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Chapter 5

Scalar non-linear ODE’s: the regular
case

 

5.1 Introduction

In this chapter we address non-linear scalar ordinary differential equations, in which time is the
independent variable. Non-linear ordinary differential equations provides the most important setup
for dynamic systems theory.

Specifically, we look for the existence and characterization of functions 𝑦 ∶ T ⊂ ℝ+  → Y = ℝ,
that solve the (autonomous) equation

 𝐹( ̇𝑦, 𝑦) = 0. (5.1)

  We say the ODE is regular  if 𝐹( ̇𝑦, 𝑦, ⋅) is continuous and continuously differentiable in ( ̇𝑦, 𝑦), and

furthermore 𝜕 𝐹( ̇𝑦, 𝑦)
𝜕 ̇𝑦   ≠ 0 for every 𝑦 ∈ Y. This allows us to write equation (5.1)  as ̇𝑦  = 𝑓(𝑦).

However, in this chapter we consider ODE’s of type

  ̇𝑦 = 𝑓(𝑦, 𝜑), 𝑓 ∶ Y × Φ → Y, (5.2)

where 𝜑 ∈ Φ is a set of real-valued parameters. In this case, the solution is the mapping 𝑦 ∶ T×Φ  →
Y  ⊆ ℝ. We will see that in some cases the value of a parameter (or several parameters) have a
fundamental influence on the properties of the solutions for an ODE. We also consider, implicitly,
forward ODE’s (or initial-value problems).

Most ODEs representing economic theories are not specified explicitly, or when they are ex-
plicitly specified are non-linear. Most non-linear equations do not have an explicit (or closed-form
solution). Therefore, is there a solution to a non-linear differential equation ? How can we solve,
or at least characterize the properties of a given those differential equations ?

First, if 𝑓 ∶ Y → Y and Y ⊆ ℝ is sufficiently smooth (I.e., it is continuously differentiable up

3
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to a higher order) then one unique solution exists, for at least an interval of T1. Furthermore, the
degree of smoothness of 𝑦(𝑡) is the same as that of 𝑓(𝑦).  

As an application of this theorem we already saw that linear differential equations have one
unique explicit solution, this solution exists for the whole T set, and it has the same properties
for any value of an initial value 𝑦(0). Therefore, we can ay that the solutions we find are global
solutions. We also saw that they have zero, one or an infinite number of steady states. When
a steady state exists and it i unique it was either stable or unstable, which implied that whole
space is an attractor set in the first case and a repeller set in the second. Therefore, we have a
characterization of the global dynamic properties.

Non-linear ODE’s display some differences, although we already know that a solution exists and
is unique (possibly for a subset of 𝑇 ). First, they may not have explicit solutions2. Second, they
can have zero, one, or any finite number of steady states. Third, local and global dynamics can
differ. That is, steady states can can be stable, unstable, or neither stable not stable (called
bifurcation points), and, as we can have more than one steady state - but a finite number of
them, we can have steady states with different stability properties. This implies that steady states
introduce a partition of the state space Y into different subsets with different stability properties.
That is, local dynamics differ from global dynamics.

In this chapter we consider regular ODEs, that is ODEs whose function 𝑓(𝑦, ⋅) is continuous
and continuously differentiable (in the sense that all the derivatives are finitely-valued), that is
𝑓 ∈ 𝐶𝑛(ℝ) for 𝑛 ≤ 3. We start with specific normal forms. normal form is the simplest ODE,
whose exact solution is usually known and represents a whole family of ODEs by topological
equivalence.3

In the rest of this chapter we present the normal forms (5.2)  and in section we present the
qualitative theory for 5.3 for non-linear regular scalar ODE’s.

5.2 Normal forms

A normal form is the simplest ODE, whose exact solution is usually known and represents a
whole family of ODEs by topological equivalence.4

We present next some important normal forms for scalar ODEs, which have the generic repre-
sentation by a polynomial vector field

  ̇𝑦 = 𝑓(𝑦, 𝜑) ≡ 𝑎0 + 𝑎1 𝑦 + 𝑎2 𝑦2 + 𝑎3 𝑦3, (5.3)
1See Guckenheimer and Holmes (1990).
2There are complete lists of differential equations with known explicit solutions in Zwillinger (1998), Canada et al.

(2004) or Zaitsev and Polyanin (2003).
3In heuristic terms, we say functions 𝑓(𝑦) and 𝑔(𝑥) are topologically equivalent if there exists a diffeomorphism,

i.e., a smooth map ℎ with a smooth inverse ℎ−1, such that if 𝑦 = ℎ(𝑥) then ℎ(𝑔(𝑥)) = 𝑓(ℎ(𝑥)). This property may
hold globally of locally. The last case is the intuition behind the Grobman-Hartmann theorem.

4In heuristic terms, we say functions 𝑓(𝑦) and 𝑔(𝑥) are topologically equivalent if there exists a diffeomorphism,
i.e., a smooth map ℎ with a smooth inverse ℎ−1, such that if 𝑦 = ℎ(𝑥) then ℎ(𝑔(𝑥)) = 𝑓(ℎ(𝑥)). This property may
hold globally of locally. The last case is the intuition behind the Grobman-Hartmann theorem.
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where 𝜑 ≡ (𝑎0, 𝑎1, 𝑎2, 𝑎3) ∈ ℝ4.
Linear scalar ODE’s, that have been studied in chapter two, are particular cases in which

𝑎2 = 𝑎3 = 𝑎4 = 0. In this chapter we address cases in which at least one of coefficients 𝑎2, 𝑎3 or 𝑎4
is different from zero.

It can be shown that (see (Hale and Koçak, 1991, ch. 2)) the following cases are the most
relevant: first, ODE’s depending on a single parameter (𝑎), as the Ricatti’s equation ̇𝑦 = 𝑎 + 𝑦2,
the quadratic Bernoulli equation, ̇𝑦 = 𝑎𝑦 + 𝑦2, the cubic equations Bernoulli equation, ̇𝑦 = 𝑎𝑦 − 𝑦3,
the Abel equation ̇𝑦 = 𝑎+𝑦 −𝑦3; second, ODE’s depending on two parameters (𝑎 and 𝑏) the Abel’s
equation, ̇𝑦 = 𝑎 + 𝑏𝑦 − 𝑦3.

We address the solution of those equations from two approaches: First, an analytical ap-
proach, seeking to find its explicit solution (when it is known); and, second, a qualitative (or
geometric) approach, which characterizes qualitatively the possible dynamic behavior of the
solution, depending on the value of the parameters. The

5.2.1 The linear equation

In this section we recall linear scalar ODE

̇𝑦  = 𝑏 + 𝑎 𝑦,

which is a particular case of equation (5.3) with 𝑎0 = 𝑏, 𝑎1 = 𝑎, and 𝑎2 = 𝑎3 = 0, where 𝑎 and 𝑏
are real numbers. Generically, we have 𝑓𝑦𝑦 (⋅) = 𝑓𝑦𝑦𝑦 (⋅) = 0, and 𝑓𝑦 (⋅) ≠ 0 can have any sign.

It has the a explicit solutions, whose form depends on the parameters

𝑦(𝑡) =

⎧{{{
⎨{{{⎩

𝑦(0) if  𝑎 = 𝑏 = 0
𝑦(0) 𝑒𝑎 𝑡  if  𝑎 ≠ 0, 𝑏 = 0
𝑦(0) + 𝑏 𝑡  if  𝑎 = 0, 𝑏 ≠ 0
𝑦(0) 𝑒𝑎 𝑡 + ̄𝑦  (1 − 𝑒𝑎 𝑡) if  𝑎 ≠ 0, 𝑏 ≠ 0

 

where ̄𝑦  = −𝑏/𝑎, and 𝑦(0)Y is arbitrary.
The qualitative properties are: first, it has one unique steady state, ̄𝑦  = −𝑏/𝑎, if 𝑎 ≠ 0, which

is asymptotically stable if 𝑎 < 0, or unstable if 𝑎 > 0; second, if 𝑎 = 0 it has an infinite number of
steady states, if 𝑏 = 0 or no steady state, if 𝑏 ≠ 0.

5.2.2 The Ricatti’s equation: saddle-node or fold bifurcation

The quadratic equation
̇𝑦 = 𝑓(𝑦, 𝑎) ≡ 𝑎 + 𝑦2 (5.4)

  is called Ricatti equation. This equation is a particular case of equation (5.3) with 𝑎0 = 𝑎,
𝑎2 = 1, and 𝑎1 = 𝑎3 = 𝑎4 = 0. Generically, we have 𝑓𝑦𝑦(⋅) ≠ 0, 𝑓𝑎(⋅) ≠ 0 and 𝑓𝑦(⋅) = 𝑓𝑦𝑦𝑦(⋅) = 0.



Paulo Brito Advanced Mathematical Economics 2022/2023 6

It has an explicit solution5 :

𝑦(𝑡) =
⎧{{
⎨{{⎩

𝑦(0)
1−𝑦(0) 𝑡  , if 𝑎 = 0
√𝑎 (tan (√𝑎(𝑡 − 𝑦(0)−1)))  , if 𝑎 > 0
−√−𝑎 (tanh (√−𝑎(𝑡 − 𝑦(0)−1)))  , if 𝑎 < 0

  where 𝑦(0) ∈ Y is an arbitrary constant belonging to the domain of 𝑦.
The behavior solution depends again on the value of the parameter 𝑎:

• if 𝑎 = 0, the solution takes an infinite value at a finite time 𝑡 = 1
𝑦(0)

6, i.e., lim𝑡→−𝑦(0)−1 𝑦(𝑡) =
±∞ and tends asymptotically to a steady state ̄𝑦 = 0, that is lim𝑡→∞ 𝑦(𝑡) = 0 independently
of the value of 𝑘;

• if 𝑎 > 0 the solution takes infinite values for a periodic sequence of times 𝑡 ∈ {−𝑦(0)−1, 𝜋 −
𝑦(0)−1, 2𝜋 − 𝑦(0)−1, … , 𝑛𝜋 − 𝑦(0)−1, …},

lim
𝑡→𝑛𝜋−𝑦(0)−1

𝑦(𝑡) = ±∞, for 𝑛 ∈ ℕ

  and it has no steady state;

• if 𝑎 < 0, the solution converges to

lim
𝑡→∞

𝑦(𝑡) =
⎧{
⎨{⎩

−√−𝑎 , if 𝑦(0)−1 < √−𝑎 or − √−𝑎 < 𝑦(0)−1 < √−𝑎
+∞, if 𝑦(0)−1 > √−𝑎.

 

To characterize qualitatively the solution of the differential equation, we have to find the steady
state(s), by finding the values of ̄𝑦  ∈ Y such that 𝑓(𝑦, 𝑎) = 0, and characterize its local dynamics,
by finding the sign of 𝑓𝑦( ̄𝑦, 𝑎) = 2 ̄𝑦. Therefore, the qualitative dynamic properties of the ODE
depend on the value of 𝑎:

• existence and number of steady states: the set of steady states is the set ̄𝑦 = { 𝑦 ∈ Y ∶
𝑎 + 𝑦2 = 0}, i.e, the set of stationary solutions to the ODE. We readily find that: (a) if 𝑎 > 0
there are no steady states, (b) if 𝑎 = 0 there is one steady state ̄𝑦 = 0, and (c) if 𝑎 < 0 there
are two steady states ̄𝑦 ∈ { ̄𝑦1, ̄𝑦2} for ̄𝑦1 =   − √−𝑎 < 0, and ̄𝑦2 = √−𝑎 > 0;

• local dynamics at a steady state, can only be determined for 𝑎 ≤ 0. Then: (a) if 𝑎 = 0 the
steady state ̄𝑦 = 0 is neither stable nor unstable, because 𝑓𝑦(0) = 0; and (b) if 𝑎 < 0 steady
state ̄𝑦1 is asymptotically stable and steady state ̄𝑦2 is unstable, then , 𝑓𝑦( ̄𝑦1) = −2 √−𝑎 < 0,

5See appendix section 5.A.1
6This is different to the linear case, v.g., ̇𝑦 = 𝑦, whose solution 𝑦(𝑡) = 𝑦(0)𝑒𝑡, if 𝑦(0) ≠ 0, takes an infinite value

only in infinite time.
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and 𝑓𝑦( ̄𝑦2) = 2 √−𝑎 > 0. Furthermore, we if 𝑎 < 0 the stable manifold associated to (or the
basin of attraction of) steady state ̄𝑦1, is

𝒲𝑠
̄𝑦1

= { 𝑦 ∈ Y  ∶ 𝑦 < √−𝑎}.

  Comparing to the linear case, for the case in which the steady state is asymptotically stable,
the stable manifold is a subset of Y not the whole Y.

There is a bifurcation point at (𝑦, 𝑎) = (0, 0) ∈ Y×Φ, which is called saddle-node bifurcation.
This bifurcation point is defined by the subset of points in the state space and the space of the
parameters Y × Φ, given by { (𝑦, 𝑎) ∶ 𝑓(𝑦, 𝑎) = 0, 𝑓𝑦(𝑦, 𝑎) = 0}, such that a steady state changes
its dynamic properties, or its phase diagram: .

The bifurcation point, (0, 0), is determined by solving the following system of equations for
(𝑦, 𝑎):

⎧{
⎨{⎩

𝑓(𝑦, 𝑎) = 0
𝑓𝑦(𝑦, 𝑎) = 0

⇔
⎧{
⎨{⎩

𝑎 + 𝑦2 = 0
2𝑦 = 0.

 
Figure 5.1 shows phase diagrams for the 𝑎 < 0 (panel (a)), for the 𝑎 = 0 (panel (b)), and 𝑎 > 0

(panel (c)). Those diagrams provide a geometrical depiction of the results that we have already
obtained: there are no steady states in panel (a); there is a steady state in panel (b) but it is
neither stable (an initial value higher than 0 will generate an unstable trajectory) nor unstable (an
initial value lower than 0 will generate an asymptotically stable trajectory converging to zero); and
in panel (c) there are two steady states one which is stable and one unstable. In the last case, we
see that the basin of attraction to steady state ̄𝑦1 is limited by steady state ̄𝑦2, as shown in 𝒲𝑠

̄𝑦1

Panel (d) presents the bifurcation diagram for a saddle-node. It depict points (𝑎, 𝑦) such that
𝑎+𝑦2 = 0, say ̄𝑦(𝑎), and in solid-line the subset of points such that 𝑓𝑦( ̄𝑦(𝑎)) < 0 and in dashed-line
the subset of points such that 𝑓𝑦( ̄𝑦(𝑎)) > 0. The first case corresponds to asymptotically stable
steady states and the second to unstable steady states. Observe that the curve does not lie in the
positive quadrant for 𝑎 which is the geometrical analogue to the non-existence of steady states.
The saddle-node bifurcation point is at the origin (0, 0). This point separates the values for 𝑎 such
that there are two steady states (for 𝑎 < 0) from the points of 𝑎 such that there is no steady state
(for 𝑎 > 0).

5.2.3 Quadratic Bernoulli equation: transcritical bifurcation

The quadratic equation
̇𝑦 = 𝑎𝑦 + 𝑦2 (5.5)

is called quadratic Bernoulli equation. This equation is a particular case of equation (5.3) with
𝑎1 = 𝑎, 𝑎2 = 1, and 𝑎0 = 𝑎3 = 0. Generically, we have 𝑓𝑦𝑦(⋅) ≠ 0 and 𝑓𝑦𝑎(⋅) ≠ 0.   It has the
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Figure 5.1: Phase diagrams and bifurcation diagram for equation (5.4)

explicit solution 7:

𝑦(𝑡) =
⎧{
⎨{⎩

  𝑦(0)
1−𝑦(0) 𝑡  , if 𝑎 = 0

𝑎
(1+𝑎/𝑦(0))𝑒−𝑎𝑡−1 , if 𝑎 ≠ 0

  where 𝑦(0) is an arbitrary element of Y.
The behavior of the solution is the following (see Figure 5.3):

• if 𝑎 < 0, as we can see in panel (a),

lim
𝑡→∞

𝑦(𝑡) =
⎧{
⎨{⎩

0 , if 𝑦(0) < −𝑎
+∞, if 𝑦(0) > −𝑎

 

• if 𝑎 = 0, as we can see in panel (a), it behaves as the Ricatti’s equation when 𝑎 = 0

lim
𝑡→∞

𝑦(𝑡) =
⎧{
⎨{⎩

0 , if 𝑦(0) < 0
+∞, if 𝑦(0) > 0

7See appendix section 5.A.2 for the explicit solution for the general Bernoulli ODE.
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• if 𝑎 > 0, as we can see in panel (c),

lim
𝑡→∞

𝑦(𝑡) =
⎧{
⎨{⎩

−𝑎 , if 𝑦(0) < 0
+∞, if 𝑦(0) > 0

 

The dynamic properties depend on the value of 𝑎:

• existence and number of steady states: if 𝑎 = 0 there is one steady state ̄𝑦 = 0, if 𝑎 ≠ 0 there
are two steady states ̄𝑦 = {  ̄𝑦1, ̄𝑦2}  = {0, −𝑎};

• local dynamics at the steady states: if 𝑎 = 0 the steady state ̄𝑦 = 0 is neither stable nor
unstable, that is, (𝑦, 𝑎) = (0, 0) is again a bifurcation point; if 𝑎 < 0 the steady state ̄𝑦1 = 0
is asymptotically stable and steady state ̄𝑦2 = −𝑎 is unstable; and if 𝑎 > 0 the two steady
states change stability with steady state ̄𝑦1 = 0 being unstable and steady state ̄𝑦2 = −𝑎
being asymptotically stable. Then, a non-empty basin of attraction always exists, because
the stable manifolds associated to the asymptotically stable equilibrium points are: if 𝑎 < 0
the stable manifold is

𝒲𝑠
̄𝑦1

= { 𝑦 ∈ 𝑌 ∶ 𝑦 < −𝑎}.

  and, if 𝑎 > 0, the stable manifold is

𝒲𝑠
̄𝑦2

= { 𝑦 ∈ 𝑌 ∶ 𝑦 < 0}.

