

𝑦1(𝑡) = ̄𝑦1 + 𝑒𝛼 𝑡  ((𝑦1(0) − ̄𝑦1) cosh(𝛽 𝑡) + (𝑦2(0) − ̄𝑦2) sinh(𝛽 𝑡)) (4.31a)

𝑦2(𝑡) = ̄𝑦2 + 𝑒𝛼 𝑡  ((𝑦1(0) − ̄𝑦1) sinh(𝛽 𝑡) + (𝑦2(0) − ̄𝑦2) cosh(𝛽 𝑡)) (4.31b)

where the steady state is

 ȳ = ( ̄𝑦1
̄𝑦2
) = 1

𝛼2 − 𝛽2 (−𝛼 𝑏1 + 𝛽 𝑏2
𝛽 𝑏1 − 𝛼 𝑏2

) . (4.32)

7Recall that cosh (𝑥) = 1
2(𝑒𝑥 + 𝑒−𝑥) and sinh (𝑥) = 1

2(𝑒𝑥 − 𝑒−𝑥).
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Proof. We follow, again, three steps. First we find the steady state ȳ, by solving

(𝛼 𝛽
𝛽 𝛼) (𝑦1

𝑦2
) + (𝑏1

𝑏2
) = (0

0) ,

and obtain (4.32). Second, we define the deviations 𝑧1(𝑡) = 𝑦1(𝑡) − ̄𝑦1, 𝑧2(𝑡) = 𝑦2(𝑡) − ̄𝑦2, and take
the time-derivatives to find the variational ODE

̇𝑧1 = 𝛼 𝑧1 + 𝛽 𝑧2

̇𝑧2 = 𝛽 𝑧1 + 𝛼 𝑧2

  which is again a system of coupled variables. Third, we transform this system into a system of
decoupled variables by finding a suitable linear transformation. In this case, the transformation is

(𝑤1(𝑡)
𝑤2(𝑡)) = (1 −1

1 1 ) (𝑧1(𝑡)
𝑧2(𝑡)) = (𝑧1(𝑡) − 𝑧2(𝑡)

𝑧1(𝑡) + 𝑧2(𝑡)) .

  Taking time derivatives we obtain the decoupled system

�̇�1 = (𝛼 − 𝛽) 𝑤1

�̇�2 = (𝛼 + 𝛽) 𝑧2

  which has a unique solution

 
𝑤1(𝑡) = 𝑤1(0) 𝑒(𝛼−𝛽) 𝑡 = (𝑧1(0) − 𝑧2(0)) 𝑒𝛼 𝑡  𝑒−𝛽 𝑡

𝑤2(𝑡) = 𝑤2(0) 𝑒(𝛼+𝛽) 𝑡 = (𝑧1(0) + 𝑧2(0)) 𝑒𝛼 𝑡  𝑒𝛽 𝑡.

  Using the inverse transformation

(𝑧1(𝑡)
𝑧2(𝑡)) = 1

2 ( 1 1
−1 1) (𝑤1(𝑡)

𝑤2(𝑡)) = 1
2 ( 𝑤1(𝑡) + 𝑤2(𝑡)

−𝑤1(𝑡) + 𝑤2(𝑡))

  we find

 
𝑧1(𝑡) = 𝑒𝛼 𝑡 1

2  (𝑧1(0) (𝑒𝛽 𝑡 + 𝑒−𝛽 𝑡) + 𝑧2(0) (𝑒𝛽 𝑡 − 𝑒−𝛽 𝑡))

𝑧2(𝑡) = 𝑒𝛼 𝑡 1
2 (𝑧1(0) (𝑒𝛽 𝑡 − 𝑒−𝛽 𝑡) + 𝑧2(0) (𝑒𝛽 𝑡 + 𝑒−𝛽 𝑡)).

  Transforming back to y and using the definitions of cosh (𝑥) and sinh (𝑥) we find the solution
(4.31a)-(4.31b).

The dynamics is determined by the fact that the coefficient matrix ΛΛΛℎ has eigenvalues 𝜆−  =
𝛼 − 𝛽 and 𝜆+  = 𝛼 + 𝛽. Therefore they depend on both the absolute value of the coefficients and
on their sign.

Let us start by assuming that B = 0. In this case a steady state always exists although it may
not be unique. The following cases are possible:
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ẏ
1
=

0

ẏ
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Figure 4.13: Phase diagrams for a non-canonical ℎ-ODE for B = 0.

1. if |𝛽| > 0 and −|𝛽| < |𝛼| < |𝛽| then the steady state y  = 0 is unique and is a saddle-point
(see panel (a) in Figure 4.13);

2. if 𝛼 < 0 and −𝛼 < 𝛽 < 𝛼 then the steady state y  = 0 is unique is asymptotically stable (see
panel (b) in Figure 4.13);

3. if 𝛼 > 0 and −𝛼 < 𝛽 < 𝛼 then the steady state y  = 0 is unique is unstable (see panel (c) in
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Figure 4.13);

4. if 𝛼 = 𝛽 then there will be an infinite number of steady states along a line 𝑦1 + 𝑦2 = 0, that
is there is a non-empty center manifold 𝒲𝑐  = { y ∈ Y ∶ 𝑦1 + 𝑦2 = 0}. Furthermore, if 𝛼 < 0
(𝛼 > 0) then the phase diagram is qualitatively similar to a stable (unstable) saddle-node,
with the trajectories converging to (diverging from) 𝒲𝑐;

5. if 𝛼 = −𝛽 then there will be an infinite number of steady states along a line 𝑦1 − 𝑦2 = 0, that
is there is a non-empty center manifold 𝒲𝑐  = { y ∈ Y ∶ 𝑦1 − 𝑦2 = 0}. Furthermore, if 𝛼 < 0
(𝛼 > 0) then the phase diagram is qualitatively similar to a stable (unstable) saddle-node,
with the trajectories converging to (diverging from) 𝒲𝑐.

If B ≠ 0 the phase diagrams for the three first cases are the same with the exception that the
steady state is different from the origin (see equation (4.32)). The last two cases differ: if B ≠ 0
and |𝛼| = |𝛽| then there will be no steady states.

4.3 Algebraic characterization of the solutions of planar ODE

   
When time is the independent variable, we can a complete characterization of the behavior of

the solution over time, and how it depends on the parameters. There is a general characterization
in applied mathematics and a particular use in economics.

Applied mathematics offers two main types of approaches: stability analysis, when we con-
sider the parameters of the model fixed and study the long run behavior of its solution, or bifurca-
tion analysis when a change in the parameters leads to several different types of phase diagrams.
In economics, we have comparative dynamics analysis when we change locally the value of
parameters without changing the qualitative characterization of the dynamics, or its type of phase
diagram

In stability analysis we are concerned with the behavior of the solution by highlighting the
order relationship  within the space of the independent variable when the interval of time evolves.
Typically, 𝑡 = 0 refers to the present moment and 𝑡 = ∞ to the very long future (or, in some cases,
to a state in which time becomes irrelevant). Two perspectives are possible: a forward perspective
when we want to project into the future a state of a system, for instance y(0) = y0 with y0 a known
element of Y, which we know now; or a backward perspective, when we fix a state in the future,
for instance y(∞) = y, and want to know which solutions would lead to it.

4.3.1 Solution of planar linear equations, with time as the independent variable

  In this subsection we provide a bird’s eye view on the solution of a planar linear autonomous ODE,
recalling our results from chapter 3, and expanding it by studying the dynamics of the solutions.

Consider the planar linear ODE (4.1), with matrices given in equation (4.2).



Paulo Brito Advanced Mathematical Economics 2022/2023 60

Matrix A and the associated phase diagram

  In chapter 3 we saw matrix A, can be of the two types:
First, recalling that the eigenvalues of matrix A are the numbers

𝜆∓  = trace(A)
2   ∓ √Δ(A), where  Δ(A) = (trace(A)

2  )
2

− det (A),

  then matrix A is similar to one of the Jordan canonical forms

ΛΛΛ1 = ( 𝜆−  0
0 𝜆+

) , ΛΛΛ2 = ( 𝜆 1
0 𝜆) , or  ΛΛΛ3 = ( 𝛼  𝛽

−𝛽 𝛼)

where all the parameters are real numbers, if Δ(A) > 0, Δ(A) = 0, or Δ(A) < 0, respectively.
Furthermore,   A = PΛΛΛ P−1 where P is the (non-singular) eigenvector matrix. Second, matrix A
is non-canonical if it takes one of the following two forms

ΛΛΛ𝑑 = ( 𝜆  0
0 𝜆) , or  ΛΛΛℎ = ( 𝛼  𝛽

𝛽 𝛼) ,

and if Δ(A) > 0 the two eigenvalues are real and distinct, and satisfy 𝜆+  > 𝜆−, and if Δ(A) = 0
they are equal, and real 𝜆+  = 𝜆− = 𝜆, and if Δ(A) = 0 they are complex conjugate 𝜆±  = 𝛼 ± 𝛽 𝑖,
where 𝑖 =

√
−1.

