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Chapter 7

Introduction to functional calculus

7.1 Introduction

Functionals are fundamental objects in several fields in applied and theoretical economics. But
what is a functional ?

Consider a function of a real variable 𝑓 ∶ X → ℝ, and the set of functions 𝑓(⋅), ℱ in which
several additional properties are imposed. A functional, denoted by F[𝑓]  is a mapping of the
space of function ℱ, 𝑓 ∈ ℱ, into a number. F ∶ ℱ → ℝ.

We can call X an index-set. Index sets can be classified according to their internal hierarchy,
or according to the continuity of their elements. From the first perspective, there are two types
of index sets: they do not have an order structure (they are just a tagging device) or they have
an order structure (they are a vector space in which elements are ranked along some dimension, a
size, distance, etc). From the second perspective, there are also two types of index sets: discrete,
if X ⊆ ℕ the index set if finite-dimensional or countable, or continuous, if X ⊆ ℝ the index set is
infinite-dimensional.

In economics, commonly used continuous functionals over functions 𝑦 ∶ X → ℝ have the following
forms

F[𝑦]  = ∫
X
 𝑓(𝑥, 𝑦(𝑥)) 𝑑𝑥 (7.1)

  or
G[𝑦]  = 𝑔(∫

X
 𝑓(𝑥, 𝑦(𝑥)) 𝑑𝑥) (7.2)

  where 𝑔 are both functions with appropriate properties. Finite-dimensional discrete analog func-
tionals over 𝑦 ∶ X → ℝ are

F[𝑦]  = ∑
X

 𝑓(𝑦𝑥, 𝑥) or  G[𝑦] = 𝑔(∑
X

 𝑓(𝑦𝑥, 𝑥)).

Next we will mostly deal with the continuous case, and with sets 𝕏 that can be ordered or not.
As economic problems involve optimizing functionals, such as (7.1) or (7.2), that are constrained

or not by algebraic or functional side conditions, we need to use results from generalized calculus,
or, more generally from calculus and optimization over normed vector spaces.

4
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Observe that the simplest calculus of variation problem also involves maximizing a functional
of type

F[𝑦]  = ∫
X
 𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥)) 𝑑𝑥,

  where the integrand function, differently from functionals (7.1) or (7.2) also involves a derivative.
We leave calculus of variations problems to another chapter. In this chapter we consider mostly
”static” problems.

Next we present the main results from generalized calculus and use them to solve some infinite-
dimensional optimization problems. Section 7.2 presents some results on calculus of functionals (or
generalized calculus). Section 7.3 presents problems involving maximization of functionals.

7.2 Calculus of functionals

   
In this section we first present the concept of functional, or Gâteaux, derivative, apply it to

linear functionals in subsection 7.2.2. Extensions for functionals involving derivatives and multidi-
mensional functions can be found in subsections in subsections 7.2.4 and 7.2.5.

7.2.1 Functionals and functional derivative

 
A normed vector space is a vector space (a set of numbers, continuous functions, continuous

differentiable functions, bounded functions or distributions ) over which a norm is defined. An
operator as a mapping between two normed vector spaces.

In this chapter we are interested in operators between spaces of continuous functions and the
space of real numbers. We call these operator functionals.

Let 𝒴 be the set of functions 𝑦 mapping a continuous index set X to the set of real numbers ℝ.
In particular, we consider 𝒴  = 𝐶1(X), the set of continuous functions defined on X. Recall that a
function 𝑦(⋅) is continuous at point 𝑥0 ∈ X if lim𝑥→𝑥0

 𝑦(𝑥) = 𝑦(𝑥0) for 𝑥 for any neighborhood of
𝑥0. In particular, this means that the right and left limits are equal. that is 𝑦(𝑥+

0 ) = 𝑦(𝑥−
0 ) = 𝑦(𝑥0)

where 𝑦(𝑥−
0 ) = lim𝑥↑𝑥0

and 𝑦(𝑥+
0 ) = lim𝑥↓𝑥0

. Function 𝑦( ̇) is continuous if it is continuous to all
points 𝑥 ∈ X.

In this section we introduce functional F as a mapping, F ∶ 𝒴 → ℝ.
Consider the perturbation of function 𝑦 ∈ 𝒴 to 𝑦 + 𝑑𝑦 ∈ 𝒴. A variation of functional F is

defined as the change in the functional introduced by that perturbation

ΔF[𝑦]  = F[𝑦 + 𝑑𝑦] − F[𝑦].

As the functional range is a real number this means that ΔF[𝑦] is a reasl number as well.
In particular, the variation of the functional over the direction  ℎ ∈ 𝒴 is defined as

𝐷F[𝑦]  = F[𝑦 + 𝜖ℎ] − F[𝑦],
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where 𝜖 is a constant.

Definition 1.  The Gâteaux differential is defined as the variation of the functional in the
direction 𝜂 ∈ 𝒴 when the constant 𝜀 is infinitesimal 

𝐷𝜂(⋅)F[𝑦]  = lim
𝜀→0

F[𝑦 + 𝜀 𝜂] − F[𝑦]
𝜀 . (7.3)

 

Equivalently, a Taylor expansion yields 1

F[𝑦 + 𝜀 𝜂]  = F[𝑦]  + 𝐷𝜂(⋅)F[𝑦]𝜀 + 𝑜(𝜀2)

  In analogy to the case of finite-dimensional analysis2 it can be shown that the Gâteaux differential
is a linear functional of 𝜂(𝑥). If 𝑦 is a linear operator in a normed vector space, it is bounded and
we can invoke the Riesz-Frechet theorem (Riesz and Sz.-Nagy, 1955, p. 61) which states that if G[𝜂]
is a bounded operator in a inner-product space, then there is a 𝜁 such that G[𝜂] can be represented
by the inne product G[𝜂] = ∠𝜁, 𝜂∠ and by the mesure ‖G‖ = ‖𝜁‖. This means that the Gâteux
differential of a linear functional admits the representation

𝐷𝜂(⋅)F[𝑦]  = ∫
X
 𝑑(𝑥) 𝜂(𝑥) 𝑑𝑥.