 

The bifurcation point, (𝑦, 𝑎) = (0, 0), is determined by solving the following system of equations
for (𝑦, 𝑎):

⎧{
⎨{⎩

𝑓(𝑦, 𝑎) = 0,
𝑓𝑦(𝑦, 𝑎) = 0,

⇔
⎧{
⎨{⎩

𝑎 𝑦 + 𝑦2 = 0,
𝑎 + 2 𝑦 = 0,

⇔
⎧{
⎨{⎩

2 𝑎 𝑦 + 2𝑦2 = 0,
𝑎 𝑦 + 2 𝑦2 = 0,

⇔
⎧{
⎨{⎩

𝑎 𝑦 = 0,
𝑎 + 2 𝑦 = 0.

  That bifurcation point is called transcritical bifurcation, as Figure 5.3, panel (d), shows that
after crossing the bifurcation point the number of steady states is the same (two) but their stability
properties change.

Exercise Show that ̇𝑦 = 𝑎 𝑦 − 𝑦2 also has a transcritical bifurcation.

5.2.4 Bernoulli’s cubic equation: subcritical pitchfork

The equation
̇𝑦 = 𝑎𝑦 − 𝑦3 (5.6)

is a cubic Bernoulli equation. This equation is a particular case of equation (5.3) with 𝑎1 = 𝑎,
𝑎3 = −1, and 𝑎0 = 𝑎2 = 0. Generically, we have 𝑓𝑦𝑦𝑦(⋅) ≠ 0 and 𝑓𝑦𝑎(⋅) ≠ 0.
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-2 -1 1 2

-1.5

-1.0

-0.5

0.5

1.0

1.5
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Figure 5.2: Phase diagrams and bifurcation diagram for equation (5.5)

Being a Bernoulli equation, it also has an explicit solution:

𝑦(𝑡) =
⎧{
⎨{⎩

(𝑦(0)−2  + 2 𝑡)
− 1

2
if  𝑎 = 0

±√𝑎  [1 − (1 − 𝑎
𝑦(0)−2 ) 𝑒−2𝑎𝑡 ]

−1/2
if  𝑎 ≠ 0

  where 𝑦(0) is an arbitrary element of Y. The solution trajectories have the following properties
for different values of the parameter 𝑎 (see Figure 5.3):

• if 𝑎 ≤ 0, panels (a) and (b) show that, for any 𝑦(0) ∈ Y, we have lim𝑡→∞ 𝑦(𝑡) = 0;

• if 𝑎 > 0, panel (c) shows that

lim
𝑡→∞

𝑦(𝑡) =
⎧{{
⎨{{⎩

−√𝑎 , if 𝑦(0) < 0
√𝑎 , if 0 < 𝑦(0) < √𝑎
+∞, if 𝑦(0) > √𝑎

 

The dynamic properties depend on the value of 𝑎:
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• existence and number of steady states: there is one  steady state ̄𝑦 = 0 and if 𝑎 ≤ 0 and
there are three  steady states ̄𝑦 = {0, −√𝑎, √𝑎} if 𝑎 > 0;

• local dynamics at the steady states: if 𝑎 = 0 the steady state ̄𝑦 = 0 is neither stable nor
unstable; if 𝑎 < 0 steady state ̄𝑦 = 0 is asymptotically stable; and if 𝑎 > 0 steady state ̄𝑦 = 0
is unstable and the other two steady states ̄𝑦 = −√𝑎 and ̄𝑦 = √𝑎 are asymptotically stable.

To find the bifurcation point, we solve jointly 𝑓(𝑦, 𝑎) = 0 and 𝑓𝑦(𝑦, 𝑎) = 0 for (𝑦, 𝑎), yielding

⎧{
⎨{⎩

𝑎 𝑦 − 𝑦3 = 0
𝑎 − 3 𝑦2 = 0

⟺
⎧{
⎨{⎩

3 𝑎 𝑦 − 3 𝑦3 = 0
𝑎 𝑦 − 3 𝑦3 = 0

⟺
⎧{
⎨{⎩

2 𝑎 𝑦 = 0
𝑎 − 3 𝑦2 = 0

  then the there is a subcritical pitchfork at (𝑦, 𝑎) = (0, 0).
Figure ?? shows two phase diagrams and the bifurcation diagram.
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(c) Phase diagrams for 𝑎 > 0
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(d) Bifurcation diagram

Figure 5.3: Phase diagrams and bifurcation diagram for equation (5.6).

Exercise: Study the solution for equation ̇𝑦 = 𝑎𝑦 + 𝑦3. Show that point (𝑦, 𝑎) = (0, 0) is also
a bifurcation point called supercritical pitchfork.
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5.2.5 Abel’s equation: hysteresis

The following ODE
̇𝑦 = 𝑎 + 𝑦 − 𝑦3 (5.7)

  is called an Abel equation of the first kind, in which the following properties hold: 𝑓𝑦𝑦𝑦(⋅) ≠ 0,
𝑓𝑦(⋅) ≠ 0 and 𝑓𝑎 (⋅) ≠ 0.

Although closed form solutions have been found recently 8 they are too cumbersome to report.
If 𝑎 = 0 the Abel’s equation reduces to a particular Bernoulli’s equation (5.6) ̇𝑦 = 𝑦 − 𝑦3.

Equation (5.7) can have one, two or three equilibrium points, which are the real roots of the
polynomial equation 𝑓(𝑦, 𝑎) ≡ 𝑎 + 𝑦 − 𝑦3 = 0.

We can determine bifurcation points in the space Y × Φ by solving for (𝑦, 𝑎)

⎧{
⎨{⎩

𝑓(𝑦, 𝑎) = 0,
𝑓𝑦(𝑦, 𝑎) = 0.

  Because
⎧{
⎨{⎩

𝑎 + 𝑦 − 𝑦3 = 0,
1 − 3𝑦2 = 0,

⇔
⎧{
⎨{⎩

3(𝑎 + 𝑦) − 3𝑦3 = 0,
𝑦 − 3𝑦3 = 0,

⇔
⎧{
⎨{⎩

3𝑎 + 2𝑦 = 0
𝑦 = ±√1/3,

we readily find that the ODE (5.7) has two critical points, called hysteresis points:

(𝑦, 𝑎) = {  (−√1
3, 2

3
√1

3) , (√1
3, −2

3
√1

3)} .

 
Figure 5.4 shows that:

• for 𝑎 > 2
3√1

3 or for 𝑎 < −2
3√1

3 there is one asymptotically stable steady state, see panels (a)
and (e), respectively;

• for 𝑎 = 2
3√1

3 there are two steady states: one asymptotically stable equilibrium and a bifur-

cation point for ̄𝑦 = √1
3 , see panel (b);

• for 𝑎 = −2
3√1

3 there are two steady states: one asymptotically stable equilibrium and a

bifurcation point for ̄𝑦 = −√1
3 , see panel (d);

• for −2
3√1

3 < 𝑎 < 2
3√1

3 there are three steady states,   two asymptotically stable (the extreme
ones) and one unstable, see panel (c). (the middle one)

Panel (f) in Figure 5.4, which illustrates the bifurcation diagram, displays the hysteresis curve. If
we start will small values of 𝑎 there will be a unique asymptotically steady state. If 𝑎 a bifurcation
is reached such that the number of steady states will increase to three, with an emergence of a

8For known closed form solutions of ODEs see, Zaitsev and Polyanin (2003) or Zwillinger (1998).
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(f) Bifurcation diagram

Figure 5.4: Phase diagrams and bifurcation diagram for equation (5.7).

new intermediate steady state and a another asymptotically steady state, corresponding to greater
values for 𝑦. This scenario will be maintained for greater values of 𝑎 until a new bifurcation is
reached. Further increases of 𝑎 will imply that we will have again one unique asymptotically stable
steady state greater than in the start of the exercise.

For intermediate values of 𝑎, specifically for −2
3√1

3 < 𝑎 < 2
3√1

3 , we have three steady states
such that ̄𝑦1 < ̄𝑦2 = 0 < ̄𝑦3, where ̄𝑦1 and ̄𝑦3 are asymptotically stable and ̄𝑦2 is unstable. This type
of phase diagram will not occur in linear models. In particular, the state space Y is partitioned as
Y = 𝒲𝑠

̄𝑦1
  ∪ { ̄𝑦2}  ∪ 𝒲 𝑠 ̄𝑦3

where 𝒲𝑠
̄𝑦1

and 𝒲𝑠
̄𝑦3

are the stable manifolds associated to steady states
̄𝑦1 and ̄𝑦3, respectively, which are

𝒲𝑠
̄𝑦1

= { 𝑦 ∈ Y ∶ 𝑦 < ̄𝑦2}  and  𝒲𝑠
̄𝑦3

= { 𝑦 ∈ Y ∶ 𝑦 > ̄𝑦2}. 
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Figure 5.5: Bifurcation diagram for equation ̇𝑦 = 𝑎 + 𝑏𝑦 − 𝑦3

5.2.6 Cubic equation: cusp

The next ODE
̇𝑦 = 𝑓(𝑦, 𝑎, 𝑏) ≡ 𝑎 + 𝑏𝑦 − 𝑦3 (5.8)

is also an Abel equation of the first kind. It has two parameters, 𝑎 and 𝑏, and has the following
properties: 𝑓𝑦𝑦𝑦(⋅) ≠ 0 and 𝑓𝑎 (⋅) ≠ 0 and 𝑓𝑦(⋅) can have any sign depending on the parameter 𝑏.
This last property allow for critical changes of its solution.

This ODE can have one, two or three equilibrium points, depending on the values of the
parameters 𝑎 and 𝑏. We can determine them by solving the cubic polynomial equation 𝑎+𝑏 𝑦−𝑦3 = 0
(see appendix section 5.A.3). The number of real roots of this polynomial depends on the value of

Δ ≡ (𝑎
2)

2
− (𝑏

3)
3

; (5.9)

  which is called the discriminant. It is known that: if Δ < 0 there are three real roots, if Δ = 0
there are two real roots (one is multiple), and if Δ > 0 there is one real root and a pair of complex
conjugate roots.

Therefore, regarding our ODE: if Δ < 0 there are three steady states, if Δ = 0 there are two
steady states, and if Δ > 0 there is one steady state.

We already know we can determine critical points by solving the system:

⎧{
⎨{⎩

𝑓(𝑦, 𝑎, 𝑏) = 0
𝑓𝑦(𝑦, 𝑎, 𝑏) = 0.

(5.10)

Applying to equation (5.8) we have

⎧{
⎨{⎩

𝑎 + 𝑏 𝑦 − 𝑦3 = 0,
𝑏 − 3 𝑦2 = 0,

⇔
⎧{
⎨{⎩

3 𝑎 + 2 𝑏 𝑦 = 0,
𝑏 − 3 𝑦2 = 0,

⇔
⎧{
⎨{⎩

3 𝑎 + 2 𝑏 𝑦 = 0
2 𝑏2 + 9 𝑎 𝑦 = 0,

⇔
⎧{
⎨{⎩

27 𝑎2 + 18 𝑎 𝑏 𝑦 = 0
4 𝑏3 + 18 𝑎 𝑏 𝑦 = 0.
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The solutions to the system must verify

18 𝑎 𝑏 𝑦 = −12 𝑎2 = −4 𝑏3 ⇔ (𝑎
2)

2
− (𝑏

3)
3

= 0

  that is Δ = 0. Function 𝑓(𝑦, 𝑎, 𝑏) = 0 traces out a surface in the three-dimensional space
for (𝑎, 𝑏, 𝑦) called cusp which is depicted in Figure 5.5 9. Because we have two parameters, the
bifurcation loci, obtained from system (5.10) defines a line in the three-dimensional space (𝑎, 𝑏, 𝑦).
We can see how it changes by imagining horizontal slices in Figure 5.5 and project them in the
(𝑎, 𝑏)-plane. This would convince us that if 𝑎 = 0 we would get the bifurcation diagram for the
pitchfork, for equation (5.6), and if 𝑎 ≠ 0 and 𝑏 = 1 we obtain the hysteresis diagram, for equation
(5.7). This result would be natural because those two equations are a particular case of the cusp
equation.

Those points refer to just one level of degeneracy, and are given by a particular relationship
between two parameters, and not by specific values for them. This is the reason that we call them
co-dimension one bifurcation points. As we have two parameters, we can find a higher level
of degeneracy by finding a particular values of (𝑦, 𝑎, 𝑏) that solves the system

⎧{{
⎨{{⎩

𝑓(𝑦, 𝑎, 𝑏) = 0
𝑓𝑦(𝑦, 𝑎, 𝑏) = 0
𝑓𝑏(𝑦, 𝑎, 𝑏) = 0,

and call them co-dimension two bifurcation points. We find that this point is unique (𝑦, 𝑎, 𝑏) =
(0, 0, 0) and is called a cusp point. Looking at Figure 5.5 we observe that this point separates
two types of bifurcation diagrams we have already seen: first, if we project the cusp surface into
a vertical plane passing through this point we obtain a bifurcation diagram for the pitchfork, and,
second, if we project the cusp surface into a horizontal plane passing through this point we obtain
a bifurcation diagram for the hysteresis.

5.3 Qualitative theory

The qualitative (or geometrical) theory of differential equations characterizes the local dynamics
of a non-linear differential equation by characterizing the dynamics for a linearized equation closed
to a steady state.

Assuming that 𝑓 ∈ 𝐶3(ℝ), and given a value for a parameter 𝜑 = 𝜑0, and if there is a steady
state ̄𝑦  ∈ { 𝑦 ∶ 𝑓(𝑦, 𝜑0) = 0}, a Taylor expansion of the ODE in in a neiighborhood of ̄𝑦 yields10 

̇𝑦  =  𝑓𝑦( ̄𝑦, 𝜑0) (𝑦 − ̄𝑦0) + 1
2! 𝑓𝑦𝑦 ( ̄𝑦, 𝜑0) (𝑦 − ̄𝑦0)2 + 1

3! 𝑓𝑦𝑦𝑦 ( ̄𝑦, 𝜑0) (𝑦 − ̄𝑦0)3 + 𝑜((𝑦 − ̄𝑦0)4)

9This was one of the famous cases of catastrophe theory very popular in the 1980’s see https://en.wikipedia.
org/wiki/Catastrophe_theory.

10See Appendix 5.B for the little-𝑜 notation.

https://en.wikipedia.org/wiki/Catastrophe_theory
https://en.wikipedia.org/wiki/Catastrophe_theory
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If for any point ( ̄𝑦, 𝜑0) we have 𝑓𝑦 ( ̄𝑦0, 𝜑0) ≠ 0 and 𝑓𝑦𝑦 ( ̄𝑦0, 𝜑0) = 𝑓𝑦𝑦𝑦 ( ̄𝑦0, 𝜑0) = 0, then a non-
linear ODE can be approximated locally by a linear ODE

̇𝑦  = 𝜆 (𝑦 − ̄𝑦), 𝜆 ≡ 𝑓𝑦( ̄𝑦0, 𝜑0)

  If the steady state is unique, or there are no values for the parameter 𝜑 such that  𝑓𝑦( ̄𝑦, 𝜑0) = 0
then the ODE is topologically equivalent to a linear ODE. This means that if we introduce an
arbitrary change in parameter 𝜑 ∈ Φ the phase diagram will not change its properties (i.e., the
dynamic properties are global).

In this case when we can perform comparative dynamics exercises (globally). If there is a value
for the parameter such that the previous condition holds, then we have a bifurcation point and
global dynamics differ from local dynamics. In this we can conduct a bifurcation analysis, which
consists in finding equivalence to the normal forms which were presented in the previous section.