From the results of the last section we know that: if det (A)  > 0 and Δ(A) > 0 the phase
diagram is a node; if det (A)  > 0 and Δ(A) < 0 the phase diagram is a focus, and if det (A)  < 0
it is a saddle.

Furthermore, we know that the eigenvector matrix determines the eigenspaces, and the dimen-
sion and slopes of the stable and unstable manifolds. Recall that if Δ(A) ≠ 0, the eigenvector
matrix concatenates the eigenvectors associated to the two eigenvalues 𝜆− and 𝜆+, is

P = P− | P+  ≡ (𝑃 −
1 𝑃 +

1
𝑃 −

2 𝑃 +
2

) ,

and if Δ(A) = 0 the eigenvector matrix concatenates a simple and a generalized eigenvector P =
 P𝑠|P𝑔 (see Appendix to chapter 3).

4.3.2 Steady states

 

Definition 1 (Steady state).    A steady state is an element of Y belonging to the set

y  = {y ∈ Y ∶ A y + B = 0}.

Proposition 5 (Existence and number of fixed points). Let the set of steady states be given in
definition 1:
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1. If det (A) ≠ 0, that is, if all eigenvalues of A are different from zero, then there is an unique
steady, and it is given by

y = −A−1 B.

2. If det (A) = 0 and trace(A) ≠ 0 then the two eigenvalues are real, distinct, there is one
eigenvalue which is equal to zero. Two cases are possible:

(a) if trace(A) < 0 then 𝜆+ = 0 > 𝜆−, and 𝑃 +
2 𝑏2 = 𝑃 +

1 𝑏1, there is an infinite number of
steady states over the one-dimensional manifold (a line)

y ∈ { (𝑦1, 𝑦2) ∈ Y ∶ 𝑃 −
1 (𝜆−𝑦2 − 𝑏2) = 𝑃 −

2 (𝜆+𝑦1 − 𝑏1)},

 

(b) if trace(A)  > 0 then 𝜆+ > 0 = 𝜆−, and 𝑃 −
1 𝑏2 = 𝑃 −

2 𝑏1, and there is an infinite number
of steady states over the one-dimensional manifold

y ∈ { (𝑦1, 𝑦2) ∈ Y ∶ 𝑃 +
2 (𝜆+𝑦1 − 𝑏1) = 𝑃 +

1 (𝜆−𝑦2 − 𝑏2)} .

3. if A = 0 and 𝑃 +
2 𝑏2 − 𝑃 +

1 𝑏1 = 𝑃 −
1 𝑏2 − 𝑃 −

2 𝑏1 = 0 then we have an infinity of equilibrium points
belonging to a two-dimensional manifold (i.e., y = Y).

4. If Δ(A) = trace(A) = 0, but the Jordan canonical matrix of A is of type ΛΛΛ2, then there
are two equal eigenvalues, 𝜆 = 0, and if 𝑃 𝑔

2 𝑏1 = 𝑃 𝑔
1 𝑏2 then there is an infinite number of

equilibrium points belonging to a one-dimensional manifold, whose coefficients is given by the
simple eigenvalue

y ∈ { (𝑦1, 𝑦2) ∈ Y ∶ 𝑃 𝑠
2 (𝑦1 − 𝑏1) = 𝑃 𝑠

1 (𝑦2 − 𝑏2)}.

5. If none of the former conditions hold there are no steady states.

Proof. A steady state is a point y such that Ay = −B. If det (A) ≠ 0 then a there is a unique
inverse matrix A−1 and therefore a unique fixed point exits y = −A−1B. If matrix A is singular,
that is det (A) = 0, then a classical inverse does not exist. In this case, observe that Ay = −B
is equivalent to PΛΛΛP−1y = −B and also ΛΛΛP−1y = −P−1 B. Because in this case there are only
real eigenvalues, the expansion of this equation can take several forms. If Δ(A) > 0 we can expand
ΛΛΛP−1y = −P−1 B as

(𝜆− 0
0 𝜆+

) ( 𝑃 +
2 −𝑃 +

1
−𝑃 −

2 𝑃 −
1

) (𝑦1
𝑦2

) = ( 𝑃 +
2 −𝑃 +

1
−𝑃 −

2 𝑃 −
1

) (𝑏1
𝑏2

) .

Then: (1) if 𝜆+ = 0 > 𝜆− then

𝑃 +
2 𝑏2 = 𝑃 +

1 𝑏1, and 𝑃 −
1 (𝜆−𝑦2 − 𝑏2) = 𝑃 −

2 (𝜆−𝑦1 − 𝑏1);

  (2) if 𝜆+ > 0 = 𝜆− then

𝑃 −
1 𝑏2 = 𝑃 −

2 𝑏1, and 𝑃 +
2 (𝜆+𝑦1 − 𝑏1) = 𝑃 +

1 (𝜆+𝑦2 − 𝑏2);
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  or (3) if 𝜆+ = 𝜆− = 0, then the Jordan canonical form is ΛΛΛ1  = 0 if and only if A = 0, the
expansion is 𝑃 +

2 𝑏2 − 𝑃 +
1 𝑏1 = 𝑃 −

1 𝑏2 − 𝑃 −
2 𝑏1 = 0. At last, if there Δ(A) = 0 and the Jacobian matrix

is ΛΛΛ2 with 𝜆 = 0, steady states exist if and only if

(0 1
0 0) ( 𝑃 𝑔

2 −𝑃 𝑔
1

−𝑃 𝑠
2 𝑃 𝑠

1
) (𝑦1

𝑦2
) = ( 𝑃 𝑔

2 −𝑃 𝑔
1

−𝑃 𝑠
2 𝑃 𝑠

1
) (𝑏1

𝑏2
)

  which is equivalent to

𝑃 𝑠
2 𝑏1 = 𝑃 𝑔

1 𝑏2, and 𝑃 𝑠
2 (𝑦1 − 𝑏1) = 𝑃 𝑔

1 (𝑦2 − 𝑏2)

  In all other cases, fixed points will not exist.

 
Table 4.2 lists the previous results.

Table 4.2: Number of steady states

det (A)  ≠ 0 det (A)  = 0
trace(A) ≠ 0 trace(A) = 0

B = 0
unique

infinite (co dim 1) infinite (co-dim 2)
B ≠ 0 zero infinite (co-dim 1)

If the initial point is a steady state y(0) = y the solution is stationary. If y(0) ≠ y the solution
is time independent. The time dependency of solutions can be studied from the point of view of
their stability properties and from their recurrence properties.

4.3.3 Stability analysis

In this section we characterize the trajectories generated by a planar ODE, (y(𝑡))
𝑡∈[0,∞

regarding
their convergence properties.

Definition 2 (Stability definitions).  

A solution is asymptotically stable  if, for for an arbitrary y(0) in a neighborhood of y, it
converges asymptotically to y: i.e., lim𝑡→∞ y(𝑡) = w for |y(0) − y| < 𝜖 for a given 𝜖.

A solution is stable  if, for an y(0) in a neighborhood of y, the solution stays close to y, for
every 𝑡 ∈ (0, ∞) but does not converges asymptotically to y.

A solution is unstable  if, for an y(0) in a neighborhood of y, the solution becomes asymp-
totically unbounded, i.e., lim𝑡→∞  y(𝑡) = ±∞.
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A solution is conditionally stable if, for a particular values y(0), say y𝑠(0), in a neighbor-
hood of y, the solution converges asymptotically to y, but a small deviation from y𝑠(0) turns
the solution unstable.

 

 
In order to study the stability of the solutions of ODE (4.1), we start with the cases in which

there is a unique steady state.
The following result is useful:

Lemma 12 (Representation of the solution). Consider the planar ode (4.1), and assume that
det (A)  ≠ 0. Then there is a unique steady state y ∈ Y and the solution of the ODE can be
equivalently written as

y(𝑡) = y + P e𝛬𝛬𝛬 t  w(0) (4.33)

where w(0) = P−1  (y(0) − y) is a function of the an arbitrary point y(0) ∈ Y.