Let 𝑦 be a distribution belonging to a space of distributions 𝒴3  we call Gâteaux derivative 
of the functional F[𝑦] at a point 𝑥 ∈ X, to the Gâteaux differential in which the perturbation is a
Dirac-𝛿 generalized function at a singular at the point 𝑥,

𝑑(𝑥) = 𝛿F[𝑦]
𝛿𝑦(𝑥) = ∫

X
 𝑑(𝑠) 𝛿(𝑠 − 𝑥) 𝑑𝑠.

 
1To see this observe that equation (7.3) is equivalent to

lim
𝜀→0

F[𝑦 + 𝜀𝜂] − F[𝑦]
𝜀 −𝐷𝜂(⋅)F[𝑦] = 0

and therefore, to

lim
𝜀→0

F[𝑦 + 𝜖𝜂] − F[𝑦] −𝐷𝜂(⋅)F[𝑦] 𝜀
𝜀 = 0.

Writing the numerator as 𝑔(𝜀), which is possible because a functional has its range in set ℝ, we can use the ”little-o”
notation, such that 𝑜(𝜀) = lim𝜀→0

𝑔(𝜀)
𝜀   = 0.

2This generalizes the concept of directional derivative in elementary calculus. Let 𝑓(y) = 𝑓(𝑦1,… , 𝑦𝑛) the
directional derivative in the direction given by the vector h  = (ℎ1,… ,ℎ𝑛)⊤ is  

𝐷ℎ𝑓(y) ≡ lim
𝜀→0

  𝑓(y + 𝜀h) − 𝑓(y)
𝜀 = ∑

𝑖
 𝜕𝑓(y)𝜕𝑦𝑖

ℎ𝑖

is a linear functional of h  = (ℎ1,… ,ℎ𝑛)⊤.
3This is the analog to a partial derivative in classical calculus. This is a type of possibly ad-hoc concept which is

used in mathematical physics and which is useful for our purposes. In particular it allows to determine elasticities of
substitution in a continuum setting. See next...
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Therefore, we can represent the Gâteaux diferential for the perturbation by function 𝜂 ∈ 𝒴 by
the linear functional

𝐷𝜂(⋅)F[𝑦] = ∫
X
  𝛿F[𝑦]
𝛿𝑦(𝑥) 𝜂(𝑥) 𝑑𝑥. (7.4)

 
We can extend the previous definitions, to second order variations. The second order varia-

tion of the functional F[𝑦], is

Δ2F[𝑦]  = Δ (ΔF[𝑦 + 𝑑1𝑦] − ΔF[𝑦]) = F[𝑦 + 𝑑1𝑦 + 𝑑2𝑦] − F[𝑦 + 𝑑2𝑦] − F[𝑦 + 𝑑1𝑦] + F[𝑦],

is the perturbation by 𝑑2 𝑦 ∈ 𝒴, of the perturbation of the functional by 𝑑1 𝑦 ∈ 𝒴.
The second-order Gâteaux differential of funcional F[𝑦] is defined as

𝐷𝜂1(⋅),𝜂2(⋅)F[𝑦] = lim
𝜀2→0

  lim
𝜀1→0

F[𝑦 + 𝜀1 𝜂1 + 𝜀2 𝜂2] − F[𝑦 + 𝜀2 𝜂2] − F[𝑦 + 𝜀1 𝜂1] − F[𝑦]
𝜀1 𝜀2

,

which represents the Gâteaux differential over direction 𝜂2 ∈ 𝒴, of Gâteaux differential over direction
𝑒𝑡𝑎1 ∈ 𝒴.

Using our previous results we can write the second-order ”crossed” Gâteaux differential as

𝐷𝜂1(⋅),𝜂2(⋅)F[𝑦] = ∫
X
 ∫

X
  𝛿2F[𝑦]
𝛿𝑦(𝑥) 𝛿𝑦(𝑥′) 𝜂1(𝑥) 𝜂2(𝑥

′) 𝑑𝑥 𝑑𝑥′,

and the second-order ”crossed” Gâteux derivative,

𝛿2F[𝑦]
𝛿𝑦(𝑥) 𝛿𝑦(𝑥′) , for  𝑥, 𝑥′ ∈ X

associated to perturbations 𝜂1(𝑥) and 𝜂2(𝑥).
We conjecture that there is symmetry

𝐷𝜂1(⋅),𝜂2(⋅)F[𝑦] = 𝐷𝜂2(⋅),𝜂1(⋅)F[𝑦].

 
The second-order ”own” Gâteaux differential as

𝐷2
𝜂(⋅)F[𝑦] = ∫

X
 ∫

X
  𝛿2F[𝑦]
𝛿𝑦(𝑥)2 𝜂(𝑥) 𝜂(𝑥′) 𝑑𝑥 𝑑𝑥′,

and the second-order ”own” Gâteux derivative,

𝛿2F[𝑦]
𝛿𝑦(𝑥)2 , for  𝑥 ∈ X

associated to perturbations 𝜂1(𝑥) and 𝜂2(𝑥).
Therefore a generalization of the second order Taylor expansion is

  F[𝑦 + 𝜀 𝜂]  = F[𝑦] + 𝐷𝜂(⋅)F[𝑦] 𝜀 +
1
2 𝐷2

𝜂(⋅)F[𝑦] 𝜀2 + 𝑜(𝜀3), (7.5)

where 𝐷2
𝜂(⋅)F[𝑦] ≡ 𝐷𝜂(⋅),𝜂(⋅)F[𝑦].