Example Consider the scalar ODE

̇𝑦 = 𝑓(𝑦) ≡ 𝑦𝛼 − 𝑎 (5.11)

  where 𝑎 and 𝛼 are two constants, with 𝑎 > 0, and 𝑦 ∈ ℝ+. Then there is an unique steady state
̄𝑦 = 𝑎 1

𝛼 . As
𝑓𝑦(𝑦) = 𝛼𝑦𝛼−1

  then
𝑓𝑦( ̄𝑦) = 𝛼𝑎 𝛼−1

𝛼 .
Set 𝜆 ≡ 𝑓𝑦( ̄𝑦). Therefore the steady state is hyperbolic if 𝛼 ≠ 0 and it is non-hyperbolic if 𝛼 = 0. In
addition, if 𝛼 < 0 the hyperbolic steady state ̄𝑦 is asymptotically stable and if 𝛼 > 0 it is unstable.

If 𝛼 ≠ 0 we can perform a first-order Taylor expansion of the ODE (5.11) in the neighborhood
of the steady state

̇𝑦 = 𝜆(𝑦 − ̄𝑦) + 𝑜((𝑦 − ̄𝑦))
  which means that the solution to (5.11) can be locally approximated by

𝑦(𝑡) = ̄𝑦 + (𝑘 − ̄𝑦)𝑒𝜆𝑡

  for any 𝑘 ∈ ℝ+. In particular, if we fix 𝑦(0) = 𝑦0 then 𝑘 = 𝑦0.

5.3.1 Comparative dynamics exercises

 
Assume there is only one parameter, say 𝜑 ∈ Φ ⊆ ℝ. A steady state is a mapping ̄𝑦 ∶ Φ → Y.

We call long-run multiplier to the derivative ̄𝑦′(𝜑) ≡ 𝑑 ̄𝑦(𝜑)
𝑑𝜙 . For a variation of the parameter

𝑑𝜑 = 𝜑1 − 𝜑0 we obtain the change in the steady state 𝑑 ̄𝑦  = ̄𝑦′(𝜑) 𝑑𝜑, where 𝑑 ̄𝑦 = ̄𝑦1 − ̄𝑦0.
A comparative dynamics exercise consists in studying the path of the system when, starting

from a steady state, there is a change in parameter 𝜑. This entails approximating the ODE by the
linear ODE

̇𝑦  = 𝜆 𝑑𝑦(𝑡) + 𝑏 𝑑𝜑, for  𝜆 ≡  𝑓𝑦( ̄𝑦, 𝜑0), 𝑏 ≡  𝑓𝜑 ( ̄𝑦, 𝜑0),
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where 𝑑𝑦(𝑡) = 𝑦(𝑡) − ̄𝑦0. The solution to this linear (variational) ODE is

𝑑𝑦(𝑡) = 𝑑 ̄𝑦  (1 − 𝑒𝜆 𝑡), for  𝑡 ∈ [0, ∞) 

where  𝑑 ̄𝑦 = − 𝑏
𝜆 𝑑𝜑.  Observe that, because we assume we are at time 𝑡 = 0 at a steady state we

have 𝑑𝑦(0) = 𝑦(0) − ̄𝑦0 = ̄𝑦0 − ̄𝑦0 = 0. If the steady state is asymptotically stable, i.e., if 𝜆 < 0 then

lim
𝑡→∞

 𝑑𝑦(𝑡)
𝑑𝜑 = 𝑑 ̄𝑦

𝑑𝜑 = ̄𝑦′(𝜑) = − 𝑏
𝜆

is the long-run multiplier. The solution to this ODE yields the short-run multipliers.
We obtain, therefore, a small perturbation of the phase diagram, which no changes in the

qualitative dynamics, only a quantitative change in the steady state after we have perturb it by a
change in a parameter (or parameters).

5.3.2 Bifurcations for scalar ODE’s

Bifurcations, as we saw, occur when a small change in a parameter change the phase diagram, or
the qualitative properties of the dynamics.

For the regular scalar ODE we have found the following types of bifurcations.
Fold bifurcation (see (Kuznetsov, 2005, ch. 3.3)): Let 𝑓 ∈ 𝐶2(ℝ) and consider the point

( ̄𝑦, 𝜑0) = (0, 0), such that 𝑓(0, 0) = 0, with 𝑓𝑦(0, 0) = 0 and

𝑓𝑦𝑦(0, 0) ≠ 0, 𝑓𝜑(0, 0) ≠ 0.

  then the ODE is topologically equivalent to

̇𝑦 = 𝜑 ± 𝑦2,

that is to the Ricatti’s model (5.4).
Transcritical bifurcation: Let 𝑓 ∈ 𝐶2(ℝ) and consider the point ( ̄𝑦, 𝜑0) = (0, 0), such that

𝑓(0, 0) = 0, with 𝑓𝑦(0, 0) = 0 and

𝑓𝑦𝑦(0, 0) ≠ 0, 𝑓𝜑𝑦(0, 0) ≠ 0

  then the ODE is topologically equivalent to

̇𝑦 = 𝜑𝑦 ± 𝑦2

that is to the Bernoulli model (5.5).
Pitchfork bifurcation: Let 𝑓 ∈ 𝐶2(ℝ) and consider ( ̄𝑦, 𝜑0) = (0, 0), such that 𝑓(0, 0) = 0,

with 𝑓𝑦(0, 0) = 0 and
𝑓𝑦𝑦𝑦(0, 0) ≠ 0, 𝑓𝜑𝑦(0, 0) ≠ 0

  then the ODE is topologically equivalent to

̇𝑦 = 𝜑𝑦 ± 𝑦3

that is to the Bernoulli model (5.6).
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5.4 References

• (Hale and Koçak, 1991, Part I , III ): very good introduction.

• Brock and Malliaris (1989), (Grass et al., 2008, ch.2) has a compact presentation of all the
important results with some examples in economics and management science.
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5.A Appendix: solutions to some ODEs

5.A.1 Solution of Ricatti’s equation (5.4)

Start with the case: 𝑎 = 0. Separating variables, we have

𝑑𝑦
𝑦2 = 𝑑𝑡

  integrating both sides

∫
𝑦(𝑡)

𝑦(0)

𝑑𝑦
𝑦2 = ∫

𝑡

0
𝑑𝑠 ⇔ − 1

𝑦(𝑡) = 𝑡 − 1
𝑦(0) .

Then the solution is
𝑦(𝑡) = 𝑦(0)

1 − 𝑦(0) 𝑡 .

  Now let 𝑎 ≠ 0. By using the same method we have

𝑑𝑦
𝑎 + 𝑦2 = 𝑑𝑡. (5.12)

  At this point it is convenient to note that

𝑑 tan−1 (𝑥)
𝑑𝑥 = 1

1 + 𝑥2  , 𝑑 tanh−1 (𝑥)
𝑑𝑥 = 1

1 − 𝑥2 ,   

where
tan (𝑥) = sin (𝑥)

cos (𝑥)  = 𝑒𝑖𝑥 − 𝑒−𝑖𝑥

𝑖(𝑒𝑖𝑥 + 𝑒−𝑖𝑥) ,   tanh (𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥 .

  Then we should deal separately with the cases 𝑎 > 0 and 𝑎 < 0. If 𝑎 > 0 integrating equation
(5.12)

∫ 𝑑𝑦
𝑎 + 𝑦2 = 𝑑𝑡 ⇔ 1√𝑎 ∫ 1

1 + 𝑥2 𝑑𝑥 = 𝑡 + 𝑘 ⇔ 1√𝑎 tan−1(𝑥) = 𝑡 + 𝑘

  where we defined 𝑥 = 𝑦/√𝑎. Solving the last equation for 𝑥 and mapping back to 𝑦 we get

𝑦(𝑡) = √𝑎 (tan (√𝑎(𝑡 + 𝑘))) .

  If 𝑎 < 0 we integrate equation (5.12) by using a similar transformation, but instead with 𝑥 =
𝑦/√−𝑎 to get

∫ 𝑑𝑦
𝑎 + 𝑦2 = 𝑑𝑡 ⇔ − 1√−𝑎 ∫ 1

1 − 𝑥2 𝑑𝑥 = 𝑡 + 𝑘 ⇔ − 1√−𝑎 tanh−1(𝑥) = 𝑡 + 𝑘.

  Then
𝑦(𝑡) = −√−𝑎 (tanh (√−𝑎(𝑡 + 𝑘))) .
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5.A.2 Solution for a general Bernoulli equation

Consider the Bernoulli equation

̇𝑦 = 𝑎𝑦 + 𝑏𝑦𝜂, 𝑎 ≠ 0, 𝑏 ≠ 0 (5.13)

where 𝑦 ∶ 𝑇 → ℝ. We intoduce a first transformation 𝑧(𝑡) = 𝑦(𝑡)1−𝜂, which leads to a linear ODE

̇𝑧 = (1 − 𝜂)(𝑎𝑧 + 𝑏) (5.14)

  beause

̇𝑧 = (1 − 𝜂)𝑦−𝜂 ̇𝑦 =
= (1 − 𝜂)(𝑎𝑦1−𝜂 + 𝑏) =
= (1 − 𝜂)(𝑎𝑧 + 𝑏).

To solve equation (5.14) we introduce a second transformation 𝑤(𝑡) = 𝑧(𝑡) + 𝑏
𝑎 . Observing that

𝑤̇ = ̇𝑧 we obtain a homogeneous ODE 𝑤̇ = 𝑎(1 − 𝜂)𝑤 which has solution

𝑤(𝑡) = 𝑤(0) 𝑒𝑎(1−𝜂)𝑡.

Then the solution to equation (5.14) is

𝑧(𝑡) = − 𝑏
𝑎 + (𝑤(0) + 𝑏

𝑎)𝑒𝑎(1−𝜂)𝑡

  because 𝑤(0) = 𝑦(0) + 𝑏
𝑎 .

We finally get the solution for the Bernoulli equation (5.13)

𝑦(𝑡) = [ − 𝑏
𝑎 + (𝑦(0)1−𝜂 + 𝑏

𝑎) 𝑒𝑎(1−𝜂)𝑡]
1

1−𝜂
(5.15)

  because 𝑧(0) = 𝑦(0)1−𝜂.
If 𝑎 = 0 the solution is

𝑦(𝑡) = (𝑦(0)1−𝜂  + 𝑏 (1 − 𝜂) 𝑡)
1

1−𝜂 .
  Æxercise: Prove this.

5.A.3 Solution to the cubic polynomial equation

In this section we present the solutions to the cubic polynomial equation 11 

𝑥3 + 𝛼2 𝑥2 + 𝛼1 𝑥 + 𝛼0 = 0.

  By performing a Tschirnhausen transformation (see King (1996)) we can transform into a simpler,
irreducible, equation. Defining 𝑦 = 𝑥 − 𝛼2

3 we obtain the polynomial

𝑦3 + (𝛼1 − 𝛼2
2

3 ) 𝑦 + 𝛼0 − 𝛼1 𝛼2
3 + 2 𝛼3

2
27   = 0

11See cubicpolynomialhistory for the history of this equation.

cubic polynomial history
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  This equation is a (monic) cubic polynomial equation, of type

𝑦3 − 𝑏𝑦 − 𝑎 = 0. (5.16)

  If 𝑎 = 0 we have 𝑦 (𝑦2 − 𝑏 𝑦) = 0 and the solutions are 𝑦 = 0 and the solutions of the quadratic
equation are 𝑦 = ±

√
𝑏.

If 𝑎 ≠ 0 we prove that the solutions of the monic cubic equation are

𝑦𝑗 = 𝑤𝑗−1𝜃 1
3 + 𝑏

3 (𝜔𝑗−1𝜃 1
3 )−1 , 𝑗 = 1, 2, 3. (5.17)

  where 𝜔 and 𝜃 are presented next.
Write 𝑦 = 𝑢 + 𝑣. Then we get the equivalent representation

𝑢3 + 𝑣3 + 3 (𝑢𝑣 − 𝑏
3) (𝑢 + 𝑣) − 𝑎 = 0.

  As 𝑦 = 𝑢 + 𝑣 ≠ 0, 𝑢 and 𝑣 solve simultaneously

⎧{
⎨{⎩

𝑢3 + 𝑣3 = 𝑎
𝑢𝑣 = 𝑏

3
⇔

⎧{
⎨{⎩

𝑢3𝑢3 + 𝑢3𝑣3 − 𝑢3𝑎 = 0

𝑢3𝑣3 = (𝑏
3)

3 ⇔
⎧{
⎨{⎩

𝑢6 − 𝑎𝑢3 + (𝑏
3)

3
= 0

𝑢𝑣 = 𝑏
3 .

  The first equation is a quadratic polynomial in 𝑢3 which has roots

𝑢3 = 𝑎
2 ±

√
Δ, where Δ ≡ (𝑎

2)
2

− (𝑏
3)

3

  where Δ is the discriminant in equation (5.9). We can take any solution of the previous equation
and set 𝜃 ≡ 𝑎

2 +
√

Δ.
At this stage it is useful to observe that the solutions of equation 𝑥3 = 1 are

𝑥1 = 1, 𝑥2 = 𝜔, 𝑥3 = 𝜔2.

  where 𝜔 = 𝑒 2𝜋𝑖
3 = −1

2(1 −
√

3𝑖) and 𝜔2 = 𝑒 4𝜋𝑖
3 = −1

2(1 +
√

3𝑖). Therefore 𝑢3 = 𝜃 has also three
solutions

 𝑢1 = 𝜃 1
3 , 𝑢2 = 𝜔𝜃 1

3 , 𝑢3 = 𝜔2𝜃 1
3

  and because 𝑣 = 𝑏
3𝑢 , we finally obtain equation (5.17), which are the solutions to equation (5.16).

5.B Appendix: approximating functions

Assume we have a function 𝑓(𝑥) for 𝑥 ∈ X ⊆ ℝ. If function 𝑓(.) is non-linear, or non explicitly
specified, we need sometimes to compare it with another function whose behaviour can be simpler,
or we need to know only about how it grows or decays, or its concavity or symmetry, without
worrying about the details. The notations 𝑂(.) and 𝑜(.) (called big-O and littlele-o notations)
provide a usefull approach.
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5.B.1 Big 𝑂 notation

A function is of constant order  if there is a non-zero constant 𝑐 such that we can write, equiv-
alently

lim
𝑥→∞

𝑓(𝑥)
𝑐 = 1 or lim

𝑥→∞
𝑓(𝑥) = 𝑐

  We say in this case that
𝑓(𝑥) ∈ 𝑂(1)

  More generally:

Definition 1.   A function 𝑓(𝑥) is big-𝑂 of function 𝑔(𝑥), written as 𝑓(𝑥) ∈ 𝑂(𝑔(𝑥)) (sometimes
written 𝑓(𝑥) = 𝑂(𝑔(𝑥)) if 𝑓(𝑥) is of the same order than 𝑔(𝑥) (they grow or decay at the same rate)

𝑓(𝑥) ∈ 𝑂(𝑔(𝑥)) or lim
𝑥→∞

𝑓(𝑥)
𝑔(𝑥)   = 𝑐

  or 𝑓(𝑥)
𝑔(𝑥)   ∈ 𝑂(1).

Examples:

• 𝑎𝑥 + 𝑏 ∈ 𝑂(𝑥) if 𝑎 ≠ 0

• 𝑎𝑥2 + 𝑏𝑥 + 𝑐 ∈ 𝑂(𝑥2) if 𝑎 ≠ 0

• 𝑎𝑥−2 + 𝑏𝑥−1 ∈ 𝑂(𝑥−1)

• 𝑒𝑥  = 1 + 𝑥 + 𝑥2

2!   + 𝑥3

3! ∈ 𝑂(𝑥2)

5.B.2 Little 𝑜 notation

There is an associate function, the little-o notation that means that a functions is asymptotically
smaller than another function.