Proof. Let the steady state be y. Introduce the transformation y(𝑡) − y = Pw(𝑡). Then w (𝑡) =
P−1(y(𝑡)−y) and ẇ = P−1ẏ = P−1 (Ay+B) = P−1 (A (Pw+y)+B) = ΛΛΛw+P−1Ay +P−1B =
ΛΛΛw−P−1B+P−1B = ΛΛΛw for any matrix ΛΛΛ. Then, we get equivalently ẇ = ΛΛΛw, which has solution
w(𝑡) = e𝛬𝛬𝛬t w(0), where w(0) is, in the original variable given by w(0) = P−1 (y(0) − y).

The eigenvalues of A not only determine the number of steady states but also their stability
properties:

Proposition 6. The asymptotic dynamic characteristics of the solution of equation (4.1) is deter-
mined by the real part of the eigenvalues of matrix A:

1. if all the eigenvalues have negative real parts then all solutions of the ODE are asymptotically
stable;

2. if all eigenvalues have positive real parts then all solutions are unstable;

3. if there is one negative and one positive eigenvalue then the solution is conditionally stable:
it is unstable if 𝑤1(0) = 0 and it is asymptotically stable if 𝑤2(0) = 0;

4. if the eigenvalues are complex with zero real part the solution is stable but not asymptotically
stable;

5. if there is one zero eigenvalue the fixed point is a one-dimensional manifold (a center mani-
fold), the solution will converge to it if the other eigenvalue is negative (i.e., in case 𝜆+ = 0
and 𝜆− < 0) and will not converge to it if the other eigenvalue is positive (i.e., in case 𝜆+ > 0
and 𝜆− = 0).

Proof. Consider figure 3.1 in chapter 3. The solution of the ODE (4.1) can take one of the following
three forms: First, if



Paulo Brito Advanced Mathematical Economics 2022/2023 64

1. if Δ(A) > 0, the general solution is

y(𝑡) = y + 𝑤1(0) P− 𝑒𝜆−𝑡 + 𝑤2(0) P+ 𝑒𝜆+𝑡;

or, equivalently

(𝑦1(𝑡)
𝑦2(𝑡)) = (𝑦1

𝑦2
) + 𝑤1(0)   (𝑃 −

1
𝑃 −

2
) 𝑒𝜆− 𝑡 + 𝑤2(0)   (𝑃 +

1
𝑃 +

2
) 𝑒𝜆+ 𝑡.

Then, letting w(0) ≠ w: (1) the solution is asymptotically state if 0 > 𝜆+  > 𝜆−; (2) it is
conditionally stable if 𝜆−  < 0 < 𝜆+ and 𝑤2(0) = 0; and (3) it is unstable if 0 > 𝜆+  > 𝜆− > 0;

2. if Δ(A) = 0, the general solution is

y(𝑡) = y + 𝑒𝜆𝑡 (P𝑠(𝑤1(0) + 𝑤2(0) 𝑡) + 𝑤2(0) P𝑔)

or, equivalently

(𝑦1(𝑡)
𝑦2(𝑡)) = (𝑦1

𝑦2
) + 𝑒𝜆𝑡 ((𝑤1(0) + 𝑤2(0)𝑡)  (𝑃 𝑠

1
𝑃 𝑠

2
) + 𝑤2(0)  (𝑃 𝑔

1
𝑃 𝑔

2
)) .

Then, letting w(0) ≠ w: (1) the solution is asymptotically state if 𝜆 < 0; or (2) it is unstable
if 𝜆 > 0;

3. if Δ(A) < 0, the general solution is

y(𝑡) = y + 𝑒𝛼𝑡 ((𝑤1(0) cos 𝛽𝑡 + 𝑤2(0) sin 𝛽𝑡)P1 + (𝑤2(0) cos 𝛽𝑡 − 𝑤1(0) sin 𝛽𝑡)P2) =
= y + 𝑒𝛼𝑡 (𝑤1(0)(cos 𝛽𝑡P1 − sin 𝛽𝑡P2) + 𝑤2(0)(sin 𝛽𝑡P1 + cos 𝛽𝑡P2)) .

or, equivalently,

( 𝑦1(𝑡)
𝑦2(𝑡) ) = (𝑦1

𝑦2
)+𝑒𝛼𝑡 (𝑤1(0) (𝑃 −

1 cos 𝛽𝑡 − 𝑃 +
1 sin 𝛽𝑡

𝑃 −
2 cos 𝛽𝑡 − 𝑃 +

2 sin 𝛽𝑡) +  𝑤2(0) (𝑃 −
1 sin 𝛽𝑡 + 𝑃 +

1 cos 𝛽𝑡
𝑃 −

2 sin 𝛽𝑡 + 𝑃 +
2 cos 𝛽𝑡)) .

Then, letting w(0) ≠ w: (1) the solution is asymptotically state if 𝛼 < 0; (2) it is unstable if
𝛼 > 0; or (3) it is stable but non conditionally stable if 𝛼 = 0. In the last case the solution
is periodic.

 
The dynamic behavior of the solution to equation (4.1) from the perspective of its stability

properties is:

Theorem 1 (Stability properties for planar linear ODE). Consider the planar ODE (4.1). Assume
that a fixed point y ∈ 𝑌 exists if det (A) ≠ 0 or that an infinite number of fixed points exist if
det (A) = 0. The asymptotic properties of the solution as a function of the trace and determinant
of A are:
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1. asymptotic stability if and only if trace(A) < 0 and det (A) ≥ 0;

2. saddle path (or conditional) stability if and only if det (A) < 0;

3. instability if and only if trace(A) > 0 and det (A) ≥ 0;

4. stability but not asymptotic stability if trace(A) = 0 and det (A) ≥ 0.  

 
Table 4.3 tabulates the content of theorem 1.

Table 4.3: Stability of steady states

det (A)  < 0 det (A)  = 0 det (A)  > 0
trace(A) < 0

conditionally stable
asymptotically stable asymptotically stable

trace(A) = 0 stationary solutions stable
trace(A) > 0 unstable unstable

 

4.3.4 Partition of the space Y

Assuming that the initial arbitrary value y(0) ≠ y, we just saw that the solution has three types
of behavior: it converges asymptotically to a steady state, it diverges over time or it has a limited
amplitude, neither converging nor diverging by much. This allows for a partition of set Y into three
invariant subsets (which can be empty or not) such that a solution of the ODE will stay in one of
them for the whole adjustment between 𝑡 = 0 and 𝑡 = ∞.

The attracting set or stable manifold as the subset of point such that solutions converge
to an equilibrium point

𝒲𝑠 = { y(0) ∈ Y ∶ lim
𝑡→∞

 y(𝑡; y(0)) = y }
the repelling set or unstable manifold as the subset of point such that solutions become asymp-
totically unbounded

𝒲𝑢 = {y(0) ∈ Y ∶ lim
𝑡→∞

 y(𝑡; y(0)) = ±∞ } 
  and the center manifold, denoted by 𝒲𝑐,  as the subset of points which are neither asymptot-
ically stable nor unstable.

This introduces a partition over the state space Y:

Y = 𝒲𝑠 ⊕ 𝒲𝑢 ⊕ 𝒲𝑐.

  In the case of a linear ODE the stable, unstable, and center manifolds are global manifolds
because there is a unique steady state or a unique center manifold. As we will see, in the case of
non-linear ODE’s, which can have more than one, but finite in number, steady states, we distinguish
between local manifolds and global manifolds when they refer to a particular steady state or
to the whole space.
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4.3.5 Eigenspaces and stability analysis

 
The solution of an ODE (4.1) satisfy, in most cases, a superposition principle, because it is a

weighted function of two exponential functions. For example, if Δ(A) > 0 we saw that the solution
can be written as

y (𝑡) = y  + 𝑤1(0)P−  𝑒𝜆−𝑡 + 𝑤2(0) P+  𝑒𝜆+𝑡.

  That is, the solution of the ODE is a superposition of two elementary function 𝑒𝜆−𝑡 and 𝑒𝜆+𝑡,
acting on the directions defined by the eigenvector P− and P+, and weighed by w(0) which is a
function of the arbitrary value y(0) ∈ Y. In other words, the elementary components of the time
behavior of the solutions, 𝑒𝜆+𝑡 and 𝑒𝜆−𝑡, are linearly transformed by the eigenvectors P1 and P2.