There are general properties of functionals  of one-dimensional functions of one variable,
that is 𝑦 ∈ 𝒴, 𝑦 ∶ X → ℝ, where F ∶ 𝒴 → ℝ.
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1. multiplication by a constant: let 𝑎 ∈ ℝ be a number, then 𝐷𝜂(⋅){𝑎F[𝑦]}  = 𝑎𝐷𝜂(⋅)F[𝑦]

2. sum of functionals: let F1[𝑦] and F2[𝑦] be two functionals, then 𝐷𝜂(⋅){ F1[𝑦] + F2[𝑦]}  =
𝐷𝜂(⋅)F1[𝑦] + 𝐷𝜂(⋅)F2[𝑦]

3. product rule: let F1[𝑦] and F2[𝑦] be two functionals, then 𝐷𝜂(⋅){ F1[𝑦] ⋅F2[𝑦]}  = {𝐷𝜂(⋅)F1[𝑦]}  ⋅
F2[𝑦] + {𝐷𝜂(⋅)F2[𝑦]}  ⋅ F1[𝑦]

4. chain rule: let 𝑓 ∶ ℝ → ℝ be a monotonic function and F1[𝑦] be a functional, then 𝐷𝜂(⋅){𝑓(F1[𝑦])}  =
𝑓 ′(F1[𝑦]) {𝐷𝜂(⋅)F[𝑦]}

7.2.2 Linear functionals

In this subsection we consider the following two types of functionals which are common in economics:
the linear functional

  F[𝑦]  = ∫
X
𝑓(𝑦(𝑥)) 𝑑𝑥, (7.6)

where we assume that function 𝑓(⋅) is a smooth function, i.e. 𝑓(⋅) ∈ 𝐶2(ℝ), and the integral exists,
and a functional which is a funtion of a linear functional

  G[𝑦]  = 𝑔(F[𝑦]) ≡ 𝑔(∫
X
𝑓(𝑦(𝑥)) 𝑑𝑥) (7.7)

where 𝑔(⋅) is also a 𝐶2(ℝ) function.
Using the definitions intruduced in the previou subsection, the generalized differential (in the

Gâteaux sense) of functional (7.6) is

  𝐷𝜂(⋅)F[𝑦]  = ∫
X

𝛿F[𝑦]
𝛿𝑦(𝑥) 𝜂(𝑥) 𝑑𝑥, (7.8)

  where the generalized derivative is

𝛿F[𝑦]
𝛿𝑦(𝑥) = 𝜕𝑓(𝑦(𝑥))

𝜕𝑦 , for each  𝑥 ∈ X.

The second-order generalized differential of (7.6) is

  𝐷2
𝜂(⋅)F[𝑦]  = ∫

X

𝛿2F[𝑦] 
𝛿𝑦(𝑥)2 𝜂(𝑥)2 𝑑𝑥 (7.9)

  where the second-order generalized derivative is

𝛿2F[𝑦]
𝛿𝑦(𝑥)2 = 𝜕2𝑓(𝑦)

𝜕𝑦2 , for each  𝑥 ∈ X.

Examples: The generalized derivatives for several functionals which are common in economics:

1. for F[𝑦] = ∫X  𝑎 𝑑𝑥, we have 𝛿F[𝑦]
𝛿𝑦(𝑥) = 𝛿2F[𝑦]

𝛿𝑦(𝑥)2 = 0; 
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2. for F[𝑦] = ∫X  𝑎 𝑦(𝑥) 𝑑𝑥, we have 𝛿F[𝑦]
𝛿𝑦(𝑥) = 𝑎 and 𝛿2F[𝑦]

𝛿𝑦(𝑥)2 = 0;

3. for F[𝑦] = ∫X  𝑦(𝑥)2 𝑑𝑥, we have 𝛿F[𝑦]
𝛿𝑦(𝑥) = 2𝑦(𝑥) and 𝛿2F[𝑦]

𝛿𝑦(𝑥)2 = 2;

4. for F[𝑦] = ∫X  𝑒𝑦(𝑥) 𝑑𝑥, we have 𝛿F[𝑦]
𝛿𝑦(𝑥) = 𝛿2F[𝑦]

𝛿𝑦(𝑥)2 = 𝑒𝑦(𝑥);

5. for F[𝑦] = ∫X  𝑦(𝑥)𝜃 𝑑𝑥, we have 𝛿F[𝑦]
𝛿𝑦(𝑥) = 𝜃 𝑦(𝑥)𝜃−1 and 𝛿2F[𝑦]

𝛿𝑦(𝑥)2 = 𝜃 (𝜃 − 1) 𝑦(𝑥)𝜃−2;

6. and for F[𝑦] = ∫X  𝑒𝑔(𝑦(𝑥)) 𝑑𝑥, we have 𝛿F[𝑦]
𝛿𝑦(𝑥) = 𝑔′(𝑦(𝑥)) 𝑒𝑔(𝑦(𝑥)) and 𝛿2F[𝑦]

𝛿𝑦(𝑥)2 = 𝑔″(𝑦(𝑥)) 𝑒𝑔(𝑦(𝑥))+
(𝑔′(𝑦(𝑥)))2 𝑒𝑔(𝑦(𝑥)).

The generalized differential of functional (7.7) is

 𝐷𝜂(⋅)G[𝑦]  = ∫
X

𝛿G[𝑦]
𝛿𝑦(𝑥) 𝜂(𝑥) 𝑑𝑥 (7.10)

  where the generalized derivative is
𝛿G[𝑦]
𝛿𝑦(𝑥) = 𝑔′(F[𝑦]) 𝜕𝑓(𝑦(𝑥))𝜕𝑦 , for each  𝑥 ∈ X.

The second-order generalized differential of (7.7) is

  𝐷2
𝜂(⋅)G[𝑦]  = ∫

X

𝛿2G[𝑦] 
𝛿𝑦(𝑥)2 𝜂(𝑥)2 𝑑𝑥 (7.11)

  where the second-order generalized derivative is

𝛿2G[𝑦]
𝛿𝑦(𝑥)2 = 𝑔″(F[𝑦]) (𝜕𝑓(𝑦(𝑥))𝜕𝑦 )

2
+ 𝑔′(F[𝑦]) 𝜕

2𝑓(𝑦(𝑥))
𝜕𝑦2 , for each  𝑥 ∈ X., for each  𝑥 ∈ X.