Function 𝑓(𝑥) is asymptotically smaller than a non-zero constant 𝑐 if

lim
𝑥→∞

𝑓(𝑥)
𝑐 = 0, or𝑓(𝑥) ∈ 𝑜(1)

  In general, function 𝑓(𝑥) is little-o of function 𝑔(𝑥), written as of 𝑓(𝑥) ∈ 𝑜(𝑔(𝑥)) if for 𝑛 → ∞
there is a number 𝑁 such that

|𝑓(𝑥)| < 𝜖|𝑥| for 𝑛 > 𝑁

 

Definition 2. If 𝑔(𝑥) ≠ 0 in all its domain them 𝑓(𝑥) is a small-o of function 𝑔(𝑥), denoted
𝑓(𝑥) ∈ 𝑜(𝑔(𝑥)) if and only if

lim
𝑥→∞

𝑓(𝑥)
𝑔(𝑥) = 0

Examples:
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Notation Limit definition (a) Limit definition (b)

𝑓 ∈ 𝑜(𝑔) lim𝑥→∞
𝑓(𝑥)
𝑔(𝑥) = 0 lim sup 𝑓(𝑥)

𝑔(𝑥) = 0
𝑓 ∈ 𝑂(𝑔) lim𝑥→∞

𝑓(𝑥)
𝑔(𝑥) < ∞ lim sup 𝑓(𝑥)

𝑔(𝑥) < ∞

• 2𝑥 = 𝑜(𝑥2)

• 𝑒𝑥 = 1 + 𝑥 + 1
2𝑥2 + 𝑜(𝑥3),

• 𝑒𝑥 = 1 + 𝑥 + 1
2𝑥2 + 1

3𝑥3 + 𝑜(𝑥4)

• ln(𝑥) ∈ 𝑜(𝑥)

For a frequent function used in economics 𝑓(𝑥) = 𝑥𝛼 where 𝛼 > 0; we have

• if 0 ≤ 𝛼 < 1 then 𝑓(𝑥) if 𝑜(𝑥)

• if 1 ≤ 𝛼 < 2 then 𝑓(𝑥) if 𝑜(𝑥2)

• if 2 ≤ 𝛼 < 3 then 𝑓(𝑥) if 𝑜(𝑥3)

• if 𝑛 − 1 ≤ 𝛼 < 𝑛, for 𝑛 an integer, then 𝑓(𝑥) if 𝑜(𝑥𝑛).

 
If 𝑓(𝑥) ∈ 𝑜(𝑔(𝑥)) then 𝑓(𝑥) ∈ 𝑂(𝑔(𝑥)) but the converse may not be true.
There are several properties  for 𝑂(.) and 𝑜(.) functions, this is a small sample:

• If 𝑓(𝑥) ∈ 𝑂(𝑔(𝑥)) then 𝑐 𝑓(𝑥) ∈ 𝑂(𝑔(𝑥)) for any constant 𝑐,

• If 𝑓1(𝑥) and 𝑓2(𝑥) are both 𝑂(𝑔(𝑥)) then 𝑓1(𝑥) + 𝑓2(𝑥) ∈ 𝑂(𝑔(𝑥)),

• If 𝑓1(𝑥) ∈ 𝑂(𝑔(𝑥)) and 𝑓2(𝑥) ∈ 𝑜(𝑔(𝑥)) then 𝑓1(𝑥) + 𝑓2(𝑥) ∈ 𝑂(𝑔(𝑥)),

• If 𝑓1(𝑥) ∈ 𝑂(𝑓2(𝑥)) and 𝑓2(𝑥) ∈ 𝑜(𝑔(𝑥)) then 𝑓1(𝑥) ∈ 𝑜(𝑔(𝑥)),

• 𝑥𝑛𝑜(𝑥𝑚) = 𝑜 (𝑥𝑛+𝑚)

• 𝑜 (𝑥𝑛) 𝑜 (𝑥𝑚) = 𝑜 (𝑥𝑛+𝑚)

• 𝑥𝑚 = 𝑜 (𝑥𝑛) if 𝑛 < 𝑚

5.B.3 Calculus with big-O and little-o

The function 𝑓 has a strong derivative at 𝑥 if

𝑓(𝑥 + 𝜖) = 𝑓(𝑥) + 𝑓 ′(𝑥)𝜖 + 𝑂(𝜖)

  for 𝜖 sufficiently small.
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If 𝑓 is 𝑛-times differentiable at 𝑥 the Taylor’s theorem states

𝑓(𝑥 + 𝜖) = 𝑓(𝑥) + 𝑓 ′(𝑥) 𝜖 + 𝑓″(𝑥)
2   𝜖2 + … + 𝑓 (𝑛)

𝑛! 𝜖𝑛 + 𝑂(𝜖𝑛).

 
Weak derivative

𝑓(𝑥 + 𝜖) = 𝑓(𝑥) + 𝑓 ′(𝑥)𝜖 + 𝑜(𝜖2)

  The Lagrange formula can be written as

𝑓(𝑥 + 𝜖) = 𝑓(𝑥) + 𝑓 ′(𝑥)𝜖 + 𝑓″(𝑥)
2!  𝜖2 + … + 𝑓 (𝑛)(𝑥)

𝑛!   𝜖𝑛 + 𝑜(𝜖𝑛+1).



Chapter 6

Planar non-linear ODE’s: the regular
case

 
In this chapter we assume again that time, 𝑡 ∈ T ⊆ ℝ+, is the independent variable, the state

space, Y ⊂ ℝ2, has dimension two, and there is a vector of parameters, 𝜑 ∈ Φ ⊆ ℝ𝑛, for 𝑛 ≥ 1. We
try to find or characterize functions y ∶ T × Φ  → Y = ℝ2, that solve the (autonomous) equation
planar differential equation

 F(ẏ, y, 𝜑) = 0 (6.1)

  We say the ODE is regular  if F(ẏ, y, ⋅) is continuous and continuously differentiable function,

and furthermore det  𝐷 F(ẏ, y, 𝜑)
𝑑 ̇𝑦   ≠ 0 for every y ∈ Y.

This allows us to write equation (5.1)  as

 ẏ = f(y, 𝜑). (6.2)

Expanding, we have,

̇𝑦1 = 𝑓1(𝑦1, 𝑦2, 𝜑)
̇𝑦2 = 𝑓2(𝑦1, 𝑦2, 𝜑).

(6.3)

In the previous chapter we studied the following normal form of scalar ODEs: first, ODE’s
depending on a single parameter (𝑎), as the Ricatti’s equation ̇𝑦 = 𝑎 + 𝑦2, the quadratic Bernoulli
equation, ̇𝑦 = 𝑎𝑦 + 𝑦2, the cubic equations Bernoulli equation, ̇𝑦 = 𝑎𝑦 − 𝑦3, the Abel equation

̇𝑦 = 𝑎 + 𝑦 − 𝑦3; second, ODE’s depending on two parameters (𝑎 and 𝑏) the Abel’s equation,
̇𝑦 = 𝑎 + 𝑏𝑦 − 𝑦3.

In principle, we could consider combining all the previous scalar normal forms to have an idea of
the number of possible cases, and extend the previous method to study the dynamics. That method
consisted in finding critical points, corresponding to steady states and values of the parameters such
that the derivatives of the steady variables would be equal to zero. However, for planar equation,
to fully characterise the dynamics, we may have to study local dynamics in invariant orbits other

25
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than steady states. In general there are, at least, three types of invariant orbits  that do not
exist in planar linear models: homoclinic, and heteroclinic orbits and limit cycles.

We addressed the solution of most scalar ODE by using both analytical and qualitative or
geometrical approaches. For non-linear planar there are not, in general, known analytical sioluttion.
Therefore, we use a qualitative approach to finding and characterizing the most well known types
of dynamics.

Next, in section(6.1) we present some most well known normal forms for planar ODEs, and in
section 6.2 we present the qualitative theory for non-linear regular planar ODE’s.

6.1 Normal forms

A normal form is the simplest ODE, whose exact solution is usually known and represents a
whole family of ODEs by topological equivalence.1

We present next some important normal forms for scalar ODEs, which have the generic repre-
sentation by a polynomial vector field

 ẏ = f (y, 𝜑) ≡ A0 + A1 y + A2 y⊗ 2  + A3 y⊗ 3, (6.4)

where y⊗ 2 = (𝑦2
1, 𝑦1 𝑦2, 𝑦2

2)⊤, y⊗ 3 = (𝑦3
1, 𝑦2

1 𝑦2, 𝑦1 𝑦2
2, 𝑦3

2)⊤, A0 ∈ ℝ2, A1 ∈ ℝ2×2, A2 ∈ ℝ2×3, and
A3 ∈ ℝ2×4, and 𝜑𝜑𝜑 ≡ (A0, A1, A2, A3) ∈ ℝ4.

Given the very large number of cases we consider just a few associated to new types of dynamic
phenomena.

Equation (6.4)  covers the case of linear scalar ODE’s, as a particular case in which A2 = 0(2×3)
and A3 = 0(2×4). Therefore, a linear planar ODE can be written as

ẏ = f (y, 𝜑) ≡ A0 + A1 y.

Linear ODE have explicit solutions. We considered all cases in chapter three. Again we found that
all solutions correspond to global solutions and the phase diagrams display global dynamics (global
asymptotic stability, global instability, or a global center manifold).

As for the scalar ODEs this is not the case for non-linear ODE’s. However, given the very
large number of cases we deal only with a selected number of cases displaying some well studied
bifurcations (see Kuznetsov (2005).)

6.1.1 Heteroclinic orbits

 
We say there is an heteroclinic orbit if, in a planar ODE in which there are at least two

steady states, say ȳ1 and ȳ2, there are solutions y(𝑡) that entirely lie in a curve joining ȳ1 to ȳ2

1In heuristic terms, we say functions 𝑓(𝑦) and 𝑔(𝑥) are topologically equivalent if there exists a diffeomorphism,
i.e., a smooth map ℎ with a smooth inverse ℎ−1, such that if 𝑦 = ℎ(𝑥) then ℎ(𝑔(𝑥)) = 𝑓(ℎ(𝑥)). This property may
hold globally of locally. The last case is the intuition behind the Grobman-Hartmann theorem.
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say Het(y). Therefore, if y(0) ∈ Het(y) then y(𝑡) ∈ Het(y) for 𝑡 > 0 and either lim𝑡→∞ y(𝑡) = ȳ1

and lim𝑡→−∞ y(𝑡) = ȳ2 or lim𝑡→∞ y(𝑡) = ȳ2 and lim𝑡→−∞ y(𝑡) = ȳ1. Heteroclinics can exist if the
stability type of the steady states are different or they are equal, with the exception of the case in
which they are stable nodes of foci. For instance, they can connect one stable or one unstable node
and a saddle point, or they can connect a stable and one unstable node, or they can connect two
saddle points. In the last case, we say there is a saddle connection.

Heteroclinic networks  can also exist when there are more than two steady states which are
connected.

However, heteroclinic orbits can be generic, if they exist for a non-degenerate subset of param-
eter values, or they can be non-generic, if they only exist for a degenerate subset of parameters. In
the last case we have a heteroclinic bifurcation.

Generic heteroclinic orbits

Although there are several normal forms generating generic heteroclinic orbits, we focus next in
the following case:2

̇𝑦1 = 𝑎𝑦1𝑦2

̇𝑦2 = 1 + 𝑦2
1 − 𝑦2

2
(6.5)

where 𝑎 ≠ 0. 3  This equation has two steady states: ȳ1 = (0, −1) and ȳ2 = (0, 1). Calling,

f(y) = ( 𝑎𝑦1𝑦2
1 + 𝑦2

1 − 𝑦2
2
)

  we have the Jacobian, evaluated at any point y ∈ Y,

𝐽(y) ≡ 𝐷yf(y) = (𝑎𝑦2 𝑎𝑦1
2𝑦1 −2𝑦2

) ,

  which has trace and determinant depending on the parameter 𝑎

trace (𝐽(y)) = (𝑎 − 2)𝑦2

det (𝐽(y)) = −2𝑎(𝑦2
1 + 𝑦2

2).

  Then, remembering again that we assumed 𝑎 ≠ 0 and because, for any steady state 𝑦2
1 + 𝑦2

2 > 0
then det (𝐽(y)) > 0 if 𝑎 < 0 and det (𝐽(y)) < 0 if 𝑎 > 0.

Therefore, if 𝑎 < 0, steady state ȳ1 is an unstable node, because trace (𝐽(ȳ1)) > 0 and steady
state ȳ2 is a stable node, because trace(𝐽(ȳ2)) < 0. Then for any trajectory starting from any
element of y ≠ ȳ2 there is convergence to steady state ȳ2 (see the left subfigure in figure 6.1).

2This is a particular case of equation (6.4) with

A0 = ( 0
1 ) , A1 = 0(2×2), A2 = ( 0 𝑎 0

1 0 −1) , and  A3 = 0(2×4).

 
3If 𝑎 = 0 this equation reduces to a scalar Ricatti equation.
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(a) Phase diagram for 𝑎 < 0
 

-2 -1 1 2

-2

-1

1

2

(b) Phase diagram for 𝑎 > 0
 

Figure 6.1: Phase diagrams for equation (6.5)

If we denote Het(y) the set points connecting ȳ2 to ȳ1 we readily see that Het(y) = Y/{ȳ1},
which means there is an infinite number of heteroclinic orbits, and that this set is coincident with
the stable manifold 𝒲𝑠

ȳ2 (see subfigure (a) in Figure 6.1).
However, if 𝑎 > 0 both steady states, ȳ1 and ȳ2 , are saddle points, because det (𝐽(ȳ1)) =

det (𝐽(ȳ2)) < 0. In this case, there is one heteroclinic surface

Het(y) = { (𝑦1, 𝑦2) ∶ 𝑦1 = 0, −1 ≤ 𝑦2 ≤ 1} 

  which is the locus of points connecting ȳ1 and ȳ2 such that for any initial value y(0) ∈ Het(y)
the solution will converge to ȳ2 (see subfigure (b) in Figure 6.1). In this case Het(y) is the set of
points belonging to the intersection of the unstable manifold of ȳ1 and to the stable manifold of
ȳ2: Het(y) = 𝒲𝑢

ȳ1 ∩ 𝒲𝑠
ȳ2 .

At last, we should notice that in both cases the heteroclinic orbits are generic, in the sense that
they persist for a wide range of values for parameter 𝑎. This is not the case for the next example.

Non-generic case: heteroclinic saddle connection bifurcation

 
Assuming a related but slightly different normal form generates an heteroclinic bifurcation

meaning we may have a bifurcation parameter that when it crosses a specific value heteroclinic
orbits cease to exist. The following model is studied, for instance, in (Hale and Koçak, 1991,
p.210).

̇𝑦1 = 𝜆 + 2𝑦1𝑦2

̇𝑦2 = 1 + 𝑦2
1 − 𝑦2

2
(6.6)
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As Figure 6.2. shows, there are always two steady states and they are both saddle points. If 𝜆 ≠ 0
there are no trajectories connecting the two steady states. However, if 𝜆 = 0 there is an heteroclinic
trajectory connecting the two saddle points (indeed this is the same case as subfigure (b) in Figure
6.1. In this case we say there is a heteroclinic saddle connection bifurcation, for 𝜆 = 0.
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(a) Phase diagrams for 𝜆 < 0
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(b) Phase diagrams for 𝜆 = 0
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(c) Phase diagrams for 𝜆 > 0

Figure 6.2: Phase diagrams for equation (6.6).

6.1.2 Homoclinic orbits

 
We say there is an homoclinic orbit if, in a planar ODE, there is a subset of points Hom(y)

connecting a steady state with itself. This is only possible if the steady state ȳ is a saddle point in
which the stable manifold contains a closed curve, that we call homoclinic curve. Because of this
fact, homoclinic orbits exist jointly with periodic trajectories.

Again, homoclinic orbits can be generic or non-generic. Next we illustrate both cases.
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Generic homoclinic orbits

Consider the non-linear planar ODE depending on one parameter, 𝑎, of form4

̇𝑦1 = 𝑦2

̇𝑦2 = 𝑦1 − 𝑎𝑦2
1.

(6.7)

If 𝑎 ≠ 0 there are two steady states ȳ1 = (0, 0) and ȳ2 = (1/𝑎, 0). The Jacobian, evaluated at any
point y ∈ Y,

𝐽(y) ≡ 𝐷yf(y) = ( 0 1
1 − 2𝑎𝑦1 0)

  has following the trace and the determinant

trace (𝐽(y)) = 0,
det (𝐽(y)) = 2𝑎𝑦1 − 1.

  If 𝑎 = 0 this ODE reduces to a linear planar ODE, there is only one equilibrium point ȳ  = 0,
which is a saddle point.

If 𝑎 ≠ 0, it is easy to see that steady state ȳ1 is always a saddle point, because det (𝐽(ȳ1)) =
−1 < 0, and the steady state ȳ2 is always locally a center, because det (𝐽(ȳ2)) = 1 > 0 and
trace (𝐽(ȳ2)) = 0, for any value of 𝑎.

Furthermore, we can prove that there is an invariant curve, such that solutions follow a potential
or first integral curve which is constant.

In order to see this we introduce a Lyapunov function which is a differentiable function 𝐻(y)
such that the time derivative is 𝐻̇ = 𝐷y𝐻 ⋅ ẏ, that is 𝐻̇ = 𝐻𝑦1

̇𝑦1 + 𝐻𝑦2
̇𝑦2. A first integral is a set

of points y ∈ Y, different from ȳ, such that 𝐻̇ = 0. In this case the orbits passing through those
points allow for a conservation of energy in some sense and 𝐻(y(𝑡)) = constant. For values such
that 𝐻(y(𝑡)) = 0 that curve passes through a steady state.