We have defined the eigenspaces  as the subsets of space Y which are travelled by those two
elementary solutions:

ℰ− = { y ∈ Y ∶ spanned by P−} 
ℰ+ = { y  ∈ Y ∶ spanned by P+} 

Clearly the range of y is spanned by those two eigenvectors: i.e., Y = ℰ− ⊕ ℰ+.
If if Δ(A) > 0 we can determine again the eigenspaces by making 𝑤2(0) = 0 and 𝑤1(0) = 0,

respectively, 8 yielding
ℰ− = {y ∈ Y ∶ 𝑃 −

1 (𝑦2 − 𝑦2) = 𝑃 −
2 (𝑦1 − 𝑦1)}

and
ℰ+ = {y ∈ Y ∶ 𝑃 +

1 (𝑦2 − 𝑦2) = 𝑃 +
2 (𝑦1 − 𝑦1)}

The stable, unstable  and center manifolds, are the global stable, unstable and center manifolds
which partition set Y, according to the dynamic properties of the solution to a linear ODE. They
are, therefore spanned by the eigenspaces associated to the eigenvalues with negative, positive and
zero real parts. Formally the stable manifold  is spanned by the eigenspaces which are associated
to the eigenvectors with negative real parts

𝒲𝑠 ≡ ⊕𝑗∈± { ℰ𝑗 ∶ Re(𝜆𝑗) < 0},  

  the unstable manifold   is spanned by the eigenspaces which are associated to the eigenvectors
with positive real parts

𝒲𝑢 ≡ ⊕𝑗∈±{ ℰ𝑗 ∶ Re(𝜆𝑗) > 0},  

  and the center manifold  is spanned by the eigenspaces which are associated to the eigenvectors
with zero real parts

𝒲𝑐 ≡ ⊕𝑗∈±{ ℰ𝑗 ∶ Re(𝜆𝑗) = 0}. 
8We can determine the eigenvector ℰ− if we set 𝑤2(0) = 0 we have 𝑤1(0)𝑒𝜆−𝑡𝑃 −

1 = 𝑦1(𝑡)−𝑦1 and 𝑤1(0)𝑒𝜆−𝑡𝑃 −
2 =

𝑦2(𝑡) − 𝑦2. Thus 𝑤1(0)𝑒𝜆−𝑡 = 𝑦1(𝑡) − 𝑦1
𝑃 −

1
=  𝑦2(𝑡) − 𝑦2

𝑃 −
2

. We proceed in an analogous way for ℰ+.
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  Again we have
𝒲𝑠 ⊕ 𝒲𝑢 ⊕ 𝒲𝑐 = Y.

  Let 𝑛−, 𝑛+ and 𝑛𝑐 be respectively the number of eigenvalues with negative, positive and zero real
parts. Another way to see the relationship between the eigenspaces and the range of the dynamical
system is based on the observation that

𝑛− + 𝑛+ + 𝑛𝑐 = 2.

  and that the dimension of the there eigenspaces are therefore

dim(𝒲𝑠) = 𝑛−, dim(𝒲𝑢) = 𝑛+, dim(𝒲𝑐) = 𝑛𝑐,

  implying
dim(𝒲𝑠) + dim(𝒲𝑢) + dim(𝒲𝑐) = dim(Y) = 2.

  Therefore, for a planar ODE we have:

1. if all eigenvalues have negative real parts, i.e., if 𝑛− = 2, then 𝒲𝑠 = ℰ− ⊕ ℰ+ = Y, and 𝒲𝑢

and 𝒲𝑐 are empty, which means that 𝒲𝑠 is spanned by ℰ− and ℰ+ (i.e, the elements in 𝒲𝑠

are a weighted sum of elements of ℰ− and ℰ+). Then Y is the attracting set; 

2. if all eigenvalues have positive real parts, i.e., if 𝑛+ = 2, then 𝒲𝑢 = ℰ− ⊕ ℰ+ = Y, and 𝒲𝑠

and 𝒲𝑐 are empty. Then Y is the repelling set;

3. if there is a saddle point, i.e., if 𝑛− = 𝑛+ = 1, then 𝒲𝑠 = ℰ−, 𝒲𝑢 = ℰ+ and , and 𝒲𝑐 is
empty. Then 𝒲𝑠 is the attracting set and 𝒲𝑢 is the repelling set;

4. if there is at least one eigenvalue with zero real part, i.e., if 𝑛𝑐 ∈ {1, 2}, then 𝒲𝑐 is non-empty.
Three cases are possible (see the proof of Proposition 5):

(a) first, if 𝜆− < 0 = 𝜆+ then 𝒲𝑐 = {y ∈ Y ∶ 𝑃 −
1 (𝜆−𝑦2 −𝑏2) = 𝑃 −

2 (𝜆−𝑦1 −𝑏1)}, 𝒲𝑠 = Y/𝒲𝑐

and 𝒲𝑢 is empty;

(b) second, if 𝜆− = 0 < 𝜆+ then 𝒲𝑐 = {y ∈ Y ∶ 𝑃 +
2 (𝜆+𝑦1 − 𝑏1) = 𝑃 +

1 (𝜆+𝑦2 − 𝑏2), and
𝒲𝑢 = Y/𝒲𝑐 and 𝒲𝑠 is empty,

(c) third, 𝒲𝑐 = Y and 𝒲𝑠 and 𝒲𝑢 are both empty if there are two eigenvalues with zero
real parts.

4.3.6 Recurrence of solutions

We can classify solutions regarding their time profile into stationary, non-stationary, monotonic,
oscillatory, periodic solutions and hump-shaped. We use our previous transformation y(𝑡) − y  =
P w(𝑡), because, the main dynamic characteristics of the solution are generated by ẇ.
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Stationary solutions We say the solution is stationary if y(𝑡) = y is a constant for all 𝑡 ∈ T. In
this case ẇ(𝑡) = 0 for all 𝑡 and we already saw under which circumstances solutions are stationary.
We can say that a solution is asymptotically stationary if it converges asymptotically to a
steady state, i.e, lim𝑡→∞  ẏ (𝑡) = 0 or lim𝑡→∞  y(𝑡) = y.

Non-stationary solutions We could say that a solution is non-stationary if y(𝑡) ≠ y for some
𝑡 ∈ T. However, this designation is commonly reserved to solutions which are not asymptotically
stationary that is to solutions of time lim𝑡→∞  ẇ(𝑡) ≠ 0 or lim𝑡→∞  y(𝑡) = y(𝑡) = ±∞. Solution
are also non-stationary if a steady state does not exist (see Table 4.2).

Monotonic solutions We say the solution is monotonic if sign(ẇ(𝑡)) is the same for all 𝑡 ∈ T.
This means that the solution is monotonically increasing if ẇ(𝑡) > 0 for all 𝑡, it is monotonically
decreasing if ẇ(𝑡) < 0 for all 𝑡. A stationary solution can be seen as a particular type of monotonic
solution.

Oscillatory solutions A solution is oscillatory if w(𝑡) = w(𝑡+𝑝(𝑡)) for 𝑡 ∈ T and time-dependent
period 𝑝(𝑡) ∈ T: the solution is repeated in increasing intervals if 𝑝′(𝑡) > 0 or in decreasing intervals
if 𝑝′(𝑡) < 0. For these solutions, there is a sequence of points, increasing or decreasing over time
𝜏 ∈ {𝑡0, 𝑡1, … , 𝑡𝑠, …} such that ẇ(𝜏) = 0. In our case if there are two complex eigenvalues with
non-zero real part, that is 𝛼 ≠ 0, then the solution is oscillatory

w(𝑡) = 𝑒𝛼𝑡  (𝑤1(0) cos 𝛽𝑡 + 𝑤2(0) sin 𝛽𝑡
𝑤2(0) cos 𝛽𝑡 − 𝑤1(0) sin 𝛽𝑡) .

 

Periodic solutions If a solution satisfies w(𝑡) = w(𝑡 + 𝑝) for 𝑡 ∈ T and 𝑝 ∈ 𝑇 it is a periodic
solution period 𝑝. This is a particular case of an oscillatory solution in which the period is constant.
In our case if there are two complex eigenvalues with zero real part then the solution is periodic

w(𝑡) = (𝑤1(0) cos 𝛽𝑡 + 𝑤2(0) sin 𝛽𝑡
𝑤2(0) cos 𝛽𝑡 − 𝑤1(0) sin 𝛽𝑡) .

  This case occurs if and only if trace(A) = 2𝛼 = 0. Observe that in this case and if we transform
the system into polar coordinates (see section 4.A.1 in the appendix) we have 𝑟(𝑡) = 𝑟0 constant
and 𝜃(𝑡) = 𝜃0 − 𝛽𝑡.