Example:

1. for G[𝑦] = (∫X  𝑦(𝑥)𝜃 𝑑𝑥)
1
𝜃
, we have 𝛿G[𝑦]

𝛿𝑦(𝑥) = (∫X  𝑦(𝑥)𝜃 𝑑𝑥)
1−𝜃
𝜃 𝑦(𝑥)𝜃−1 = (G[𝑦]

𝑦(𝑥))
1−𝜃

.

 

”Spike” perturbations

In particular, for a ”spike” perturbation at point 𝑥 = 𝑥0, represented by a Dirac’-delta generalized
function 𝛿(𝑥 − 𝑥0) 4  we have a functional generalization to the partial derivative5

𝐷𝛿(𝑥0)F[𝑦] = ∫
X
  𝛿F[𝑦]
𝛿𝑦(𝑥) 𝛿(𝑥 − 𝑥0) 𝑑𝑥 = 𝛿F[𝑦]

𝛿𝑦(𝑥0)
= 𝑓 ′(𝑦(𝑥0)). (7.12)

4Dirac-𝛿 is not a function but a distribution. It has the following properties

𝛿(𝑥 − 𝑥0) =
⎧{
⎨{⎩

0 if  𝑥 ≠ 𝑥0

∞ if  𝑥 = 𝑥0
,

∫∞
−∞  𝛿(𝑥)𝑑𝑥 = 1 and ∫∞

−∞  𝛿(𝑥 − 𝑦0) 𝑦(𝑥) 𝑑𝑥 = 𝑦(𝑥0).
5In mathematical physics this is sometimes called as a Volterra derivative.
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7.2.3 Functionals for two-dimensional functions

The previous definitions can be extended to functionals over two-dimensional functions of one
variable. In this section we consider functions y ∈ 𝒴, where y ∶ X ⊆ ℝ → ℝ2, are of type
y(𝑥) = (𝑦1(𝑥), 𝑦2(𝑥))⊤, and functionals F ∶ 𝒴 → ℝ.

In particular, we restrain to linear functionals of type

  F[y]  = ∫
X
𝑓(𝑥, 𝑦1(𝑥), 𝑦2(𝑥)) 𝑑𝑥. (7.13)

 
In this case, for a perturbation 𝜂𝜂𝜂(𝑥) = (𝜂1(𝑥), 𝜂2(𝑥))⊤ ∈ 𝒴, the Gâteaux differential is defined

𝐷𝜂𝜂𝜂(⋅)F[y]  = lim
𝜀→0

 F[y + 𝜀𝜂𝜂𝜂] − F[𝑦]
𝜀 ,

  which implies that the functional (7.13)  has the differential

 𝐷𝜂𝜂𝜂(⋅)F[y] = ∫
X
⟨ 𝛿F[y]
𝛿y(𝑥) ,𝜂𝜂𝜂(𝑥)⟩ 𝑑𝑥

= ∫
X
 ( 𝛿F[y]

𝛿𝑦1(𝑥)
𝜂1(𝑥) +

𝛿F[y]
𝛿𝑦2(𝑥)

𝜂2(𝑥)) 𝑑𝑥,
(7.14)

  where the generaiized gradient is

𝛿F[y]
𝛿y(𝑥) =

⎛⎜⎜⎜⎜⎜⎜
⎝

  𝛿F[y]
𝛿𝑦1(𝑥)
𝛿F[y]
𝛿𝑦2(𝑥)

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝜕𝑓(𝑥, 𝑦1(𝑥), 𝑦2(𝑥))
𝜕𝑦1(𝑥)

𝜕𝑓(𝑥, 𝑦1(𝑥), 𝑦2(𝑥))
𝜕𝑦2(𝑥)

⎞⎟⎟⎟⎟⎟⎟
⎠

.

Example:
The functional F[y] = ∫X 𝑦1(𝑥)𝛼 𝑦2(𝑥)1−𝛼 𝑑𝑥, for a number 𝛼, then the generalized gradient is

𝛿F[y]
𝛿y(𝑥) = (  𝛼𝑦1(𝑥)𝛼−1 𝑦2(𝑥)1−𝛼

(1 − 𝛼)𝑦1(𝑥)𝛼 𝑦2(𝑥)−𝛼). 

7.2.4 Functionals involving derivatives

 
In this subseection it is considered again functionals F ∶ 𝒴  → ℝ where 𝒴 is the space of uni-

dimensional functions 𝑦 ∶ X → ℝ, where the integrand function 𝑓(.) is a continuous and continuously
differentiable function of 𝑦 and of its first and second derivatives. Their functional derivatives are
appear in calculus of variations and optimal control problems.

First-order derivatives
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The following linear functional is commonly found in economics, in particular in calculus of
variations problems,

  F[𝑦]  = ∫
X
𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥)) 𝑑𝑥, (7.15)

where function 𝑓(⋅) ∶ X × Y × Y → ℝ is assumed to be continuous and continuous differentiable in
(𝑦, 𝑦′).
Lemma 1.   The (first-order) generalized differential is

 𝐷𝜂(⋅)F[𝑦]  = ∫
X
  𝛿F[𝑦]
𝛿𝑦(𝑥)  𝜂(𝑥) 𝑑𝑥 +∫

X

𝜕𝑓
𝜕𝑦′ (𝑥) 𝜂(𝑥) (7.16)

  where the generalized derivative is

  𝛿F[𝑦]
𝛿𝑦(𝑥) = 𝜕𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥))

𝜕𝑦 − 𝑑
𝑑𝑥 (

𝜕𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥))
𝜕𝑦′(𝑥) ) (7.17)

and
∫

X
  𝜕𝑓𝜕𝑦′ (𝑥) 𝜂(𝑥) =

𝜕𝑓(𝑥1, 𝑦(𝑥1), 𝑦′(𝑥1))
𝜕𝑦′   𝜂(𝑥1) −

𝜕𝑓(𝑥0, 𝑦(𝑥0), 𝑦′(𝑥0))
𝜕𝑦′ 𝜂(𝑥0),

  if X = [𝑥0, 𝑥1] is a closed set, or

∫
X
  𝜕𝑓𝜕𝑦′ (𝑥) 𝜂(𝑥) = lim

𝑥↑𝑥1
 𝜕𝑓(𝑥)𝜕𝑦′ 𝜂(𝑥) − lim

𝑥↓𝑥0
 𝜕𝑓(𝑥)𝜕𝑦′ 𝜂(𝑥)

  if X = (𝑥0, 𝑥1) is an open set.