For this case consider the function

𝐻(𝑦1, 𝑦2) = −1
2𝑦2

1 + 1
2𝑦2

2 + 𝑎
3𝑦3

1.

  If we time-differentiate this Lyapunov function and substitute equations (6.7) we have

𝐻̇ = (𝑎𝑦1 − 1)𝑦1 ̇𝑦1 + 𝑦2 ̇𝑦2 =
= (𝑎𝑦1 − 1)𝑦1𝑦2 + 𝑦2𝑦1(1 − 𝑎𝑦1) =
= 0.

4This is a particular case of equation (6.4) with

A0 = 0(2×1), A1 = ( 0 1
1 0) , A2 = (  0 0 0

−𝑎 0 0) , and  A3 = 0(2×4).
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  Then 𝐻̇ = 0, for any values of y and 𝑎. We call homoclinic surface to the set of points such that
there are homoclinic orbits. In our case, homoclinic orbits converge both for 𝑡 → ∞ and 𝑡 → −∞
to point ȳ1. Therefore the homoclinic surface is the set of points

Hom(ȳ1) = { (𝑦1, 𝑦2) ∶ 𝐻(𝑦1, 𝑦2) = 0, sign( ̄𝑦1) = sign(𝑎)}

  Figure 6.3 depicts phase diagrams for the case in which 𝑎 < 0 (subfigure (a)) and 𝑎 > 0 (sub-figure
(b)).

(a) Phase diagrams for 𝑎 < 0 (b) Phase diagrams for 𝑎 > 0

Figure 6.3: Phase diagrams for equation (6.7).

We see that the homoclinic trajectories are generic, i.e, they exist for different subsets of values
of the parameters. This is not always the case as we show next.5

Non-generic case: Homoclinic or saddle-loop bifurcation

This model is studied, for instance, in (Hale and Koçak, 1991, p.210) and (Kuznetsov, 2005, ch.
6.2). It is a non-linear ODE depending on one parameter, 𝑎, of type

̇𝑦1 = 𝑦2

̇𝑦2 = 𝑦1 + 𝑎 𝑦2 − 𝑦2
1.

(6.8)

In this case, we have

f(y, 𝑎) = ( 𝑦2
𝑦1 + 𝑎 𝑦2 − 𝑦2

1.) .

The Jacobian for any point y = (𝑦1, 𝑦2),

𝐷yf(y, 𝑎) = ( 0 1
1 − 2𝑦1 𝑎) .

5n that Figure we also see that inside the homoclinic loop there is an infinite number of periodic orbits. Applying
the Bendixson-Dulac criterium we see that 𝑓1,𝑦1   + 𝑓2,𝑦2 = 0 for any (𝑦1, 𝑦2).
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  The eigenvalues of this Jacobian are functions of the variables and of the parameter 𝑎,

𝜆±(y, 𝑎) = 𝑎
2 ± [  (𝑎

2)
2

+ 1 − 2𝑦1 ]
1
2

. 

 
The set of steady states ȳ = { y ∶ f(y, 𝑎) = 0}. For equation (6.8) we have two steady states,

ȳ1 = ( ̄𝑦1
1
̄𝑦1
2
) = 0, ȳ2 = ( ̄𝑦2

1
̄𝑦2
2
) = ( 1

0 ) .

 
If we evaluate the eigenvalues at the steady state ȳ1 = (0, 0), we find it is a saddle point, because

the eigenvalues of the Jacobian 𝐷yf(y1) are

𝜆1
± ≡ 𝜆±(ȳ1, 𝑎) = 𝑎

2 ± [  (𝑎
2)

2
+ 1 ]

1
2

 

  yielding 𝜆1
− < 0 < 𝜆1

+. At the steady state ȳ2 = (1, 0) the eigenvalues of the Jacobian 𝐷yf(y2)
are

𝜆2
± = 𝜆±(ȳ2, 𝑎) = 𝑎

2 ± [  (𝑎
2)

2
− 1 ]

1
2

 

  yielding sign(Re(𝜆±(ȳ2, 𝑎)) = sign(𝑎).
Therefore steady state ȳ1 is always a saddle point, and steady state ȳ2 is a stable node or a

stable focus if 𝑎 < 0, it is an unstable node or an unstable focus if 𝑎 > 0, or it is a centre if 𝑎 = 0.
When 𝑎 = 0 another type of dynamics occurs. We introduce the following Lyapunov function

𝐻(𝑦1, 𝑦2) = −1
2𝑦2

1 + 1
2𝑦2

2 + 1
3𝑦3

1.

  and prove that it can only be a first integral if 𝑎 = 0. To show this, if we time-differentiate this
Lyapunov function and substitute equations (6.8) we have

𝐻̇ = (𝑦1 − 1)𝑦1 ̇𝑦1 + 𝑦2 ̇𝑦2 =
= (𝑦1 − 1)𝑦1𝑦2 + 𝑦2𝑦1(1 − 𝑦1) + 𝑎𝑦2

2 =
= 𝑎𝑦2

2.

  Then 𝐻̇ = 0, for any values of y, if and only if and only if 𝑎 = 0.
In our case this generates an homoclinic orbit which is a trajectory that exits a steady state

and returns to the same steady state. In this case, a homoclinic orbit exists if 𝑎 = 0 and it does
not exist if 𝑎 ≠ 0.

Figure 6.4 shows the phase diagrams for the cases 𝑎 < 0, 𝑎 = 0 and 𝑎 > 0: first, if 𝑎 < 0 (see
subfigure (a)) there is a saddle point and a stable focus, and a heteroclinic orbit connecting the two
steady states, second, if 𝑎 = 0 (see subfigure (b)) there is a saddle point, and an infinite number
of centres surrounded by an homoclinic orbit; at last If 𝑎 > 0 (see subfigure (c)) there is a saddle
point and an unstable focus, and an heteroclinic orbit connecting the two steady states.
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(a) Phase diagrams for 𝑎 < 0 (b) Phase diagrams for 𝑎 = 0

(c) Phase diagrams for 𝑎 > 0

Figure 6.4: Phase diagrams for equation (6.8)
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6.1.3 Limit cycles: Andronov-Hopf bifurcation

 
This model is studied, for instance, in (Hale and Koçak, 1991, p.212): 6

̇𝑦1 = 𝑓1(𝑦1, 𝑦2) ≡ 𝑦2 + 𝑦1(𝜆 − 𝑦2
1 − 𝑦2

2)
̇𝑦2 = 𝑓2(𝑦1, 𝑦2) ≡ −𝑦1 + 𝑦2(𝜆 − 𝑦2

1 − 𝑦2
2)

(6.9)

It has a single steady state ȳ = (0, 0). However, it has another invariant curve: a limit cycle.
The Jacobian, for any y ∈ Y is

𝐽(y) = (𝜆 − 3𝑦2
1 − 𝑦2

2 1 − 2𝑦1𝑦2
−1 − 2𝑦1𝑦2 𝜆 − 𝑦2

1 − 3𝑦2
2
)  

  has eigenvalues
𝜆±(y) = 𝜆 − 2(𝑦2

1 + 𝑦2
2) ± √(𝑦2

1 + 𝑦2
2 + 1) (𝑦2

1 + 𝑦2
2 − 1)

Evaluating at the steady state, the eigenvalues are complex conjugate

𝜆±(ȳ) = 𝜆 ±
√

−1 = 𝜆 ± 𝑖,

where 𝑖 =
√

−1. If 𝜆 = 0 we see that are locally a center

𝜆±(ȳ) = ±𝑖,

which separates the case in which the steady state is a stable focus (when 𝜆 < 0) from the case
in which it is an unstable focus (when 𝜆 > 0). Therefore, at (y, 𝜆) = (0, 0) we say there is a
Andronov-Hopf bifurcation. This is a co-dimension one bifurcation which can only exist in
higher-dimensional ODE’s.

Figure 6.5 illustrates our results: if 𝜆 < 0 there is only one steady state which is a stable focus
(see subfigure (a)), if 𝜆 > 0 there is only one steady state which is a unstable focus (see subfigure
(c)); and if 𝜆 = 0 there is a very slow convergence to a center (see subfigur (b)).

However, Figure 6.5 also shows there is another invariant with a global nature, in addition to
the steady state. If 𝜆 > 0, a limit circle is formed, around the unstable steady state.

We can prove its existence by applying the Bendixson-Dulac criterium  (see Theorem 3):
if there are elements in y ∈ Y such that

𝜕𝑓1(y)
𝜕𝑦1

+ 𝜕𝑓2(y)
𝜕𝑦2

= trace𝐽(y) = 2 (𝜆 − 2 (𝑦2
1 + 𝑦2

2))

changes sign then a closed curve can exist, which we call limit cycle because it attracts neighbouring
trajectories. For ODE (6.9) , if 𝜆 > 0, then there is a set of points forming s limit cycle 𝐿𝐶 = { y ∶
𝑦1 + 𝑦2 = 𝜆/2}.

6This is a particular case of equation (6.4) with

A0 = 0(2×1), A1 = (  𝜆 1
−1 𝜆) , A2 = 0(2×3), and  A3 = (  − 1 0 −1 0

0 −1 0 −1) .
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(a) Phase diagrams for 𝜆 < 0
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(b) Phase diagrams for 𝜆 = 0
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(c) Phase diagrams for 𝜆 > 0

Figure 6.5: Phase diagrams for equation (6.9)
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To prove that there is a closed curve that is a solution to the ODE, we transform the system in
polar coordinates (see Appendix to chapter 1) to get 7

̇𝑟 = 𝑟(𝜆 − 𝑟2)
̇𝜃  = −1

  there is thus a periodic orbit with radius ̄𝑟 =
√

𝜆. Therefore, the limit cycle increases its length
with 𝜆 and collapses to a point when 𝜆 → 0, which is consistent with our previous local analysis.

6.1.4 Co-dimension two bifurcations

 
Until this subsection we have only considered non-generic cases unfolded by one parameter.

Next we see one common case of a co-dimensio two bifurcation

Bogdanov-Takens bifurcation

The normal form of the Bogdanov-Takens bifurcation (see (Kuznetsov, 2005, p. 311)) is 8

̇𝑦1 = 𝑓1(𝑦1, 𝑦2) ≡ 𝑦2

̇𝑦2 = 𝑓2(𝑦1, 𝑦2) ≡ 𝑎 + 𝑏 𝑦1 + 𝑦2
1 + 𝑐 𝑦1 𝑦2,

(6.10)

where 𝑐 = ±1. It displays several bifurcations: first, co-dimension one local bifurcations (saddle-
node and Andronov-Hopf) and a global bifurcation: homoclinic bifurcation.

We see that: if 𝑎 > (𝑏
2)

2
> 0 there are no steady states (see subfigure (a) in Figure 6.6), if

𝑎 = (𝑏
2)

2
> 0 there is one steady state ȳ  = (− 𝑏

/2, 0) (see subfigures (e) and (f) in Figure 6.6) and

if 𝑎 < (𝑏
2)

2
there are two steady states

ȳ  = { ( − 𝑏
2 − √(𝑏

2)
2

− 𝑎, 0), ( − 𝑏
2 − √(𝑏

2)
2

− 𝑎, 0)}

(see subfigure (b) in Figure 6.6). We can show that there are the following bifurcation curves: We
have a transcritical bifurcation for (𝑎, 𝑏) ∈ 𝑇 where

𝑇 = {(𝑎, 𝑏) ∶ 𝑎 − (𝑏
2)

2
= 0}. 

7We define 𝑟2 = 𝑦2
1 + 𝑦2

2 and 𝜃 = arctan 𝑦2
𝑦1

, and take time derivatives, obtaining

̇𝑟 = 𝑦1 ̇𝑦1 + 𝑦2 ̇𝑦2
𝑟

̇𝜃 = 𝑦1 ̇𝑦2 − 𝑦2 ̇𝑦1
𝑟2

.
8This is a particular case of equation (6.4) with

A0 = ( 0
𝑎 ) , A1 = ( 0 1

𝑏 0) , A2 = ( 0 0 0
1 ±1 0) , and  A3 = 0(2×4).
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We have an Andronov-Hopf biburcation (𝑎, 𝑏) ∈ 𝐻

𝐻 = {(𝑎, 𝑏) ∶ 𝑎 = 0, 𝑏 < 0},  

and we have a co-dimension-two if (𝑎, 𝑏) ∈ 𝑃

𝑃 = {(𝑎, 𝑏) ∶ 𝑎 + 6
25 𝑏2, 𝑏 < 0}. 

There a generic homoclinic orbit, given by the Lyapunov function

𝐻(𝑦1, 𝑦2) = −𝑦2
1
2 + 𝑦2

2
2 + 𝑏 𝑦3

1
3 , for  𝑏 < 0.

 
Figure 6.7 shows the bifurcation diagram when 𝑐 = −1, and Figure 6.6 illustrates representative

phase diagrams

6.2 Qualitative theory of ODE

Next we present a short introduction to the qualitative (or geometrical) theory of ODE’s.
We consider a generic ODE

ẏ = f(y), f ∶ Y → Y, y ∶ T → Y (6.11)

where f ∈ 𝐶1(Y), i.e., 𝑓(.) is continuously differentiable up to the first order.
The qualitative theory of ODEs consists in finding a (topological) equivalence between a non-

linear (or even incompletely defined) function f(.) and a linear or a normal form ODE. This allows
us to characterize the dynamics in the neighborhood of a steady state or of a periodic orbit or
other invariant sets (homoclinic and heteroclinic orbits or limit cycles). If there are more than one
invariant orbit or steady state we distinguish between local dynamics (in the neighborhood of a
steady state or invariant orbit) from global dynamics (in all set 𝑦). If there is only one invariant
set then local dynamics is qualitatively equivalent to global dynamics.

One important component of qualitative theory is bifurcation analysis, which consists in
describing the change in the dynamics (that is, in the phase diagram) when one or more parameters
take different values within its domain.

6.2.1 Local analysis

We study local dynamics of equation (6.11) by performing a local analysis close to an equilibrium
point or a periodic orbit. There are three important results that form the basis of the local
analysis: the Grobman-Hartmann, the manifold and the Poincaré-Bendixson theorems. The first
two are related to using the knowledge on the solutions of an equivalent linearized ODE to study
the local properties close to the a steady-state for a non-linear ODE and the third introduces a
criterium for finding periodic orbits.
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Equivalence with linear ODE’s

Assume there is (at least) one equilibrium point ȳ ∈ { y ∈ 𝑌 ⊆ ℝ𝑛 ∶ f(y) = 0}, for 𝑛 ≥ 1, and
consider the Jacobian of f(.) evaluated at that equilibrium point

𝐽(ȳ) = 𝐷yf(ȳ) =
⎛⎜⎜⎜
⎝

𝜕𝑓1( ̄𝑦)
𝜕𝑦1

…   𝜕𝑓1( ̄𝑦)
𝜕𝑦𝑛

… … …
𝜕𝑓𝑛( ̄𝑦)

𝜕𝑦1
…   𝜕𝑓𝑛( ̄𝑦)

𝜕𝑦𝑛

⎞⎟⎟⎟
⎠

.

In this section we consider the case 𝑛 = 2, therefore

𝐽(ȳ) = 𝐷yf(ȳ) = (
𝜕𝑓1( ̄𝑦)

𝜕𝑦1
𝜕𝑓1( ̄𝑦)

𝜕𝑦2
𝜕𝑓2( ̄𝑦)

𝜕𝑦1
𝜕𝑓2( ̄𝑦)

𝜕𝑦2

) .

An equilibrium point is hyperbolic if the Jacobian 𝐽 has no eigenvalues with zero real parts. An
equilibrium point is non-hyperbolic if the Jacobian has at least one eigenvalue with zero real
part.

Theorem 1 (Grobman-Hartmann theorem). Let ȳ be a hyperbolic equilibrium point. Then
there is a neighbourhood 𝑈 of ȳ and a neighborhood 𝑈0 of y(0) such that the ODE restricted to 𝑈
is topologically equivalent to the variational equation

ẏ = 𝐽(ȳ)(y − ȳ), y − ȳ ∈ 𝑈0

The original paper are Grobman (1959) and Hartman (1964).
Stability properties of ȳ are characterized from the eigenvalues of Jacobian matrix 𝐽(ȳ) =

𝐷𝑦f(ȳ).
If all eigenvalues 𝜆 of the Jacobian matrix have negative real parts, Re(𝜆) < 0, then ̄𝑦 is

asymptotically stable. If there is at least one eigenvalue 𝜆 such that Re(𝜆) > 0 then ̄𝑦 is
unstable. If the determinant of the Jacobian is negative the steady state is a saddle point.