Hump-shaped solutions If the solution of a planar equation is such that only one variable
satisfies ̇𝑦𝑖(𝑡) = 0 for a finite 𝑡 ∈ T and the other variable 𝑦−𝑖 is monotonic, then we say the
solution is hump-shaped. This case only occurs for the general homogeneous equation when there
are eigenvalues with real parts. Differently from oscillatory trajectories, there only one value of
time such that ̇𝑦𝑖(𝑡) = 0.
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4.4 Bifurcation analysis

 
In applied modelling, ODEs depend on parameters. That is, we are interested in models of type

9

 ẏ  = 𝐹(y, 𝜑) = A(𝜑) y + B(𝜑) (4.34)

  where 𝜑 is a parameter or a vector of 𝑚 parameters with domain in a set Φ, that is 𝜑 ∈ Φ ⊂ ℝ𝑚.
This implies that the solution of the ODE is a mapping y ∶ T × Φ → Y ⊆ ℝ2.

According to our previous study on the dynamics of the planar ODE we saw that the most
relevant characteristics of the dynamics are related with stability or instability of the solution, and
with the monotonous or oscillatory nature of its path. These properties tend to be generic, in the
sense that they can be satisfied for a wide change in the elements of A, and they change by passing
through non-generic cases, that is cases in which a small change in an element of A triggers a
change in the phase diagram.

Bifurcation analysis studies the qualitative changes in the dynamics of the solution of the
ODE (4.34)  for variation of parameters within the set Φ. In other words, it studies which types of
phase diagrams can occur. This is done by finding bifurcations: that is by identifying parameters
which when they change by passing through specific critical values there will be a qualitative
change in the phase diagram. From our previous results this is tantamount to finding changes in
the eigenvalues of matrix A, 10, that is, changes in the trace and the determinant of A.11

Bifurcation analysis is tantamount to finding a partition in the set of the parameters space Φ
which is associated to the stability properties of the model, that is, to the different dimensions of
the stable, unstable and center manifolds.

Assume there is a steady state, y(𝜑), which is a function of the parameters of the model. A
bifurcation occurs for a value of the parameter 𝜑 = 𝜑∗ such that the local dimension of the
eigenspaces of y(𝜑∗) change.

Our classification of the phase diagrams in Table 4.1 allows us to classify bifurcations according
to the number of parameters that should change in order to see that the changes in the stability
occurs when there are eigenvalues with zero real part.

Let us define
𝑇 (𝜑) = trace(A(𝜑)), and  𝐷(𝜑) = det (A(𝜑)).

  We can also define a function for the discriminant Δ(𝜑) = (𝑇 (𝜑)
2  )

2
− 𝐷(𝜑).

The co-dimension of a bifurcation refers to the number of parameters which need to change
to bring about a bifurcation.

In planar ODEs there are only bifurcations of co-dimension one and two. Bifurcation of co-
dimension one occur if there is 𝜑 = 𝜑⋆ such that 𝐷(𝜑∗) = 0, that is if there is a parameter value

9Sometimes called exogenous variables in economic models.
10We will generalize this approach for non-linear ODEs in next chapters.
11Observe that in the scalar ODE we only needed a parameter to characterize the stability properties of the ODE.

The trace and the determinant are the extension of the coefficient of 𝑦 to the planar case.
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such that there is a zero eigenvalue, and bifurcation of co-dimension two occur if there is 𝜑 = 𝜑⋆

such that 𝑇 (𝜑∗) = 0 and 𝐷(𝜑∗) > 0 that is if there is a parameter value such that there is a complex
eigenvalue with zero real part.

We can determine co-dimension one bifurcations by solving

 
⎧{
⎨{⎩

 A(𝜑) y + B(𝜑) = 0
𝐷(𝜑) = det (A(𝜑))  = 0

  (4.35)

for (y, 𝜑). This allows us to partition set Φ into subsets of values in which we have saddles, stable
nodes and foci, or unstable nodes and foci, which are in general intervals (they have dimension
one), and the subset of bifurcation values (of dimension zero).

We can determine co-dimension two bifurcations by solving

⎧{{
⎨{{⎩

 A(𝜑) y + B(𝜑) = 0
𝑇 (𝜑) = trace(A(𝜑)) = 0
𝐷(𝜑) = det (A(𝜑))  > 0

  (4.36)

for (y, 𝜑1, 𝜑2).
We can represent geometrically the bifurcation scenarios by plotting a bifurcation diagram.

There are two approaches for representing bifurcation diagrams.

1. By representing the partition of the Φ space, if there are at least two parameters. In this space
we represent the lines {𝜑 ∈ Φ ∶ 𝐷(𝜑) = 0} and {𝜑 ∈ Φ ∶ 𝑇 (𝜑) = 0}, and {𝜑 ∈ Φ ∶ Δ(𝜑) = 0},

2. By doing an implicit plot of 𝑇 (𝜑) and 𝐷(𝜑) in the trace-determinant figure 3.1. Geometrically
bifurcations exist if those lines the horizontal axis or the positive half of th evertical axis.

 

Example Consider the following planar ODE, where 𝜑 = (𝜇, 𝑏) is a real vector of parameters,

̇𝑦1 = 𝜇 𝑦1 + 𝑦2 − 𝑏
̇𝑦2 = 𝑦2 − 𝑏.

  Assume that 𝑏 > 0 and 𝜇 can have any sign. The coefficient matrix has trace and determinant,
depending on the parameters, 𝑇 (𝜑) = 1 + 𝜇 and 𝐷(𝜑) = 𝜇, and the eigenvalues are 𝜆+(𝜑) = 1 and
𝜆−(𝜑) = 𝜇 The bifurcation conditions in equation (4.35) take the following form

⎧{{
⎨{{⎩

 𝜇 𝑦1 + 𝑦2 − 𝑏 = 0
𝑦2 − 𝑏 = 0
𝜇 = 0.

 

The bifurcation point if (y, 𝜇) = (𝑦1, 𝑏, 0) for 𝜇 = 0. If 𝜇 ≠ 0 there is one unique steady state
ȳ  = (0, 𝑏) which is a saddle point if 𝜇 < 0 and an unstable node if 𝜇 > 0. As det > 0 only if 𝜇 > 0
then trace > 0 which implies there is no bifurcation of co-dimension two (no center).
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4.5 Applications

   
In this section we show how to find solutions to a second-order scalar linear ODE, and to a non-

autonomous linear scalar ODE by transforming them to a linear planar autonomous (first-order)
ODE. This allows to a algebraic (not calculus) approach to their solution.

4.5.1 Second order linear equations

 
A scalar second order linear ODEs can be solved by transforming it into a planar linear ODE.
Consider a general second order equation.

̈𝑦 − 𝑎1 ̇𝑦 + 𝑎0𝑦 + 𝑏 = 0 (4.37)

If we define 𝑦1 = 𝑦 and 𝑦2 = ̇𝑦 = ̇𝑦1, then, we can transform the equation into the system

̇𝑦1 = 𝑦2,
̇𝑦2 = 𝑎0𝑦1 + 𝑎1𝑦2 + 𝑏

  In matrix notation we have ẏ  = A y + B, where

y = ( 𝑦1
𝑦2

) , A = ( 0 1
𝑎0 𝑎1

) , and  B = ( 0
𝑏 ) .

We readily see that trace(A) = 𝑎1 and det (A)  = 𝑎1 − 𝑎0, and the eigenvalues are

𝜆∓  = 𝑎1
2   ± √(𝑎1

2  )
2

+ 𝑎0 − 𝑎1.

We can study the dynamics and study the qualitative dynamics by using our previous results. In
particular, we see that if 𝑎0 ≠ 𝑎1 there is a unique steady state and if 𝑎0 = 𝑎1 there is a steady
state, for 𝑦, if 𝑏 = 0 and there are no steady states if 𝑏 ≠ 0.

Exercise Draw the phase diagram. Draw a bifurcation diagram using the ratio 𝑎1/𝑎0 as your
bifurcation parameter, assuming that 𝑏 = 0.

4.5.2 Non-autonomous scalar equations

 
In chapter two we studied the non-autonomous linear scalar equation ̇𝑦  =  𝜆 𝑦 + 𝛽 𝑧(𝑡) where

𝑧(𝑡) = 𝑒𝛾 𝑡 (equation (2.34)) where 𝑦 was an endogenous variable and 𝑧 was an exogenous variable,
and 𝜆 < 0 and both 𝛽 and 𝛾 were positive. This is a case in which we can take 𝑧(𝑡) as an additive
time-dependent shock.