Proof. We introduce not only the perturbation 𝑦(𝑥) → 𝑦(𝑥) + 𝜀𝜂(𝑥), but alo the perturbation
𝑦′(𝑥) → 𝑦′(𝑥) + 𝜀𝜂′(𝑥). From equation (7.14) we have now

𝐷𝜂(⋅)F[𝑦]  = ∫
X
 ( 𝛿F[𝑦]

𝛿𝑦(𝑥)  𝜂(𝑥) +
𝛿F[𝑦]
𝛿𝑦′(𝑥)  𝜂

′(𝑥)) 𝑑𝑥

= ∫
X
  𝛿F[𝑦]
𝛿𝑦(𝑥)  𝜂(𝑥) 𝑑𝑥 +∫

X
  𝛿F[𝑦]
𝛿𝑦′(𝑥)  𝜂

′(𝑥) 𝑑𝑥

= ∫
X
 𝜕𝑓(𝑥, 𝑦(𝑥), 𝑦

′(𝑥))
𝜕𝑦   𝜂(𝑥) 𝑑𝑥 +∫

X
 𝜕𝑓(𝑥, 𝑦(𝑥), 𝑦

′(𝑥))
𝜕𝑦′   𝜂′(𝑥) 𝑑𝑥

  Integrating the second integral by parts yields

∫
X
 𝜕𝑓(𝑥, 𝑦(𝑥), 𝑦

′(𝑥))
𝜕𝑦′   𝜂′(𝑥) 𝑑𝑥 = ∫

X
 𝜕𝑓(𝑥, 𝑦(𝑥), 𝑦

′(𝑥))
𝜕𝑦′ 𝜂(𝑥) −∫

X
  𝑑
𝑑𝑥 (

𝜕𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥))
𝜕𝑦′ ) 𝜂(𝑥) 𝑑𝑥,

  that, upon substitution, yields the differential (7.16).

Second-order derivatives

 
Now consider the integral where function 𝑓 depends on the first and second derivatives of 𝑦,

  F[𝑦]  = ∫
X
𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥), 𝑦″(𝑥)) 𝑑𝑥. (7.18)

where we assume function 𝑓(⋅) is continuous and continuous differentiable at least up to the second
order in (𝑦, 𝑦′, 𝑦″).
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Lemma 2. The Gâteaux differential of functional (7.18) is

 𝐷𝜂(⋅)F[𝑦]  = ∫
X
  𝛿F[𝑦]
𝛿𝑦(𝑥)  𝜂(𝑥) 𝑑𝑥 +∫

X
 𝜕𝑓(𝑥)𝜕𝑦′ 𝜂(𝑥) +∫

X

𝜕𝑓(𝑥)
𝜕𝑦″ 𝜂′(𝑥) −∫

X
  𝑑
𝑑𝑥(

𝜕𝑓(𝑥)
𝜕𝑦′ ) 𝜂(𝑥) (7.19)

  where we denote 𝐹(𝑥) = 𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥), 𝑦″(𝑥)), the Gâteaux derivative is

𝛿F[𝑦]
𝛿𝑦(𝑥) = 𝜕𝐹(𝑥)

𝜕𝑦 − 𝑑
𝑑𝑥 (

𝜕𝐹(𝑥)
𝜕𝑦′ ) + 𝑑2

𝑑𝑥2  (
𝜕𝐹(𝑥)
𝜕𝑦″ ), (7.20)

and, in the case in which set X = [𝑥0, 𝑥1] is closed

∫
X
 𝜕𝐹(𝑥)

𝜕𝑦′ 𝜂(𝑥) = 𝜕𝐹(𝑥1)
𝜕𝑦′ 𝜂(𝑥1) −

𝜕𝐹(𝑥0)
𝜕𝑦′ 𝜂(𝑥0)

∫
X

𝜕𝐹(𝑥)
𝜕𝑦″ 𝜂′(𝑥) = 𝜕𝐹(𝑥1)

𝜕𝑦″   𝜂′(𝑥1) −
𝜕𝐹(𝑥0)
𝜕𝑦″   𝜂′(𝑥0)

∫
X
  𝑑
𝑑𝑥(

𝜕𝐹(𝑥)
𝜕𝑦″ ) 𝜂(𝑥) = 𝑑

𝑑𝑥(
𝜕𝐹(𝑥1)
𝜕𝑦″ ) 𝜂(𝑥1) −

𝑑
𝑑𝑥(

𝜕𝐹(𝑥0)
𝜕𝑦″ ) 𝜂(𝑥0).

Proof.  In this case we have

𝐷𝜂(⋅)F[𝑦]  = ∫
X
 ( 𝛿F[𝑦]

𝛿𝑦(𝑥)  𝜂(𝑥) +
𝛿F[𝑦]
𝛿𝑦′(𝑥)  𝜂

′(𝑥) + 𝛿F[𝑦]
𝛿𝑦″(𝑥)  𝜂

″(𝑥)) 𝑑𝑥

= ∫
X
  𝛿F[𝑦]
𝛿𝑦(𝑥)  𝜂(𝑥) 𝑑𝑥 +∫

X
  𝛿F[𝑦]
𝛿𝑦′(𝑥)  𝜂

′(𝑥) 𝑑𝑥 +∫
X
  𝛿F[𝑦]
𝛿𝑦″(𝑥)  𝜂

″(𝑥) 𝑑𝑥

= ∫
X
 𝜕𝐹(𝑥)

𝜕𝑦   𝜂(𝑥) 𝑑𝑥 +∫
X
 𝜕𝐹(𝑥)

𝜕𝑦′   𝜂′(𝑥) 𝑑𝑥 +∫
X
 𝜕𝐹(𝑥)

𝜕𝑦″   𝜂″(𝑥) 𝑑𝑥.