Example Consider the non-linear planar ODE

̇𝑦1 = 𝑦𝛼
1 − 𝑎, 0 < 𝛼 < 1, 𝑎 ≥ 0,

̇𝑦2 = 𝑦1 − 𝑦2
(6.12)

  It has an unique steady state ȳ = ( ̄𝑦1, ̄𝑦2) = (𝑎 1
𝛼 , 𝑎 1

𝛼 ). The Jacobian evaluated at any point y is

𝐽(y) = 𝐷yf(y) = (𝛼𝑦𝛼−1
1 0
1 −1) .

  If we approximate the system in a neighborhood of the steady state, ȳ, we have the linear planar
ODE

ẏ  = 𝐽(ȳ) (y − ȳ)
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  where 𝐽(ȳ) is the Jacobian evaluated at the steady state,

𝐽(ȳ) = 𝐷yf(ȳ) = (𝛼𝑎 𝛼−1
𝛼 0

1 −1) .

  We already saw that the solution to this equation is

y(𝑡) = y + Pe𝐽(ȳ)𝑡h.

Because

trace(𝐽(ȳ)) = 𝛼𝑎 𝛼−1
𝛼 − 1

det (𝐽(ȳ)) = −𝛼𝑎 𝛼−1
𝛼

Δ(𝐽(ȳ)) = (𝛼𝑎 𝛼−1
𝛼 + 1
2 )

2

  which implies that the eigenvalues of the Jacobian 𝐽(ȳ) are

𝜆± = 𝛼𝑎 𝛼−1
𝛼 − 1
2 ± 𝛼𝑎 𝛼−1

𝛼 + 1
2 .

that is 𝜆+ = 𝛼𝑎 𝛼−1
𝛼 and 𝜆− = −1. Therefore, the steady state is hyperbolic if 𝛼 ≠ 0 and non-

hyperbolic if 𝛼 = 0.
Furthermore, the steady state is a saddle point if 𝛼 > 0 and it is a stable node if 𝛼 < 0. We

can also find the eigenvector matrix of 𝐽(ȳ),

P = (P+P−) = (1 + 𝜆+ 0
1 1) .

  Therefore, the approximate solution is

(𝑦1(𝑡)
𝑦2(𝑡)) = (𝑎 1

𝛼

𝑎 1
𝛼

) + ℎ+ (1 + 𝜆+
1 ) 𝑒𝜆+𝑡 + ℎ− (0

1) 𝑒𝜆−𝑡.

  If 𝛼 < 0 the stable eigenspace is ℰ𝑠 = { (𝑦1, 𝑦2) ∶ 𝑦1 = ̄𝑦1},    and, if 𝛼 > 0 the stable eigenspace
is the whole space, ℰ𝑠 = Y.

Local manifolds

Consider a neighbourhood 𝑈 ⊂ Y ⊆ ℝ𝑛 of ȳ: the local stable manifold is the set

𝒲𝑠
𝑙𝑜𝑐(ȳ) = { k ∈ 𝑈 ∶ lim

𝑡→∞
y(𝑡, 𝑘) = ̄𝑦, 𝑦(𝑡, k) ∈ 𝑈, 𝑡 ≥ 0} 

  the local unstable manifold is the set

𝒲𝑢
𝑙𝑜𝑐(ȳ) = { k ∈ 𝑈 ∶ lim

𝑡→∞
y(−𝑡, k) = ȳ, y(−𝑡, k) ∈ 𝑈, 𝑡 ≥ 0} 

  The center manifold is denoted 𝒲𝑐
𝑙𝑜𝑐(ȳ). Let 𝑛−, 𝑛+ and 𝑛0 denote the number of eigenvalues of

the Jacobian evaluated at steady state ȳ with negative, positive and zero real parts.
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Theorem 2 (Manifold Theorem). Suppose there is a steady state ȳ and let 𝐽(ȳ) be the Jacobian
of the ODE (6.11) evaluated at that steady state. Then there are local stable, unstable and center
manifolds, 𝒲𝑠

𝑙𝑜𝑐(ȳ), 𝒲𝑢
𝑙𝑜𝑐(ȳ) and 𝒲𝑐

𝑙𝑜𝑐(ȳ), of dimensions 𝑛−, 𝑛+ and 𝑛0, respectively, such that
𝑛 = 𝑛− + 𝑛+ + 𝑛0. The local manifolds are tangent to the local eigenspaces ℰ𝑠, ℰ𝑢, ℰ𝑐 of the
(topologically) equivalent linearized ODE

ẏ = 𝐽(ȳ)(y − ȳ).

 

The first two, eigenspaces ℰ𝑠 and ℰ𝑢, are unique, and ℰ𝑐need not be unique (see (Grass et al.,
2008, ch.2)).

The eigenspaces are spanned by the eigenvectors of the Jacobian matrix 𝐽( ̄𝑦) which are associ-
ated to the eigenvalues with negative, positive and zero real parts.

Example 2 Consider example 2 and let 𝛼 > 0 which implies that the steady state ȳ is a
saddle point. Because the eigenvector associated to eigenvalue 𝜆− is P− = (0, 1)⊤, then the stable
eigenspace is

ℰ𝑠 = {(𝑦1, 𝑦2) ∈ ℝ+ ∶ 𝑦1 = ̄𝑦1 = 𝑎 1
𝛼 }. 

  The local stable manifold 𝒲𝑠
𝑙𝑜𝑐(ȳ) is tangent to ℰ𝑠 in a neighborhood of the steady state.

6.2.2 Periodic orbits

We saw that solution trajectories can converge or diverge not only as regards equilibrium points
but also to periodic trajectories (see the Andronov-Hopf model).

The Poincaré-Bendixson theorem (see (Hale and Koçak, 1991, p.367)) states that if the limit
set is bounded and it is not an equilibrium point it should be a periodic orbit.

In order to determine if there is a periodic orbit in a compact subset of 𝑦 the Bendixson criterium
provides a method for finding it ((Hale and Koçak, 1991, p.373)):

Theorem 3 (Bendixson-Dulac criterium). Let 𝐷 be a compact region of 𝑦 ⊆ ℝ2. If,

div(f)(y) = 𝑓1,𝑦1
(y) + 𝑓2,𝑦2

(y)

  has constant sign, for (𝑦1, 𝑦2) ∈ 𝐷, then ̇𝑦 = 𝑓(𝑦) has not  a constant orbit lying entirely in 𝐷.

6.2.3 Global analysis

While local analysis consists in studying local dynamics in the neighbourhood of steady states or
periodic orbits, this may not be enough to characterise the dynamics.

We already saw that there are invariant orbits that are invariant and that cannot be determined
by local methods, for instance heteroclinic and homoclinic orbits.
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Homoclinic and heteroclinic orbits

There are methods to determine if there are homoclinic or heteroclinic orbits. They essentially
consist in building a trapping area for the trajectories and proving there should exist trajectories
that do not exit the ”trap”.

Global manifolds

There are global extensions of the local manifolds by continuation in time (in the opposite direction)
of the local manifolds: 𝒲𝑠( ̄𝑦), 𝒲𝑢( ̄𝑦), 𝒲𝑐( ̄𝑦).

A trajectory 𝑦(.) of the ODE is called a stable path of ̄𝑦 if the orbit Or(𝑦0) is contained in the
stable manifold Or(𝑦0) ⊂ 𝒲𝑠( ̄𝑦) and lim𝑡→∞ 𝑦(𝑡, 𝑦0) = ̄𝑦.

A trajectory 𝑦(.) of the ODE is called a unstable path of ̄𝑦 if the orbit Or(𝑦0) is contained in
the stable manifold Or(𝑦0) ⊂ 𝒲𝑢( ̄𝑦) and lim𝑡→∞ 𝑦(−𝑡, 𝑦0) = ̄𝑦.

6.2.4 Dependence on parameters

We already saw that the solution of linear ODE’s, ẏ = Ay + B, may depend on the values for the
parameters in the coefficient matrix A.

We can extend this idea to non-linear ODE’s of type

ẏ = f(y, 𝜑), 𝜑 ∈ Φ ⊆ 𝑅𝑞

  where 𝜑 is a vector of parameters of dimension 𝑞 ≥ 1
We can distinguish two types of parameter change:

• bifurcations when a parameter change induces a qualitative change in the dynamics, i.e, the
phase diagram. By qualitative change we mean change the number or the stability properties
of steady states or other invariants. Close to a bifurcation point, a change in a parameter
changes the qualitative characteristics of the dynamics;

• perturbations when parameter changes do not change the qualitative dynamics, i.e., they
do not change the phase diagram. This is typically the case in economics when one performs
comparative dynamics exercises.

Bifurcations

If a small variation of the parameter changes the phase diagram we say we have a bifurcation. As
you saw, there are local (fixed points) and global bifurcations (heteroclinic connection, etc). Those
bifurcations were associated to particular normal forms of both scalar and planar ODEs. This
fact allows us to find classes of ODE’s which are topologically equivalent to those we have already
presented.

Consider the planar ODE
ẏ = f(y, 𝜑), y ∈ ℝ2, 𝜑 ∈ ℝ
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and its Jacobian evaluated at any y ∈ Y

ẏ = 𝐷yf(y, 𝜑).

  We saw two types of local bifurcations of co-dimension one:

• transcritical, pitchfork, or hysteresis bifurcations at a point (ȳ, 𝜑0) if it satisfies

⎧{
⎨{⎩

f(y, 𝜑0) = 0,
det  𝐷yf(y, 𝜑0) = 0,

 

 

• Andronov-Hopf bifurcation (see (Kuznetsov, 2005, ch. 3.4)): if f  ∈ 𝐶2(ℝ) and there is a
point (ȳ, 𝜑0) that satisfies.

⎧{{
⎨{{⎩

f(y, 𝜑) = 0,
trace𝐷yf(y, 𝜑)  = 0,
Δ 𝐷yf(y, 𝜑) < 0.

 

If some additional conditions are satisfied then the ODE is locally topologically equivalent to
ODE

( ̇𝑦1
̇𝑦2
) = (𝜆 −1

1 𝜆 ) (𝑦1
𝑦2

) ± (𝑦2
1 + 𝑦2

2) (𝑦1
𝑦2

)

presented in subsection 6.1.3, that at point (ȳ, 𝜑0) = (0, 0) the Jacobian had eigenvalues

𝜆± = 𝜂(𝜑) ± 𝜔(𝜑) 𝑖

  where 𝑖 =
√

−1, and 𝜂(0) = 0 and 𝜔(0) > 0.

6.2.5 Comparative dynamics in economics

As mentioned, comparative dynamics exercises consist in introducing perturbation in a dynamic
system: i.e., a small variation of the parameter that does not change the phase diagram. This kind
of analysis only makes sense if the steady state is hyperbolic, that is if det (𝐷yf(ȳ, 𝜑0))  ≠ 0 or
trace(𝐷yf(ȳ, 𝜑0)) ≠ 0 if det (𝐷yf(ȳ, 𝜑0))  > 0.

In this case let the steady state be for a given value of the parameter 𝜑 = 𝜑0

ȳ0 = { 𝑦 ∈ 𝑌 ∶ f(y, 𝜑0) = 0}.

  If ȳ0 is a hyperbolic steady state, then we can expand the ODE into a linear ODE

ẏ = 𝐷yf(ȳ0, 𝜑0)(y − ȳ0) + 𝐷𝜑f(ȳ0, 𝜑0)(𝜑 − 𝜑0). (6.13)
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  This equation can be solved as a linear ODE. Setting 𝜑 = 𝜑0 + 𝛿𝜑 and because ȳ  = ȳ(𝜑) and
ȳ0 = ȳ(𝜑0) we have

𝐷𝜑ȳ(𝜑0) = lim
𝛿𝜑→0

ȳ(𝜑0 + 𝛿𝜑) − ȳ(𝜑0)
𝛿𝜑

= −𝐷−1
y f(ȳ0, 𝜑0)𝐷𝜑f(ȳ0, 𝜑0)

  which are called the long-run multipliers associated to a permanent change in 𝜑. Solving the
linearized system allows us to have a general solution to the problem of finding the short-run or
transition multipliers, 𝑑y(𝑡) ≡ y(𝑡) − ȳ0 for a change in the parameter 𝜑.

6.3 References

• (Hale and Koçak, 1991, Part I , III ): very good introduction.

• (Guckenheimer and Holmes, 1990, ch. 1, 3, 6) Is a classic reference on the field.

• Kuznetsov (2005) Very complete presentation of bifurcations for planar systems.

• Brock and Malliaris (1989), (Grass et al., 2008, ch.2) has a compact presentation of all the
important results with some examples in economics and management science.
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Figure 6.7: Bogdanov-Takens bifurcation diagram. Lines 𝑇 , 𝑃 and 𝐻 refer to transcritical, pitchfork
and Hopf bifurcations and points (𝑎) to (𝑏) refer to phase diagrams in Figure 6.6



Chapter 7

Applications to economics

In this chapter we provide some applications of the theory presented in the previous two chapters
to economics. Section 7.1 presents scalar models and section 7.2 planar models.

7.1 Scalar ODE

 
In this section we present two simple models of capital accumulation with a concave production

function and with a concave-convex production function.

7.1.1 Capital accumulation with a concave production functions

 
Solow (1956)  is a benchmark contribution to the theory of economic growth. It considers a

concave production function

𝑦 = 𝑓(𝑘), 𝑓(0) = 0, and 𝑓 ′(𝑘) > 0. 𝑓″(𝑘) < 0, for  𝑘 > 0

  where 𝑦 and 𝑘 are per capita output and the stock of capital, respectively. As in most of
classical economic theory, it is assumed that the law of diminishing returns prevails. Formally,
the production function is increasing and concave. The benchmark production function is the
Cobb-Dpuglas function

 𝑦 = 𝑓(𝑘) = 𝐴 𝑘𝛼, 𝐴 > 0, 0 < 𝛼 < 1,   (7.1)

where 𝐴 is a productivity parameter and 𝛼 is the share of capital in national income, 𝑦.
The output can be consumed or used to increase the capital stock, through investment. The

macroeconomic equilibrium, in a closed economy, requires gross per capita investment, consisting
on net investment plus depreciation, 𝑘̇  + 𝛿 𝑘, to be equal to savings. In Solow (1956)’s model it is
assumed that savings has a somewhat mechanic explanation as the part of the income which is not
consumed. Therefore, savings is given by 𝑠 𝑦 where 0 < 𝑠 < 1. I assume a constant population.

46
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The Solow (1956) capital accumulation equation is

  𝑘̇  = 𝑠 𝑓(𝑘) − 𝛿 𝑘, 𝑘 ∈ ℝ+.  (7.2)

 
We can solve this ODE analytically, provided we specify a suitable production function, or

qualitatively.
If we assume a Cobb-Douglas production function (7.1)  then equation (7.2)  is a Bernoulli

ODE, and therefore it has a closed form (that is global) solution .
Exercise Find it.
To find a qualitative, or approximated, solution to equation (7.2) we start by finding its steady

states. It is easy to see that the ODE (7.2) has two steady states 𝑘 = 0 and 𝑘̄  = {𝑘 ∶ 𝑠 𝑓(𝑘) = 𝛿 𝑘}.
We can also observe that the positive steady state can be linearly approximated by a linear ODE

𝑘̇  = 𝜆 (𝑘 − 𝑘̄), where  𝜆 ≡ (𝑠 𝑓 ′(𝑘̄) − 𝛿) < 0

because 𝑓 ′(𝑘̄)  <  𝑓(𝑘̄)
𝑘̄ = 𝛿

𝑠 from the global concavity of the production function.
Therefore, the Solow (1956) model can be locally approximated at the steady state 𝑘̄ by a linear

ODE displaying asymptotic stability.
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Figure 7.1: Concave production function and the accumulation of capital

7.1.2 Capital accumulation with concave-convex production functions

 
The Solow model displays convergence to a steady state. However, it does not capture well the

process of structural transformation that has been found to take place when some economies pass
through a process of development. In particular, there seems to be some form of stability for poor
and rich economies and the process of industrialization displaying some form of instability.

This process can be captured by assuming instead a concave-convex production function, see
v.g. Skiba (1978). For instance, assume the following production function

 𝑦 = 𝑓(𝑘, 𝐵) = 𝑘𝛼 (𝐴 + 𝑘3−𝛼

2 (𝑘3 + 𝐵3)  ), 𝐴 > 0, 0 < 𝛼 < 1, 𝐵 > 0  (7.3)
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where 𝐵 can be seen as a parameter representing generic inefficiencies in transforming the capital
stock into output. This production function is depicted in Figure 7.2 panel (a).

The capital accumulation equation, assuming a Solow economy, in which the savings function
is ad-hoc is

𝑘̇  = 𝑠 𝑓(𝑘, 𝐵) − 𝛿 𝑘, 𝑘 ∶ T → ℝ+ 
where 𝑘(0) = 𝑘0 > 0 is given.

We can have an extension to the Solow model for the dynamics of capital accumulation by
plugging this function into equation (7.2). We readily see that as the depreciation is a linear
function 𝛿 𝑘 we may have two generic cases, with one or three steady states, and possibly two
non-generic cases.