We could express this model as an planar forward ODE

̇𝑦  = 𝜆 𝑦 + 𝛽 𝑧
̇𝑧  = 𝛾 𝑧

(4.38)
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The steady state, ( ̄𝑦, ̄𝑧) = (0, 0) is a saddle-point. The general solution is

𝑦(𝑡) =  (𝑦(0) − 𝛽
𝛾 − 𝜆) 𝑒𝜆𝑡 + 𝑧(0) 𝛽

𝛾 − 𝜆 𝑒𝛾𝑡 

𝑧(𝑡) = 𝑧(0) 𝑒𝛾𝑡. 
(4.39)

See next the solution to the initial-value problem
Exercise Draw the phase diagram.

4.6 Problems involving planar ODE’s

 
As we saw all the solutions involve a vector of arbitrary elements of y, y(0) or w(0). This means

that we have existence but not uniqueness for general  solutions.
In applications we introduce further information on the system. The type of problem involv-

ing planar ODE’s depends on this additional information. We can define the following types of
problems:

• if we know the initial point y(0) = y0 = (𝑦1,0, 𝑦2,0) and want to solve the problem forward in
time, we say we have an initial-value problem;

• if we know the value of at least one variable at a point in time 𝑇 > 0, y(𝑇 ) = y𝑇 , or
𝑦1(𝑇 ) = 𝑦1,𝑇 , 𝑦2(𝑇 ) = 𝑦2,𝑇 , we say we have a boundary-value problem;

• in economics a common problem is a mixes initial-terminal value problem, where we know the
initial value for one variable and a boundary condition for the asymptotic value of another.
Example: 𝑦1(0) = 𝑦1,0 and lim𝑡→∞ 𝑒−𝜇𝑡𝑦2(𝑡) = 0, where 𝜇 is a non-negative constant.

When the initial, boundary or terminal conditions are imposed we say we have particular
solutions. Off course, the issues of existence, uniqueness and characterization still hold.

In economics it has been standard to refer to problems having an unique solution as determi-
nate and to problems having multiple solutions as indeterminate.

We assume in the rest of this section that det (A)  ≠ 0.

4.6.1 Initial-value problems

The initial-value problem is
⎧{
⎨{⎩

ẏ  = A y + B for  𝑡 ∈ [0, ∞)
y(0) = y0 for  𝑡 = 0

(4.40)

 

Proposition 7 (Solution to the initial-value problem).   Consider problem (4.40) where y0 is
fixed, and assume that det (A)  ≠ 0.  Then the solution for the initial-value problem is unique

y(𝑡) = y + Pe𝛬𝛬𝛬 tP−1(y0 − y)
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Proof. The general solution for a planar non-homogeneous equation is

y(𝑡) = y + Pe�t w(0).

  As e𝛬𝛬𝛬t |𝑡=0 = I then evaluating the solution at time 𝑡 = 0, we have

y(0) − y = Pw(0)

  and because P is non-singular w(0) = P−1(y(0) − y). As the initial condition for y is y(0) = y0
Plugging the initial condition we have a particular value for w(0)

w(0) = P−1(y0 − y).

 

4.6.2 Terminal value problems

If 𝑇 = ∞, the terminal-value problem is

⎧{
⎨{⎩

ẏ  = A y + B for  𝑡 ∈ [0, ∞)
lim𝑡→∞ y(𝑡) = y for  𝑡 → ∞.

(4.41)

Proposition 8. Consider problem (4.41) where y ∈ Y, and assume that det (A)  ≠ 0.Then:

(1) if y is a stable node or a stable focus then the solution is indeterminate

y(𝑡) = y + Pe𝛬𝛬𝛬t  w(0)

  for any w(0) = P−1(y(0) − y for y(0) ∈ Y;

(2) if y is an unstable node or an unstable focus then the solution is determinate

y(𝑡) = y, for all 𝑡 ∈ T

 

(3) if y is a saddle-point then the solution is indeterminate

y(𝑡) = y + 𝑤1(0) P− 𝑒𝜆−𝑡.

for an arbitrary 𝑤1(0).

Proof.   (1) If all the eigenvalues of A have negative real parts then

lim
𝑡→∞

e𝛬𝛬𝛬 t = I2×2

  which implies lim𝑡→∞ y(𝑡) = y independently of the value of y(0). (2) if all the eigenvalues of A
have positive real parts then all the exponential functions 𝑒𝜆+𝑡, 𝑒𝜆−𝑡, 𝑒𝜆𝑡 or 𝑒𝛼𝑡 become unbounded,
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which means that we can only have lim𝑡→∞  Pe𝛬𝛬𝛬t w(0) = 0 if and only if w(0) = 0. Then as w(0)
is uniquely determined, the solution is unique. (3) If the steady state is a saddle point we know
that the Jacobian form of A is ΛΛΛ1, the solution takes the form

y(𝑡) = y + 𝑤1(0) P− 𝑒𝜆−𝑡 + 𝑤2(0) P+ 𝑒𝜆+𝑡

  and lim𝑡→∞ 𝑒𝜆+𝑡 = +∞ and lim𝑡→∞ 𝑒𝜆−𝑡 = 0. Therefore lim𝑡→∞ y(𝑡) = y if and only if 𝑤2(0) = 0,
and the solution is y(𝑡) = y + 𝑤1(0) P− 𝑒𝜆−𝑡.

4.6.3 Initial-terminal value problems

If 𝑇 = ∞, the initial-terminal-value problem, where we assume variable 𝑦1 is pre-determined is

⎧{{
⎨{{⎩

ẏ  = A y + B, for  𝑡 ∈ [0, ∞)
𝑦1(0) = 𝑦1,0,   for  𝑡 = 0
lim𝑡→∞ y(𝑡) = y, for  𝑡 → ∞.

(4.42)

Proposition 9. Consider problem (4.41) where y ∈ Y, 𝑦1,0 is fixed, and assume that det (A)  ≠ 0.
Then the solution exists and is unique

y(𝑡) = y + (𝑦1,0 − 𝑦1)
𝑃 −

1
P− 𝑒𝜆−𝑡.

 

Proof. We can take the solution of case (3) of the terminal-value problem and evaluate it at time
𝑡 = 0 to get

y(0) = y + 𝑤1(0) P−  ⇔ 𝑤1(0) P+ + y − y(0) = 0,
   or, expanding and substituting the initial condition

(𝑃 −
1

𝑃 −
2

) 𝑤1(0) + ( 𝑦1 − 𝑦1,0
𝑦2 − 𝑦2(0)) = (0

0) .

  As we want to solve this system for for 𝑦2(0) − 𝑦2 and 𝑤1(0) it is convenient to re-arrange it as

(𝑃 −
1 0

𝑃 −
2 1) ( 𝑤1(0)

𝑦2 − 𝑦2(0)) = (𝑦1,0 − 𝑦1
0 ) .

  Then

( 𝑤1(0)
𝑦2 − 𝑦2(0)) = (𝑃 −

1 0
𝑃 −

2 1)
−1

(𝑦1(0) − 𝑦1
0 ) =

= 1
𝑃 −

1
( 1 0

−𝑃 −
2 𝑃 −

1
) (𝑦1,0 − 𝑦1

0 ) =

= ( 1
−𝑃 −

2
) (𝑦1,0 − 𝑦1)

𝑃 −
1

.
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In this case the initial value for 𝑦2(0) is determined

𝑦2(0) = 𝑦2 + 𝑃 −
2

𝑃 −
1

(𝑦1,0 − 𝑦1)

  where 𝑃 −
2

𝑃 −
1

is the slope of ℰ− which is co-incident with the stable manifold 𝒲𝑠.

Sometimes if we assume we know the initial value for variable 𝑦2, 𝑦2(0) = 𝑦2,0 the difference

𝑦2,0 − (𝑦2 + 𝑃 −
2

𝑃 −
1

(𝑦1,0 − 𝑦1)) is interpreted as the initial ”jump” to the saddle path.

4.6.4 Example: non-autonomous scalar equations

The ODE in subsection 4.5.2 , equation(4.38), can be a component of the of a specific initial-value
problem we have considered in chapter two:

⎧{{{
⎨{{{⎩

̇𝑦  = 𝜆 𝑦 + 𝛽 𝑧 for  𝑡 ≥ 0
̇𝑧  = 𝛾 𝑧 for  𝑡 ≥ 0

𝑦(0) = 𝑦0 for  𝑡 = 0
𝑧(0) = 1 for  𝑡 = 0.