  Integrating by parts the second integral, we have

∫
X
 𝜕𝐹(𝑥)

𝜕𝑦′   𝜂′(𝑥) 𝑑𝑥 = ∫
X
 𝜕𝐹(𝑥)

𝜕𝑦′ 𝜂(𝑥) −∫
X
  𝑑
𝑑𝑥 (

𝜕𝐹(𝑥)
𝜕𝑦′ ) 𝜂(𝑥) 𝑑𝑥.

Integrating by parts the third integral, 6 we have

∫
X
 𝜕𝑓(𝑥)𝜕𝑦″   𝜂″(𝑥) 𝑑𝑥 = ∫

X
 𝜕𝑓(𝑥)𝜕𝑦″ 𝜂′(𝑥) −∫

X
  𝑑
𝑑𝑥 

𝜕𝑓(𝑥)
𝜕𝑦″ 𝜂′(𝑥) 𝑑𝑥

+∫
X
  𝑑2

𝑑𝑥2  
𝜕𝑓(𝑥)
𝜕𝑦″ 𝜂(𝑥) 𝑑𝑥.

 

 
6This is because

∫𝑢𝑣″𝑑𝑥 = 𝑢𝑣′   −∫𝑢′𝑣′𝑑𝑥 = 𝑢𝑣′   − (𝑢′𝑣 −∫𝑢″𝑣𝑑𝑥) .
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7.2.5 Functionals over higher-dimensional independent variables

We can extend those definitions for functionals F[𝑦] over functions of higher dimensional inde-
pendent variables x ∈ X ⊆ 𝑅𝑛. This is the case of higher-dimensional calculus of variations
problems. In this section we deal with functionals F ∶ 𝒴  → ℝ where 𝑦 ∈ 𝒴 is the space of functions
𝑦 ∶ X ⊆ ℝ2 ↦ ℝ, that is 𝑦(x) = 𝑦(𝑥1, 𝑥2).

The simplest functional is

 F[𝑦] = ∫
X
𝑓(x, 𝑦(x)) 𝑑x = ∫

X1

 ∫
X2

 𝑓(𝑥1, 𝑥2, 𝑦(𝑥1, 𝑥2)) 𝑑𝑥2 𝑑𝑥1 (7.21)

where 𝑓(⋅, 𝑦) is continuously diffferentiable in 𝑦 and X = X1 × X2 ⊆ ℝ2.
Introducing the perturbation 𝑦(x) → 𝑦(x) + 𝜀 𝜂(x), the Gâteaux differential is

 𝐷𝜂(⋅) F[𝑦] = ∫
X

𝛿F[𝑦]
𝛿𝑦(x)   𝜂(x) 𝑑x = ∫

X1

 ∫
X2

  𝛿F[𝑦]
𝛿𝑦(𝑥1, 𝑥2)

𝜂(𝑥1, 𝑥2) 𝑑𝑥2 𝑑𝑥1 (7.22)

where the Gâteaux derivative is
𝛿F[𝑦]
𝛿𝑦(x) = 𝜕𝑓(x, 𝑦(x))

𝜕𝑦 (7.23)

For the functional with first derivatives,

 
 F[𝑦] = ∫

X
𝑓(x, 𝑦(x),∇𝑦(x)) 𝑑x =

∫
X1

 ∫
X2

 𝑓(𝑥1, 𝑥2, 𝑦(𝑥1, 𝑥2), 𝑦𝑥1
(𝑥1, 𝑥2), 𝑦𝑥2

(𝑥1, 𝑥2)) 𝑑𝑥2 𝑑𝑥1

(7.24)

where 𝑓(⋅, 𝑦) is continuously diffferentiable in (𝑦,∇𝑦), X = X1 × X2 ⊆ ℝ2 and 𝑦𝑥𝑖
(x) denote

the partial derivatives for 𝑖 = 1, 2. Introducing, the perturbations 𝑦(x) → 𝑦(x) + 𝜀 𝜂(x) and
∇𝑦(x) → ∇𝑦(x) + 𝜀∇𝜂(x)

The Gâteaux differential is

 𝐷𝜂(⋅) F[𝑦] = ∫
X

𝛿F[𝑦]
𝛿𝑦(x)   𝜂(x) 𝑑x = ∫

X1

 ∫
X2

  𝛿F[𝑦]
𝛿𝑦(𝑥1, 𝑥2)

𝜂(𝑥1, 𝑥2) 𝑑𝑥2 𝑑𝑥1 (7.25)

where the Gâteaux derivative is
𝛿F[𝑦]

𝛿𝑦(𝑥1, 𝑥2)
= 𝜕𝑓(x, 𝑦(x)

𝜕𝑦 (7.26)

7.2.6 Applications

 
Next we present some infinite-dimensional functionals which are relatively common in economic

models.
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7.2.7 Generalized means

 
The generalized mean  is very common functional which is used in economics.  
Let there be different varieties indexed over a continuous index set I, which can have an order

structure or not. It will have an order structure if the index refers to different locations and does
not have an order structure if it refers to qualitative differences amons goods. The distribution
(𝑥(𝑖))

𝑖∈I
denotes the quantities of goods for all varieties, where 𝑥 ∶ I  → ℝ is our variable of interest.

Definition 2.   The generalized mean  is defined as the functional 7

M𝜌[𝑥] = (∫
I
𝑤(𝑖) 𝑥(𝑖)𝜌 𝑑𝑖 )

1
𝜌

, for 𝜌 ∈ [−∞,∞]  (7.27)

   where 𝑤 ∶ I   → (0, 1) is a weighting function such that

∫
I
𝑤(𝑖) 𝑑𝑖 = 1.

This functional can be seen as an infinite-dimensional generalization of the CES aggregator.