Figure  7.2 displays three different generic phase diagrams for different values for 𝐵: first,
if 𝐵 is high (see panel (b)) there are high ineficiencies and there is only a asymptotically stable
steady state for a low level of 𝑘 - and therefore of output 𝑦; second, for a relatively lower level of
𝐵 (see panel (c)) there are three steady states, two extreme asymptotically stable steady states
separated by an unstable steady state; and, at last, if 𝐵 is low (see panel (d)) there will be again
an asymptotically stable steady state with a high level for 𝑘 (and 𝑦).

This seems to capture several apparent facts: (a) there is a poverty trap which seems hard to
escape from; (b) several institutional changes are required in the process of development, which is
looks like a locally unstable process featuring high growth rates, but there is no guarantee that the
economy will not fall back to poverty; and, at last mature economies also seem to be in a relatively
stable state.

Looking at our previous analysis and to the bifurcation diagram in panel (e) of Figure 7.2 we
have a phase diagram which is qualitatively similar to the hysteresis case (see Figure 5.4)

Choosing 𝐵 as the bifurcation parameter, and denoting

𝐹(𝑘, 𝐵) = 𝑠 𝑘𝛼 (𝐴 + 𝑘3−𝛼

2 (𝑘3 + 𝐵3)  ) − 𝛿 𝑘

the histeresis points are found by solving

⎧{
⎨{⎩

 𝐹(𝑘, 𝐵) = 0 ⟺ 𝑠 𝑓(𝑘, 𝐵) = 𝛿 𝑘 ⟺ 𝑓(𝑘, 𝐵)
𝑘 = 𝛿

𝑠
𝐹𝑘(𝑘, 𝐵) = 0 ⟺ 𝑠 𝑓𝑘(𝑘, 𝐵) = 𝛿 ⟺ 𝑓𝑘(𝑘, 𝐵) = 𝛿

𝑠.
 

Therefore, at a bifurcation point we have 𝑓(𝑘, 𝐵) = 𝑓𝑘(𝑘, 𝐵) 𝑘 meaning that the production function
is locally concave. This allows for, although we cannot determine explicitly the bifurcation points
explicitly, to conclude that: first, a steady state 𝑘̄ is locally asymptotically stable, that is 𝐹𝑘(𝑘̄, 𝐵) <
0, if the production function is locally concave; second, a steady state 𝑘̄ is locally unstable, that is
𝐹𝑘(𝑘̄, 𝐵) > 0, if the production function is locally convex. To see this prove that,

𝐹(𝑘, 𝐵) = 0, and  𝐹𝑘(𝑘, 𝐵) ⋚ 0 ⟺ 𝑓(𝑘, 𝐵) ⋛ 𝑓𝑘(𝑘, 𝐵) 𝑘.

As we see in panel (c) in 7.2 a locally unstable steady state only occurs for intermediate values of
𝐵 and the production function is locally convex, i.e., displaying increasing marginal returns. This



Paulo Brito Advanced Mathematical Economics 2022/2023 49

steady state, say 𝑘𝑐, is indeed a critical point that separates the basins of attraction to the lower
steady state from the higher steady state. This means that if 𝑘(0) < 𝑘𝑐 the economy will converge
to the lower steady state and if 𝑘(0) > 𝑘𝑐 it will converge to the higher steady state. A small
change in the other parameters, 𝑠, 𝛿, or 𝐴 will change 𝑘𝑐 which means that we can only ascertain
the effects of changes in those parameters (and in 𝐵) by means of a bifurcation analysis, not a
comparative dynamics exercise.
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Figure 7.2: Concave-convex production function and the accumulation of capital

7.2 Planar ODE
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In this section we consider optimal growth models in which the central planner has the same
production functions as in the previous section, see subsections 7.2.1 and 7.2.2. We also present a
decentralized model with externalities in which the can perform a bifurcation analysis over a single
steady state in subsection 7.2.3  

7.2.1 Ramsey model

 
The Ramsey (1928) model (see also Cass (1965) and Koopmans (1965)) is the workhorse of

modern macroeconomics and growth theory. It is a normative model (but can also be seen as a
positive model if its behavior fits the data) on the optimal choice of consumption and where savings
leads to the accumulation of capital, and therefore to future consumption. Therefore, the optimal
trade-off between present and future consumption guides the accumulation of capital.

We will derive the optimality conditions when we study optimal control. In this section we
assume that there are two primitives for the model related with technology and preferences: (1)
the production function, 𝑓(𝑘) and (2) the elasticity of intertemporal substitution 𝜂(𝑐) and the rate
of time preference 𝜌.

The first order conditions for an optimum take the form of two non-linear differential equations.
Let 𝑘 and 𝑐 denote per-capita physical capital and consumption, respectively, and let the two
variables be non-negative. That is (𝑘, 𝑐) ∈ ℝ2

+. The Ramsey model is the planar ODE

𝑘̇ = 𝑓(𝑘) − 𝑐 − 𝛿 𝑘 (7.4)
̇𝑐 = 𝜂(𝑐) 𝑐 (𝑓 ′(𝑘) − 𝜌 − 𝛿) , (7.5)

supplemented with an initial value for 𝑘, 𝑘(0) = 𝑘0 and the transversality condition lim𝑡→∞ 𝑢′(𝑐)𝑘(𝑡)𝑒−𝜌𝑡 =
0, where 𝜂(𝑐) = − 𝑢′(𝑐)

𝑢″(𝑐) 𝑐 . For this section we will be concerned with trajectories that are bounded
asymptotically, that is converging to a steady state.

The ODE system (also called modified Hamiltonian dynamic system MHDS) is non-linear when
the two primitive functions are not completely specified, as is the case with system (7.4)-(7.5). Next
we assume a smooth case and the following assumptions

1. preferences are specified by a constant elasticity of intertemporal substitution, 𝜂(𝑐) = 𝜂 > 0
is constant;

2. the rate of time preference is positive 𝜌 > 0;

3. the production function is of the Inada type: it is positive for positive levels of capital, it
is monotonously increasing and globally concave. Formally: 𝑓(0) = 0, 𝑓(𝑘) > 0 for 𝑘 > 0,
𝑓 ′(𝑘) > 0, lim𝑘→0 𝑓 ′(𝑘) = +∞, lim𝑘→+∞ 𝑓 ′(𝑘) = 0, and 𝑓″(𝑘) < 0 for all 𝑘 ∈ ℝ+. 1

1Observe that 𝑓(𝑘) is locally but not globally Lipschitz, i.e, a small change in 𝑘 close to zero induces a large
change in 𝑓(𝑘).
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Figure 7.3: Ramsey model

Given the smoothness of the vector field, i.e, of functions 𝑓1(𝑘, 𝑐) ≡ 𝑓(𝑘)−𝑐 −𝛿 𝑘 and 𝑓2(𝑘, 𝑐) ≡
𝜂𝑐(𝑓 ′(𝑘) − 𝜌), we know that a solution exists and it is unique. Therefore, in order to characterize
the dynamics we can use the qualitative theory of ODE’s presented previously in this section.

In particular we will

1. determine the existence and number of steady states

2. characterize them regarding hyperbolicity and local dynamics, performing, if necessary, a
local bifurcation analysis

3. try to find other invariant trajectories of a global nature

4. conduct comparative dynamics analysis in the neigborhood of relevant hyperbolic steady
states.

Figure 7.3 depicts the phase diagram for the case in which 𝛿 > 0. As we can see there are
three steady states: two steady states given by 𝑐 = 0, that is (𝑘, 𝑐) = { (0, 0), (𝑘′, 0)} where
𝑘′ = {𝑘 ∶ 𝑓(𝑘) = 𝛿 𝑘}, and a steady state where 𝑘̄ = (𝑓 ′)−1(𝜌 + 𝛿). It is clear that none of the
steady states for which 𝑐 = 0 satisfy the transversality condition, which means that they cannot be
solutions to the Ramsey model.

From now on we deal formally with the case 𝛿 = 0 and study it in more detail.

Steady states Any steady-state, (𝑘̄, ̄𝑐), belongs to the set

(𝑘̄, ̄𝑐) = { (𝑘, 𝑐) ∈ ℝ2
+ ∶ 𝑘̇ = ̇𝑐 = 0}  = { (0, 0), (𝑘∗, 𝑐∗)} 

  where 𝑘∗ = 𝑔(𝜌), where 𝑔(.) = (𝑓 ′)−1(.) and 𝑐∗ = 𝑓(𝑘∗) = 𝑓(𝑔(𝜌)).
To prove the existence and uniqueness of a positive steady state level for 𝑘 we use the Inada

and global concavity properties of the production function: first, ̇𝑐 = 0 if there is a value 𝑘 that
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solves the equation 𝑓 ′(𝑘) = 𝜌; second, because 𝜌 > 0 is finite and 𝑓 ′(𝑘) ∈ (0, ∞) then there is at
least one value for 𝑘 that solves that equation; at last, because the function 𝑓(.) is globally strictly
concave then 𝑓 ′(𝑘) is monotonously decreasing which implies that the solution is unique.

Characterizing the steady states In order to characterize the steady states, we find the Ja-
cobian of system (7.4)-(7.5), is

𝐷(𝑘,𝑐)F(𝑘, 𝑐) = ( 𝑓 ′(𝑘) −1
𝜂𝑐𝑓″(𝑘) 𝜂 (𝑓 ′(𝑘) − 𝜌) .) (7.6)

The eigenvalues of 𝐷(𝑘,𝑐)F(𝑘, 𝑐) evaluated at steady state (𝑘̄, ̄𝑐) = (0, 0) are

𝜆0
𝑠 = 𝜂(𝑓 ′(0) − 𝜌) = +∞,

𝜆0
𝑢 = 𝑓 ′(0) = +∞,

  which means that this steady state is singular (see chapter 8). This is a consequence of the fact
that 𝑓(𝑘) is not locally Lipschitz close to 𝑘 = 0.

For steady state (𝑘̄, ̄𝑐) = (𝑘∗, 𝑐∗), the trace and the determinant of the Jacobian are

trace(𝐷(𝑘,𝑐)F(𝑘∗, 𝑐∗)) = 𝜌 > 0, det(𝐷(𝑘,𝑐)𝐹(𝑘∗, 𝑐∗)) = 𝜂𝑐∗𝑓″(𝑘∗) < 0

  and the eigenvalues are

𝜆∗
𝑠 = 𝜌

2 − ((𝜌
2)

2
−  𝜂𝑐∗𝑓″(𝑘∗))

1
2

< 0, 𝜆∗
𝑢 = 𝜌

2 + ((𝜌
2)

2
−  𝜂𝑐∗𝑓″(𝑘∗))

1
2

> 0

  satisfy the relationships
𝜆∗

𝑠 + 𝜆∗
𝑢 = 𝜌, 𝜆∗

𝑠𝜆∗
𝑢 = 𝜂𝑐∗𝑓″(𝑘∗) < 0.

  The steady state (𝑘∗, 𝑐∗) is also hyperbolic and it is a saddle-point. The intuition behind this
property is transparent when we look at the expression for the determinant: the mechanism gen-
erating stability is related to the existence of decreasing marginal returns in producion. Because
capital accumulation is equal to savings, and savings sustains future increases in consumption by in-
creasing production, the existence of decreasing marginal returns implies that the marginal increase
in production will tend to zero thus stopping the incentives for future capital accumulation.

As the Jacobians of system (7.4)-(7.5), evaluated at every steady state, does not have eigenvalues
with zero real parts both steady states are hyperbolic and there are no local bifurcation points.

In addition, from the Grobman-Hartmann theorem the system (7.4)-(7.5) can be approximated
by a (topologically equivalent) linear system in the neighborhood of every steady state.

Let us consider the steady state (𝑘∗, 𝑐∗). As the Jacobian in this case is

𝐷(𝑘,𝑐)F(𝑘∗, 𝑐∗) = ( 𝜌 −1
𝜂𝑐∗𝑓″(𝑘∗) 0 )
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 we can consider the variational system

(𝑘̇
̇𝑐) = ( 𝜌 −1

𝜂𝑐∗𝑓″(𝑘∗) 0 ) (𝑘 − 𝑘∗

𝑐 − 𝑐∗ )

as giving the approximated dynamics in the neighborhood of the steady state  (𝑘∗, 𝑐∗).
Because

𝐷(𝑘,𝑐)F(𝑘∗, 𝑐∗) − 𝜆∗
𝑠I2 = ( 𝜌 − 𝜆∗

𝑠 −1
𝜂𝑐∗𝑓″(𝑘∗) −𝜆∗

𝑠
) = ( 𝜆∗

𝑢 −1
𝜆∗

𝑠𝜆∗
𝑢 −𝜆∗

𝑠
)

  we get the eigenvector associated to 𝜆∗
𝑠

P∗
𝑠 = (1, 𝜆∗

𝑢)⊤.

  This implies that the stable eigenspace of the linearized ODE,

ℰ𝑠 = { (𝑘, 𝑐) ∈ 𝑁 ∗ ∶ 𝑐 = 𝜆∗
𝑢𝑘} 

  gives the locus of points in the domain, wich are tangent to the local stable manifold for the
original ODE (7.4)-(7.5)

𝒲𝑠
𝑙𝑜𝑐 = { (𝑘, 𝑐) ∈ 𝑁 ∗ ∶ lim

𝑡→∞
(𝑘(𝑡), 𝑐(𝑡)) = (𝑘∗, 𝑐∗)} 

  where 𝑁 ∗ = { (𝑘, 𝑐) ∈ ℝ2
+ ∶ ||(𝑘, 𝑐) − (𝑘∗, 𝑐∗)|| < 𝛿} for a small 𝛿.

Global invariants We can prove that there is an heteroclinic orbit connecting steady states
(0, 0) and (𝑘∗, 𝑐∗). Furthermore, the points in that orbit belong to the stable manifold

𝒲𝑠 = { (𝑘, 𝑐) ∈ ℝ2
+ ∶ lim

𝑡→∞
(𝑘(𝑡), 𝑐(𝑡)) = (𝑘∗, 𝑐∗)},  

  and take the form 𝑐 = ℎ(𝑘). Although we cannot determine explicitly the function ℎ(.) we can
prove that it exists (see Figure 7.4).

We already know that the steady state (0, 0) is an unstable node, which means that any small
deviation will set a diverging path, and, because steady state (𝑘∗, 𝑐∗) is a saddle point there is one
unique path converging to it. There is an heteroclinic orbit if this path starts from from (0, 0). In
order to prove this is the case we can consider a ”trapping area” 𝑇 = { (𝑘, 𝑐) ∶ 𝑐 ≤ 𝑓(𝑘), 0 ≤ 𝑘 ≤ 𝑘∗},
where the isoclines 𝑘̇ = 0 and ̇𝑐 = 0 define the boundaries 𝑆1 = { (𝑘, 𝑐) ∶ 𝑐 = 𝑓(𝑘), 0 ≤ 𝑘 ≤ 𝑘∗} and
𝑆2 = {(𝑘, 𝑐) ∶ 0 ≤ 𝑐 ≤ 𝑐∗, 𝑘 = 𝑘∗}. We can see that all the trajectories coming from inside will
exit 𝑇 : first, the trajectories that cross 𝑆1 will exit 𝑇 because 𝑘̇|𝑆1

= 0 and ̇𝑐|𝑆1
= 𝜂𝑐(𝑓 ′(𝑘) − 𝜌) =

𝜂𝑓(𝑘)(𝑓 ′(𝑘) − 𝑓 ′(𝑘∗)) > 0 because 𝑓 ′(𝑘) > 𝑓 ′(𝑘∗) for 𝑘 < 𝑘∗, second all trajectories that cross 𝑆2
will exit 𝑇 because 𝑘̇|𝑆2

= 𝑓(𝑘∗) − 𝑐 = 𝑐∗ − 𝑐 > 0 and ̇𝑐|𝑆2
= 0.
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Figure 7.4: Heteroclinic orbit in the Ramsey mode

Comparative dynamics Let us consider the steady state (𝑘∗, 𝑐∗). As we saw that it is an
hyperbolic point, small perturbations by a parameter will not change the local dynamic properties
of the steady state, only its quantitative level. Therefore, we can perform a comparative dynamics
exercise in its neighborhood.

Assume we start at a steady state and introduce a small change in 𝜌. As the steady state is a
function of 𝜙, this means that, after the change, the steady state will move and the initial point
is not a steady state. That is we can see it as an arbitrary initial point out of the (new) steady
state. From hyperbolicity, the new steady state is still a saddle point, which means that the small
perturbation will generate unbounded orbits unless there is a ”jump” to the new stable manifold
associated to the new steady state. This is the intuition behind the comparative dynamics exercise
in most perfect foresight macro models (see ? and ?) that we illustrate next. We basically assume
that variable 𝑘 is continuous in time (it is pre-determined) and that 𝑐 is piecewise continuous in
time (it is non-predetermined).