(4.43)

Recall that we assume that 𝜆 < 0 and 𝛾 > 0. Using the general solution of the ODE in equation
(4.38), we have the particular solution to this problem

𝑦(𝑡) = (𝑦0 − 𝛽
𝛾 − 𝜆) 𝑒𝜆𝑡 + 𝛽

𝛾 − 𝜆 𝑒𝛾𝑡 

𝑧(𝑡) = 𝑒𝛾𝑡. 
Then it is clear that although the phase diagram is a saddle, we are interested in a non-stationary
solution

lim
𝑡→∞

  (𝑦(𝑡)
𝑧(𝑡)) = lim

𝑡→∞
  ⎛⎜

⎝

𝛽
𝛾 − 𝜆 𝑒𝛾𝑡 

𝑒𝛾𝑡 
⎞⎟
⎠

= (±∞
±∞)

The solution converges to infinity to a line in the (𝑧, 𝑦) space with slope 𝑦 = 𝛽
𝛾 − 𝜆 𝑧. We are

considering a forward ODE.
Alternatively, we could consider a backward ODE by specifying the problem

⎧{{{
⎨{{{⎩

̇𝑦  = 𝜆 𝑦 + 𝛽 𝑧 for  𝑡 ≥ 0
̇𝑧  = 𝛾 𝑧 for  𝑡 ≥ 0

𝑦(0) = 𝑦0 for  𝑡 = 0
lim𝑡→∞  𝑒−𝛾𝑡 𝑧(𝑡) = 0 for  𝑡 → ∞.

In this case, the particular solution is

𝑦(𝑡) =  (𝑦0 − 𝛽
𝛾 − 𝜆) 𝑒𝜆𝑡 

𝑧(𝑡) = 0 
which asymptotically converges to the steady state lim𝑡→∞  (𝑦(𝑡), 𝑧(𝑡)⊤ = 0.
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4.7 Applications in Macroeconomics

Using the previous classification of ODE’s we can offer a brief summary of applications in Economics

4.7.1 Pre-RE macroeconomics models

 
ISLM models which where the benchmark models in macroeconomics between early 1950’s and

middle 1970’s (and still are the core of undergraduate macroeconomic courses) were static (non-
dynamic) models. Introduction of dynamics in ISLM mocdels took the form of sluggish adjustment
of some variables. A central aspect of those models, which make them the target of the Lucas
critique, is that they assume what we can call static expectations: agents are now aware or have
no beliefs concerning the future state of the economy, and, in particular on the consequences of
economic policy.

These models have been called ad-hoc macro models. The reason is that they lack consistency
when modelling agents’ participation in several markets. This is not realistic, because, for instance,
purchases in the goods markets should be financed, which means that product demand and money
demand are linked in a particular way.

According to our previous definitions, ad-hoc dynamic models were usually initial-value prob-
lems in which the dynamic system is a stable node or stable focus (see see Takayama (1994),
Turnovsky (1977), Gandolfo (1997) or Tu (1994)). The next example is a typical pre-RE macro
model.

Example Assume aggregate private is 𝐷(𝑦, 𝑟) + 𝑔, where 𝑔 is government expenditure and the
aggregate privte demand is a function of income and the real interest rate: 𝐷(𝑦, 𝑟) = 𝑑0 𝑦 − 𝑑1 𝑟,
where 0 < 𝑑0 < 1 and 𝑑1. Aggregate supply 𝑦 is exogenous. There are two asset markets: a
market for credit, a bond market, and a money market. By the Walras law we only need to model
clearing of the money market. The demand for money is a function of income and the interest
rate, 𝐿(𝑦, 𝑟) = 𝑙0 𝑦 − 𝑙1 𝑟, where 𝑙0 > 0 and 𝑙1 > 0, and the supply of money, 𝑚, is exogenous. It
is assumed that both markets do not clear instantaneously, but price are constant, implying there
is a temporary disequilibrium in both of them: ̇𝑦  = 𝛾1(𝐷(𝑦, 𝑟) − 𝑦), and ̇𝑟  = 𝛾2(𝐿(𝑦, 𝑟) − 𝑚).
Therefore, we have a planar linear ODE, in which both variables are pre-determined,

̇𝑦  = 𝛾1 (𝐷(𝑦, 𝑟) + 𝑔 − 𝑦) = 𝛾1 ( − (1 − 𝑑0) 𝑦 − 𝑑1 𝑟 + 𝑔)

̇𝑟  = 𝛾2 (𝐿(𝑦, 𝑟) − 𝑚) = 𝛾2 (𝑙0 𝑦 − 𝑙1 𝑟 − 𝑚)

𝑦(0) = 𝑦0 given
𝑟(0) = 𝑟0 given.

Exercise Prove that there is a unique steady state and that it can be a stable node or focus.
Consider the simplifying assumption 𝑑1 = 𝑙0 = 0. In this case prove that the steady state is a
stable node. Furthermore, show that in this case the steady state levels satisfy 𝑦  = 𝑦(𝑔) and
𝑟  = 𝑟(𝑚). This means that the fiscal policy is efficient for controlling 𝑦 and the monetary policy is
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only efficient for controlling 𝑟. This was in the center of the debate, which lasted for three decades,
between the monetarists and keynesians.

4.7.2 Post RE ad-hoc macroeconomic models

 
In the early seventies it became clear, particularly because of the behavior of currency markets,

when the Bretton Woods system came close to its end, that agents behavior depends on their
beliefs. The simplest way to introduce beliefs is by assuming there could only be one right belief
at the aggregate level, and that aggregate belief should be consistent with the our model of the
economy. This is the origin of the designation rational expectations. The Dornbusch (1976) model
became a benchmark, for RE ad-hoc macroeconomic models.

These models have again an ad-hoc structure where the dynamics is generated by the existence
of slow adjustments for some variables and of perfect foresight for variables which translate beliefs.
Mathematicaly, they are initial-terminal value problems in which the dynamic system is a saddle.

Example. The Dornbusch (1976) model formalizes the macroeconomic fluctuation in an open
economy, in both the product and the asset markets, in which there are free movements of capital,
and there is a flexible exchange rate regime. A simplified version of the  model is the following.12 

The nominal exchange rate (national currency per unit of foreign currency) is determined by the
Fisher open equation in which its expected change is equal to the difference between the domestic
and the foreign nominal interest rates ̇𝑒  = 𝐸𝑡[𝑑𝑒(𝑡)

𝑑𝑡 ] = 𝑖 − 𝑖∗. The domestic nominal interest
rate is determined in the equilibrium of the money market, which clears instantaneously. The real
supply of money is 𝑚 − 𝑝 = ln 𝑀/𝑃 , where 𝑚 is the log of the nominal money supply and 𝑝 is
the log of prices, and the demand for real cash balances is Keynesian 𝐿(𝑖) = 𝑖, to simplify. In
the product market, the real aggregate demand is a function of income, of the nominal interest
rate, and the real exchange rate (assuming that the log of the international price satisfies 𝑝∗  = 0),
𝑑(𝑦, 𝑒, 𝑖, 𝑝) = 𝜇 (𝑒 − 𝑝) − 𝜎 𝑖 + 𝛿 𝑦, where 𝜇 > 0, 𝜎 > 0 and 0 < 𝛿 < 1, and the real aggregate supply,
𝑦, is exogenous. The adjustment of the goods market is sluggish, but, differently from the previous
model, this economy has flexible prices: ̇𝑝  = 𝛾(𝑑(𝑦, 𝑒, 𝑖, 𝑝) − 𝑦) if there is excess demand (supply)
prices increase (decrease).

The following planar linear ODE, in which 𝑝 is a pre-determined variable and 𝑒 is non-predetermined
variable is obtained

̇𝑝 = 𝛾 ( − (𝜇 + 𝜎) 𝑝 + 𝜇 𝑒 + 𝜎𝑚 − (1 − 𝛿) 𝑦)
̇𝑒  = 𝑝 − 𝑚 − 𝑖∗ 

𝜋(0) = 𝜋0, given
lim

𝑡→∞
  𝑒(𝑡) = 𝑒,  

  where 𝑒 is the steady state level for the nominal exchange rate. In this case we say it is driven
by the fundamentals.

12See Turnovsky (1995)  for more RE models.
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Exercise Prove that there is a unique steady state and that it is a saddle point. Furthermore,
show that given an initial level for 𝑝(0) = 𝑝0 there is only one trajectory consistent which this
model, that is, there is one unique rational expectations path (draw the phase diagram). Assume
that the economy is initially at a steady state (i.e., 𝑝0 = ̄𝑝), and assume there is an unanticipated,
permanent and constant increase in the money supply 𝑚. Show that that the adjustment path
involves ”overshooting”: there is an initial excess response of the nominal interest rate.