Proposition 1.  The generalized mean expression in equation (7.27) encompasses several several
special cases for different values of 𝜌:

1. if 𝜌 = 0 then M0[𝑥] = exp(∫I ln (𝑥(𝑖)𝑤(𝑖) ) 𝑑𝑖) = ∫I 𝑥(𝑖)
𝑤(𝑖)  𝑑𝑖, is a geometric mean, and, in

particular a generalized Cobb-Douglas function for a continuum;

2. if 𝜌 = 1 then M1[𝑥] = ∫I 𝑤(𝑖) 𝑥(𝑖) 𝑑𝑖, is a generalized arithmetic mean;

3. if 𝜌 = −1 then M−1[𝑥] =
1

∫I
𝑤(𝑖)
𝑥(𝑖) 𝑑𝑖

it is a harmonic mean;

4. if 𝜌 = −∞ then M−∞[𝑥] = min{(𝑥(𝑖))𝑖∈I} (in particular a generalized Leontieff production
function)

5. if 𝜌 = ∞ then M∞[𝑥] = max{(𝑥(𝑖))𝑖∈I}

In general min𝑥[𝑥]  ≤ M𝜌 [𝑥]  ≤  max𝑥[𝑥] 

Proof. We can write equation (7.27) equivalently as

𝑀𝜌[𝑥] = exp{ ln[ (∫
I
𝑤(𝑖) 𝑥(𝑖)𝜌 𝑑𝑖 )

1
𝜌

]}  = exp{  1𝜌   ln(∫
I
𝑤(𝑖) 𝑥(𝑖)𝜌 𝑑𝑖 )}.

7See Bullen (2003).
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  For the case 𝜌 = 0 we use l’Hôpital’s rule

lim
𝜌→0

  
ln(∫I 𝑤(𝑖) 𝑥(𝑖)𝜌 𝑑𝑖)

𝜌 = lim
𝜌→0

 
∫I 𝑤(𝑖) ln (𝑥(𝑖)] 𝑥(𝑖)𝜌 𝑑𝑖

1  

= ∫
I
𝑤(𝑖) ln (𝑥(𝑖)) 𝑑𝑖 = ∫

I
ln (𝑥(𝑖)𝑤(𝑖)) 𝑑𝑖

Then 𝑀0[𝑥] = exp(∫I ln (𝑥(𝑖)𝑤(𝑖)) ) 𝑑𝑖. The generalized mean for 𝜌 = 1 and 𝜌 = −1 are obtained
by direct substitution.

If function 𝑥 ∶ ℝ →  X and 𝑥 ∈ 𝐿∞(X) then there is a maximum 𝑥∗ = ||𝑥||∞ and we can write

𝑀∞[𝑥] = lim
𝜌→∞

𝑥∗ (∫
I
𝑤(𝑖) (𝑥(𝑖)𝑥∗ )

𝜌
𝑑𝑖 )

1
𝜌

= lim
𝜓→0

𝑥∗ (∫
I
𝑤(𝑖) (𝑥(𝑖)𝑥∗ )

1
𝜓 𝑑𝑖 )

𝜓

= 𝑥∗

  where 𝜓 = 1/𝜌. For any 𝜌 we have 𝑀𝜌[𝑥] = 𝑀−𝜌[
1
𝑥]. If 𝑥 ∈ 𝐿∞(X) as max [1𝑥]  = min[𝑥] then

𝑀−∞[𝑥] = lim
𝜌→∞

1
𝑀𝜌[

1
𝑥]

= min[𝑥]

 

We can calculate generalized derivatives of first and second order, elasticities and elasticities of
substitution.

The generalized first-order derivative of equation (7.27), for a finite 𝜌, is

𝛿M𝜌[𝑥]
𝛿𝑥(𝑖) = 𝑤(𝑖)(M𝜌[𝑥]

𝑥(𝑖) )
1−𝜌

, for any  𝑖 ∈ I,

and the generalized second-order derivative is

𝛿2M𝜌[𝑥]
𝛿𝑥(𝑖)𝛿𝑥(𝑗) = (1 − 𝜌) 𝑤(𝑖)𝑤(𝑗)

𝑥(𝑖) (M𝜌[𝑥]
𝑥(𝑖𝑗 )

1−𝜌

(M𝜌[𝑥]
𝑥(𝑖) )

−𝜌

, for any  𝑖, 𝑗 ∈ I.

7.2.8 Varieties in consumption theory

 
Let 𝑐(𝑖) be the quantity of good of variety 𝑖 ∈ I and 𝑐 = (𝑐(𝑖))𝑖∈I the distribution of consumption

among varieties. Index set I can be ordered or not, although in many application it is a non-ordered
continuum of varieties. Sometimes the index set is specified as I  = [0,𝑁], where 𝑁 measures the
span of varieties, where an increae in 𝑁 can account for horizontal innovation. We denote by 𝑐(𝜄)
the quantity of a specific variety 𝑖 = 𝜄 ∈ I. We can see 𝑐(𝜄) as a product of the distribution 𝑐 with a
𝜄 dentered Dirac’ delta generalized function, 𝑐(𝜄) = ∫I 𝛿(𝑖−𝜄) 𝑐(𝑖) 𝑑𝑖. The set of variety distributions
𝑐 is the function space 𝒞.
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A utility functional U[𝑐] maps a variety distribution into value, which is a number, i.e. U ∶ 𝒞 →
ℝ.

There are two main types of utility functionals in the literature U[𝑐]  = ∫I 𝑢(𝑐(𝑖)) 𝑑𝑖, where 𝑢(𝑐)
i increasing and strictly concave (assuming no satiation), 𝑢″(𝑐) < 0 < 𝑢′(𝑐) for 𝑐 ∈ (0,∞). 8 

Another common utility functional in the literature is the Dixit and Stiglitz (1977)9 utility
functional

 U[𝑐] = (∫
I
𝑐(𝑖)1−𝛾𝑑𝑖)

1
1−𝛾

, (7.28)

which is analogous to functional (7.7) This utility functional is called a CES (constant elasticity
of substitution) utility functional for reason that will be clear bellow. Observe that although it i
similar it is not a generalized mean.