Formally, as we also saw that it is a function of the rate of time preference, let us introduce a
permanent change in its value from 𝜌 to 𝜌 + 𝑑𝜌. This will introduce a time-dependent change in
the two variables, from (𝑘∗, 𝑐∗) to (𝑘(𝑡), 𝑐(𝑡)) where 𝑘(𝑡) = 𝑘∗ +𝑑𝑘(𝑡) and 𝑐(𝑡) = 𝑐∗ +𝑑𝑐(𝑡). In order
to find (𝑑𝑘(𝑡), 𝑑𝑐(𝑡)) we make a first-order Taylor expansion on (𝑘, 𝑐) generated by 𝑑𝜌 to get

(𝑘̇
̇𝑐) = 𝐷(𝑘,𝑐)F(𝑘∗, 𝑐∗) (𝑑𝑘(𝑡)

𝑑𝑐(𝑡)) + 𝐷𝜌F(𝑘∗, 𝑐∗)𝑑𝜌 (7.7)

  where 𝐷𝜌F(𝑘∗, 𝑐∗) = (0, −𝜂𝑐∗)⊤. This is a linear planar non-homogeneous ODE.
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From 𝑘̇ = ̇𝑐 = 0 we can find the long-run multipliers

(𝜕𝜌𝑘∗

𝜕𝜌𝑐∗) = ⎛⎜⎜⎜
⎝

𝑑𝑘∗

𝑑𝜌
𝑑𝑐∗

𝑑𝜌

⎞⎟⎟⎟
⎠

= −(𝐷(𝑘,𝑐)F(𝑘∗, 𝑐∗))
−1

𝐷𝜌F(𝑘∗, 𝑐∗),

  that is

(𝜕𝜌𝑘∗

𝜕𝜌𝑐∗) = ( 𝜌 −1
𝜂𝑐∗𝑓″(𝑘∗) 0 )

−1

( 0
𝜂𝑐∗) .

Then 𝜕𝜌𝑘∗ = 1
𝑓″(𝑘∗) < 0 and 𝜕𝜌𝑐∗ = 𝜌𝜕𝜌𝑘∗ < 0. A permanent unanticipated change in 𝜌 will

reduce the long run capital stock and consumption level.
We are only interested in the trajectories that converge to the new steady state after a pertur-

bation, 𝑘∗ + 𝜕𝜌𝑘∗𝑑𝜌 and 𝑐∗ + 𝜕𝜌𝑐∗𝑑𝜌, that is a saddle point. In order to make sure this is the case,
we solve the variational system for the saddle path to get

(𝜕𝜌𝑘(𝑡)
𝜕𝜌𝑐(𝑡)) = (𝜕𝜌𝑘∗

𝜕𝜌𝑐∗) + 𝑥 ( 1
𝜆∗

𝑢
) 𝑒𝜆∗

𝑠𝑡,

  where 𝑥 is a positive arbitrary element. If we assume that the variable 𝑘 is pre-determined, that is
it can only be changed in a continuous way from the initial steady state value 𝑘∗, we set 𝜕𝜌𝑘(0) = 0.
Then, from

𝜕𝜌𝑘(0) = 𝜕𝜌𝑘∗ + 𝑥 = 0 ⇒ 𝑥 = −𝜕𝜌𝑘∗

  At last we obtain the short-run multipliers

𝜕𝜌𝑘(𝑡) = 1
𝑓″(𝑘∗) (1 − 𝑒𝜆∗

𝑠𝑡)

𝜕𝜌𝑐(𝑡) = 1
𝑓″(𝑘∗) (𝜌 − 𝜆𝑢 𝑒𝜆∗

𝑠𝑡)

  for 𝑡 ∈ [0, ∞). In particular we get the impact multipliers, for 𝑡 = 0
𝜕𝜌𝑘(0) = 0
𝜕𝜌𝑐(0) = 𝜕𝜌𝑘∗𝜆𝑠 > 0

  which quantify the ”jump” to the new stable eigenspace, and the long-run multipliers

lim
𝑡→∞

𝜕𝜌𝑘(𝑡) = 𝜕𝜌𝑘∗ < 0
lim

𝑡→∞
𝜕𝜌𝑐(𝑡) = 𝜌𝜕𝜌𝑘∗ = 𝜕𝜌𝑐∗ < 0.

  Therefore, on impact consumption increases, which reduces capital accumulation, which reduces
again consumption through time. The process stops because the reduction in the per-capita stock
will increase marginal productivity which reduces the incentives for further reduction in consump-
tion.

Observe also that we should have a ”jump” to the stable manifold to have convergence towards
the new steady state. As we have determined convergence to the steady state within the stable
eigenspace of the variational system, the trajectory we have determined is qualitatively but not
quantitatively exact.
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7.2.2 The Skiba (1978) model

 
In this section we present a explicitly specified version of the Skiba (1978) model. The model

has the same structure of the Ramsey model in which the technology is represented nit by a concave
production function but by a concave-convex production function from subsection 7.1.2. 

The MHDS is
𝑘̇  = 𝑓(𝑘, 𝐵) − 𝑐 − 𝛿 𝑘

̇𝑐  = 𝑐
𝜎   (𝑓𝑘(𝑘, 𝐵) − 𝜌 − 𝛿 𝑘)

where the production function is

𝑓(𝑘, 𝐵) = 𝐴 𝑘𝛼  + 𝑘3

2 (𝑘3 + 𝐵3) ,

and the marginal return to capital is

𝑓𝑘(𝑘, 𝐵) = 𝛼 𝐴 𝑘𝛼−1  3 𝐵3 𝑘2

2 (𝑘3 + 𝐵3)4 ).

  As in the Ramsey model, the non-zero steady state levels for the capital stock is

𝑘̄  ∈ { 𝑘 > 0 ∶ 𝑓𝑘(𝑘, 𝐵) = 𝜌 + 𝛿}

  For intermediate values of 𝐵 we can have three steady states (see panel (a) of Figure 7.5). If we
compare to the non-optimizing version of the model from subsection (7.1.2) we can see that the
steady state stock of capital is determined from an arbitrage condition and not from the equilibrium
between savings and investment for a stationaary capital. This means that the steady state capital
stock is determined in efficiency terms. The macroeconomic balance condition determines the
steady state consumption level, instead.

Panel (b) of Figure 7.5 displays the bifurcation diagram and panel (c) the phase diagram for
intermediate values for 𝐵.

As for the ”ad-hoc” model in section 7.1.2 there are again three steady states. However the two
extreme steady states are now Ramsey-like saddle points and the intermediate case is an unstable
focus.

However, differently from the ”ad-hoc” model the separation between the convergence to the
lower and upper steady states is done through the stable manifolds passing through those steady
states. Those two curves can be seen as heteroclinic orbits connecting the intermediate steady
states to one of those two. This implies that given an initial level for the capital stock coincident
with the intermediate steady states, there are three possible paths, depending on the initial level of
consumption: first, if 𝑐 is at the steady state level the capital stock will remain stationary, second,
if it is lower there will be convergence to the lower steady state, and, third, if it is higher then there
will be convergence to the higher steady state. There are two vertical curves, called DNS-curve
(named after ? and Skiba (1978)), which define an interval in which if the initial capital is within
those boundaries it there are multiple optimal trajectories, but if it is outside that interval, then
there will be convergence to only one steady state.
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(a) Steady state condition 𝑓𝑘(𝑘, 𝐵) = 𝜌 + 𝛿
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(b) Bifurcation diagram
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(c) Phase diagram for intermediate 𝐵

Figure 7.5: Phase diagram for the Skiba (1978) model

7.2.3 The ?: bifurcations

  
Next we consider an extension of ?. This is a non-linear endogenous growth model with exter-

nalities. In this case we will see that, when a steady state exists, it can have different types of local
stability properties depending on the parameters.

We introduce two externalities a (flow) externality on preferences and a (stock) production
externality.

Preference externalities are introduced by assuming that the utility function is 𝑢 = 𝑢(𝑐, 𝐶),
where 𝑐 household’s cosumption and 𝐶 represents aggregate consumption. This means that the
value of consuming 𝑐, at the household level, depends on the. aggregate consumption. This

encompasses two cases: (i) the case in which 𝐶 decreases utility, 𝑢𝑐𝐶(𝑐, 𝐶) = 𝜕2𝑢
𝜕𝑐𝜕𝐶 < 0, which

is typical the case of function going along with the Joneses in which the utility depends on the
difference between the household consumption and the aggregate; (ii) the case in which 𝐶 decreases
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utility, 𝑢𝑐𝐶(𝑐, 𝐶) = 𝜕2𝑢
𝜕𝑐𝜕𝐶 > 0 where aggregate consumption is a public good 𝐶, in particular if 𝐶

is directly or indirectly dependent of natural resources or the level of some infrastructures which
can be accessed by households.

Technological externalities are introduced by assuming that the production function is 𝑦 =
𝑓(𝑘, 𝐾) where 𝑘 is the capital stock at the firm’s level and 𝐾 is the aggregate capital stock. We
can assume that both the level of production and the marginal productivity of capital depend
on the size of the economy which is measured by 𝐾. This also encompasses two cases: (i) the

case in which 𝐾 increases marginal productivity, 𝑓𝑘𝐾(𝑘, 𝐾) = 𝜕2𝑓
𝜕𝑘𝜕𝐾 > 0, in which agglomeration

generates external economies to the firm with capital 𝑘, which is the case studied in ?; (ii) the case

in which 𝐾 decreases marginal productivity, 𝑓𝑘𝐾(𝑘, 𝐾) = 𝜕2𝑓
𝜕𝑘𝜕𝐾 < 0 where the aggregate size of

𝐾 generates congestion.
Furthermore we assume that households are homogeneous and have a mass equal to one.

Behavior of the representative household

The problem for the representative household is

max
𝑐

∫
+∞

0

(𝑐𝐶𝑏)1−𝜃 − 1
1 − 𝜃 𝑒−𝜌𝑡𝑑𝑡

subject to

𝑘̇ = 𝐴 𝑘𝛼 𝐾𝛽 − 𝑐
𝑘(0) = 𝑘0,

lim
𝑡→∞

𝑘(𝑡)𝑒−𝜌𝑡  ≥ 0,

where 𝜃 > 0, 0 < 𝛼 < 1 and 𝑏 and 𝛽 can be any real number.
Observe that both the utility function 𝑢(⋅) and the production function 𝑓(⋅) are increasing and

concave as regards the households decision variables 𝑐 and 𝑘. Furthermore, because

𝑢𝑐𝐶 = 𝑏(1 − 𝜃)𝑐−𝜃 𝐶𝑏(1−𝜃)−1, and 𝑓𝑘𝐾 = 𝛼 𝛽 𝑘𝛼−1 𝐾𝛽−1,

  if 𝑏(1 − 𝜃) > 0 (𝑏(1 − 𝜃) < 0) there is a positive (negative) consumption externality, and if 𝛽 > 0
(𝛽 < 0) there is a positive (negative) production externality.

The Hamiltonian, at the household level, is

𝐻 = 𝑐1−𝑎𝐶𝑏

1 − 𝑎 + 𝑞 (𝐴𝑘𝛼𝐾𝛽 − 𝑐),

where 𝑞 is the co-state variable, and the necessary (and sufficient) first order conditions are

𝑐−𝑎𝐶𝑏 = 𝑞
̇𝑞 = 𝑞 (𝜌 − 𝛼𝐴𝑘𝛼−1𝐾𝛽)

lim
𝑡→+∞

𝑞(𝑡) 𝑘(𝑡) 𝑒−𝜌𝑡 = 0
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  together with the constraints.
We can represent the solution by the system of ODE  

𝑘̇ = 𝐴 𝑘𝛼 𝐾𝛽 − 𝑐  (7.8a)

̇𝑐 = 𝑐
𝜃(𝛼𝐴𝑘𝛼−1𝐾𝛽 + 𝑏(1 − 𝜃)

̇𝐶
𝐶 − 𝜌)  (7.8b)

General equilibrium

The general equilibrium is defined by the path (𝐶(𝑡), 𝐾(𝑡))𝑡∈ℝ+
such that: (1) the representative

consumer solves his problem, (2) there are micro-macro consistency conditions and (3) market
clearing.

In this economy the micro-macro consistency conditions are 𝐶 = 𝑐 e 𝐾 = 𝑘. This means that,
although agents do not decide on the macro variables, the level of the macro variables should be
consistent with the aggregation of individual agents. As we assume agents are homogeneous then
the macro variables should be equal to the household level variables if we assume that the mass of
agents is equal to one.

Therefore the DGE is defined by the trajectories {𝑐(𝑡), 𝑘(𝑡)}+∞
𝑡=0 which solve the system  

𝑘̇ = 𝐴 𝑘𝛼+𝛽 − 𝑐  (7.9a)

̇𝑐 = 𝑐
𝜃 + 𝑏 (𝜃 − 1)(𝛼𝐴𝑘𝛼+𝛽−1 − 𝜌)  (7.9b)

Steady state and local dynamics

Depending on the value of the parameters, we have two cases:

1. if 𝛼 + 𝛽 = 1 there is not a steady state. In this case the solution is a balanced growth path

2. if 𝛼 + 𝛽 ≠ 1 there is only a steady state such that both variables are positive.

 
If 𝛼 + 𝛽 ≠ 1 then there is a unique steady state in R2

++

𝑘̄ = (𝛼𝐴
𝜌  )

1
1−(𝛼+𝛽)

̄𝑐 = 𝐴𝑘𝛼+𝛽.

The Jacobian of system (7.9a)-(7.9b), evaluated at the steady state (again we are assuming that
𝛼 + 𝛽 ≠ 1) is

𝐽 ∶=
⎛⎜⎜⎜
⎝

𝜌 (𝛼 + 𝛽)
𝛼 −1

𝜌2 (𝛼 + 𝛽 − 1)
𝛼 (𝜃 + 𝑏(𝜃 − 1) 0

⎞⎟⎟⎟
⎠
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Figure 7.6: Bifurcation diagram in (𝑏, 𝛽) for and 0 < 𝛼 < 1, 𝜃 > 1. The red lines separate negative
from positive externalities at the consumption level (the vertical line) and at the production level
(horizontal line).

which has trace, determinant

trace(𝐽) = 𝜌(𝛼 + 𝛽)
𝛼

det (𝐽) = 𝜌2 (𝛼 + 𝛽 − 1)
𝛼 (𝜃 + 𝑏(𝜃 − 1)

 
Comparing to a Ramsey model we see that the trace is different from 𝜌 and both the trace and

the determinant can have any sign:

1. the trace can have any sign and is different, if 𝛽 ≠ 0 from the trace of the Jacobian in a
Ramsey-like model: trace(𝐽) > 0 if 𝛽 > −𝛼 and trace(𝐽) ≤ 0 if 𝛽 > −𝛼

2. the determninant can have any sign: in particular det (𝐽) > 0 if sign(𝛼 + 𝛽 − 1) = sign(𝜃 +
𝑏(𝜃 − 1), det (𝐽) < 0 if sign(𝛼 + 𝛽 − 1) ≠ sign(𝜃 + 𝑏(𝜃 − 1) and det (𝐽) = 0 if 𝛼 + 𝛽 = 1, which
is a case in which there is a BGP.

Characterization of equilibrium dynamics

 
The following cases are possible (see Figure 7.6):
Determinate equilibrium: this is associated to a steady state which is a saddle point, because

there is a unique trajectory converging to the steady state. This case occurs if 𝑏(𝜃 − 1) > −𝜃 and
𝛽 < 1 − 𝛼 or 𝑏(𝜃 − 1) < −𝜃 and 𝛽 > 1 − 𝛼. This means that determinacy can exist with several
types of combinations of externalities: (1) congestion in production, mild negative externalities in
consumption or positive externalities in consumption; (2) positive externalities in production and
negative externalities in consumption;
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Indeterminate equilibrium: there is an infinite number of trajectories converging to the
steady state if the steady state is a stable node or a stable focus. In this case expectations are
self-fulfilling, in which, even when expectations are not coordinated the economy converges to the
steady state. This case occurs only if 𝛼 + 𝛽 < 0 and 𝑏(𝜃 − 1) < −𝜃 < 0, which means there should
be congestion in production and negative externalities in consumption.

Balanced growth path: if 𝛼 + 𝛽 = 1, this case can occur with or without externalities in
consumption

Overdeterminate equilibrium: if the steady state is an unstable node or focus the equi-
librium will be reduced to the steady state. Any deviation from it will violate the transversality
condition and, therefore, cannot be an equilibrium (in the economic sense). This case would occur,
for instance, with high positive externalities in both consumption and production.

The Ramsey model will be a particular case in which the two red lines meet.
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