4.7.3 Optimizing economies or representative-agent DGE models

 
Ramsey (1928), and its rediscovery in the second half of the sixties by Cass (1965) and Koop-

mans (1965) started a strand of so-called non-ad-hoc modelling in macroeconomics. The incon-
sistency of the ad-hoc macro models has been solved by assuming that the economy is populated
by homogeneous agents and it behaves efficiently. Although the difference between normative and
positive economics is sometimes not clear in particular applications, these models are at the origin
of what is called today representative-agent DGE (dynamic general equilibrium) models.

These models feature an initial-terminal value problem which is obtained from the first-order
conditions of optimal control problems. When the equilibrium is Pareto optimal, the optimality
conditions (or the equilibrium in a DGE interpretation) is represented by include both a forward
belief (pre-determined) variable and a backward resource (non-predetermined) variable.

In these models the dynamic system is a saddle point or a saddle-node. The Ramsey problem
is

 �̇�  = 𝐹(𝑘) − 𝑐
̇𝑐  = 𝑐

𝜎 (𝑟(𝑘) − 𝜌)

𝑘(0) = 𝑘0 given 
lim

𝑡→∞
  𝑘(𝑡) 𝑐(𝑡)−𝜎  𝑒−𝜌𝑡  = 0

 

where 𝑘 is the stock of capital (a pre-determined variable) and 𝑐 is consumption (a non-predetermined
variable). The first ODE represents the budget constraint, in which capital accumulation is equal
to savings. The second ODE is an Euler equation, or an intertemporal arbitrage condition. It takes
the form of an arbitrage condition between present and future consumption, by equating the change
in marginal utility by present consumption and the net increase in production capacity which will
increase future consumption

𝑑𝑢′(𝑐(𝑡))
𝑢′(𝑐(𝑡))   = (𝐹 ′(𝑘) − 𝜌) 𝑑𝑡,

where 𝜌 is the rate of time preference which measures impatience. The terminal constraint is called
by economists the transversality condition and introduces a sustainability constraint on capital
accumulation. In these models there is again an direct relationship between uniqueness of the
saddle path, for a given initial level of the stock of capita, and the existence and uniqueness of an
optimum (or DGE) path.
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As this model is non-linear we need some results from non-linear ODEs to prove that the
solutions os linear ODE provide a qualitative (although not a quantitative exact) solution to those
models.

For references see Blanchard and Fischer (1989) and Turnovsky (1995).

4.7.4 Neo-Keynesian DGE models and non-representative agent DGE models

 
This structure allows for the both forward (pre-determined) and backward (non-predetermined

or expected) dynamics, for the existence of DGE paths but non necessarily for their uniqueness.
If DGE paths are not unique the dynamics is said to be indeterminate, meaning that self-fulfilling
prophecies are possible, and these are related with the existence of imperfections in the markets
(externalities, incompleteness of contracts, policy rules, etc).

Example  A simple example which could be seen as an extension of the Ramsey model could
be build by assuming that there are both externalities in production (positive or negative) and
consumption (positive or negative), modelled by 𝐾 and 𝐶. The DGE can be represented by

 �̇�  = 𝐹(𝑘, 𝐾) − 𝑐

̇𝑐  = 𝑐
𝜎 (𝑟(𝑘, 𝐾) − 𝜌 − 𝛽

̇𝐶
𝐶  )

𝑘(0) = 𝑘0 given 
lim

𝑡→∞
  𝑘(𝑡) 𝑐(𝑡)−𝜎  𝑒−𝜌𝑡  = 0

 

the model is closed by a micro-macro consistency condition 𝐾 = 𝑘 and 𝐶 = 𝑐. We will see in one
of the next chapters that this model may involve indeterminacy, that is the steady state can be a
stable node or a stable focus for some values of the parameters.

4.7.5 Endogenous growth models

 
Endogenous growth theory models: are usually initial or initial-terminal value problems in

which there are no positively valued steady states or steady states are a degenerate node (with
a zero and a positive eigenvalue). Two-dimensional endogenous growth models usually feature
dynamic systems with a zero and a positive real eigenvalue which is associated with the existence
of a balanced-growth path.13 

 �̇�  = 𝐴 𝐾 − 𝐶
̇𝐶  = 𝐶 (𝐴 − 𝜌)

𝐾(0) = 𝑘0

lim
𝑡→∞

 𝐾(𝑡)
𝐶(𝑡) 𝑒−𝜌 𝑡  = 0

 

13See Acemoglu (2009) 
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  Defining 𝐾(𝑡) = 𝑘(𝑡) 𝑒𝛾 𝑡,  𝐶(𝑡) = 𝑐(𝑡) 𝑒𝛾 𝑡 where 𝛾 = 𝐴 − 𝜌 we obtain the problem in detrended
variables (𝑘, 𝑐) as an initial-terminal value problem

 �̇�  = 𝜌 𝑘 − 𝑐
̇𝑐  = 0

𝑘(0) = 𝑘0

lim
𝑡→∞

 𝑘(𝑡)
𝑐(𝑡) 𝑒−𝜌𝑡  = 0

 

As the solution of the detrended system is 𝑘(𝑡) = 𝑘0𝑒𝛾 𝑡, and 𝑐(𝑡) = 𝜌 𝑘(𝑡), therefore the solution of
the AK model is

𝐾(𝑡) = 𝑘0 𝑒𝛾 𝑡, 𝐶(𝑡) = 𝜌 𝑘0 𝑒𝛾 𝑡

  is called a balanced-growth path. Notice that the coefficient matrix of the detrended system is

A = ( 𝜌 −1
0 0 )

  has det (A) = 0 and trace(A) = 𝜌 > 0. This is a degenerate unstable-node. However, in this
case this has welcome properties: degeneracy means that 𝐶 is mononously related with 𝐾, and
instability means that there is long run growth, i.e, the economy grows as a positive growth rate
and becomes unbounded only in infinite time. This model is said to be a model of endogenous
growth because the growth rate of the economy is not given in advance.

4.7.6 Bifurcation analysis and comparative dynamics

 
In economic applications we are interested in modelling the change in the trajectories of the

state variables of interest when an exogenous variable or a parameter change. The need to study
their variation can have different natures, although, mathematically, they are both parameters.
in economic applications a parameter can be classified as an exogenous variables when it can be
manipulated by a decision maker, while a parameter formalizes deep economic behaviors which can
be determined with more or less precision. While varying the first allows the modeller have some
insight regarding changes in policy, by varying the second we can have a measure on the robustness
of our predictions.

We say we perform a comparative dynamics exercise when the variation of a parameter (in
the mathematical sense) does not entail a change in the qualitative dynamics of the model, that is
on the nature of its phase diagram.

This is different from bifurcation analysis in which we are interested in finding the : quali-
tative changes in the dynamics for variation of parameters (i.e, changes in the phase diagram for
different values of the parameters)  
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4.A Appendix

4.A.1 Polar coordinates

When the eigenvalues are complex (or the model is non-linear) sometimes we can simplify the
solution and get a better geometrical intuition of it, if we transform the ODE from cartesian
coordinates (𝑦1, 𝑦2) ∈ ℝ into polar coordinates (𝑟, 𝜃) by using the transformation:

𝑦1(𝑥) = 𝑟(𝑥) cos(𝜃(𝑥)), 𝑦2(𝑥) = 𝑟(𝑥) sin(𝜃(𝑥)).

  where 𝑟 measures the distance from a reference point (the radius) and 𝜃 the angular coordinate.
The following relationships hold 𝑟2 = 𝑦2

1 + 𝑦2
2, because cos(𝜃)2 + sin(𝜃)2 = 1 and tan(𝜃) =

sin(𝜃)/ cos(𝜃) = 𝑦2/𝑦1. If we take time derivatives of this two relationships we find

𝑟′ = 𝑦1 ̇𝑦1 + 𝑦2 ̇𝑦2
𝑟  

𝜃′ = 𝑦1 ̇𝑦2 − 𝑦2 ̇𝑦1
𝑟2

 
Exercise: provide a proof (hint 𝑑(tan(𝜃(𝑥))/𝑑𝑡 = (1 + tan(𝜃)2)𝜃′ = (1 + (𝑦2/𝑦1)2)𝜃′ .
In order to apply this transformation, consider the ODE

̇𝑦1 = 𝛼𝑦1 + 𝛽𝑦2

̇𝑦2 = −𝛽𝑦1 + 𝛼𝑦2

  The ODE in polar coordinates becomes

𝑟′ = 𝛼𝑟 
𝜃′ = −𝛽

  which has the general solution

𝑟(𝑥) = 𝑟0𝑒𝛼𝑥

𝜃(𝑥) = 𝜃0 − 𝛽𝑥

  If 𝛼 < 0 the radius converges to zero (meaning that the the dynamics is stable) and if 𝜃 > 0 the
movement is clockwise.
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