Using our previous definitions and results, in particular equation (7.10), a change in the variety
distribution, 𝑐 → 𝑐 + 𝜀 𝜁 ∈ 𝒞 will lead to a variation in utility given by Gâteaux differential

𝐷𝜁(⋅) U[𝑐]  = ∫
I

𝛿U[𝑐]
𝛿𝑐(𝑖) 𝜁(𝑖) 𝑑𝑖, for any  𝑖 ∈ I

  where the marginal utility of variety 𝑖 is given by the Gâteaux derivative

𝛿U[𝑐]
𝛿𝑐(𝑖) = 1

1 − 𝛾 (∫
I
𝑐(𝑖)1−𝛾𝑑𝑖)

𝛾
1−𝛾

(1 − 𝛾)𝑐(𝑖)−𝛾 = U[𝑐]𝛾𝑐(𝑖)−𝛾

Therefore, the marginal utility for a specific variety 𝜄 ∈ I is represented by the Gâteaux differ-
ential for a perturbation 𝜁(𝑖) = 𝛿(𝑖 − 𝜄), that is

𝛿U[𝑐]
𝛿𝑐(𝜄) = (U[𝑐]

𝑐(𝜄))
𝛾

, for  𝑖 = 𝜄 ∈ I.

This allow to determine the marginal rate of substitution between varieties 𝜄 and 𝜄′

𝑀𝑅𝑆𝜄,𝜄′ =
𝛿U[𝑐]
𝛿𝑐(𝜄)
𝛿U[𝑐]
𝛿𝑐(𝜄′)

= ( 𝑐(𝜄)
𝑐(𝜄′)  )

−𝛾
, for any  𝜄, 𝜄′ ∈ I.

We can also use the second-order Gâteaux derivatives to  derive the implicit properties of the utility
functional (7.28) as regards the change in marginal utility and the substitution between varieties.
Generalized versions of the Allen-Uzawa elasticities are,

𝜀𝜄,𝜄  = −
𝛿2U[𝑐]
𝛿𝑐(𝜄)2 𝑐(𝜄)

𝛿U[𝑐]
𝛿𝑐(𝜄)

= 𝛾 (1 −(U[𝑐]
𝑐(𝜄))

𝛾−1

), for any  𝜄 ∈ I

8See, for recent contribution, Evgeny Zhelobodko and Thisse (2012) or Dhingra and Morrow (2019).
9See also Krugman (1980) or Melitz (2003).
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which means there is decreasing marginal utility for variety 𝜄 if 𝛾 > 1 and U[𝑐] < 𝑐(𝜄), and

𝜀𝜄,𝜄′  = −
𝛿2U[𝑐]

𝛿𝑐(𝜄) 𝛿𝑐(𝜄′) 𝑐(𝜄
′)

𝛿U[𝑐]
𝛿𝑐(𝜄)

= −𝛾( U[𝑐]
𝑐(𝜄′))

𝛾−1

, for any  𝜄 ∈ I

which that varieties 𝜄 and 𝜄′ are Edgeworth complements. We can alo determine a generalized
elasticity of vaiety substitution

𝐸𝑉 𝑆𝜄,𝜄′  =
𝑐(𝜄) 𝛿U[𝑐]

𝛿𝑐(𝜄) + 𝑐(𝜄′) 𝛿U[𝑐]
𝛿𝑐(𝜄′)

𝑐(𝜄) 𝛿U[𝑐]
𝛿𝑐(𝜄) 𝜀𝜄′,𝜄′ − 2 𝑐(𝜄) 𝛿U[𝑐]

𝛿𝑐(𝜄) 𝜀𝜄,𝜄′ + 𝑐(𝜄′) 𝛿U[𝑐]
𝛿𝑐(𝜄′) 𝜀𝜄,𝜄

Substituting the previous formulas and simplifying we find

𝐸𝑉 𝑆𝜄,𝜄′ = 𝛾−1,

which justifies the usual classification of utility functional (7.28) as CES (constant elasticity of
substitution) between varieties.

7.2.9 Infinite-dimensional production functions

In this subsection we extend the concept of functional and generalized derivatives for production
with a continuum of inputs, which are usually intermediate goods or heterogeneous labor or capital
inputs. In the first case the index set is usually not ordered, but in the two last cases it can be
ordered is, for instance, workers are ranked by skill level.

Let 𝑥(𝑖) be the quantity of input of varieties 𝑖 ∈ I. We denote 𝑥𝑗 the quantity of variety 𝑗 ∈ I.
We can see 𝑥(𝑗) = ∫I 𝛿(𝑖 − 𝑗)𝑞(𝑖)𝑑𝑖. We denote 𝑥 a variety distribution 𝑥 = (𝑥(𝑖))I. The set of
variety distributions belong to the function space 𝒳.

A production function is a functional F[𝑥] which maps the variety distribution into real produc-
tion, a non-negative number, i.e. F ∶ 𝒳 → ℝ+. We can write it as

𝑦 = F[𝑥].

  There are several production functions used in the literature (see, for instance, Parenti et al.
(2017) and Bucci and Ushchev (2016) ):

• the generalized 𝐴𝐾 production function

F[𝑥]  = ∫
I
𝐴(𝑖) 𝑥(𝑖) 𝑑𝑖;

in which 𝐴(𝑖) is the specific marginal productivity of input 𝑖 ∈ I,
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• the generalized constant elasticity of substitution production function

 F[𝑥]  = (∫
I
𝐴(𝑖) 𝑥(𝑖) 𝜖−1

𝜖 𝑑𝑖)
𝜖

𝜖−1
(7.29)

which is the infinite-dimensional analog of 𝐹({𝑥} ) = (∑𝑖∈I 𝐴𝑖 𝑥
𝜖−1
𝜖

𝑖 )
𝜖

𝜖−1
, for I = {𝑖1,… , 𝑖𝑛};

 

• the O-ring production function (see Kremer (1993))

F[𝑥]  = exp(∫
I
𝛾(𝑖) log (𝑥(𝑖)) 𝑑𝑖)

  where ∫I 𝛾(𝑖) = 1. This function is the infinite-dimensional of the finite-dimensional analog
of the discrete geometrical average 𝐹({𝑥} ) = ∏𝑖∈I 𝑥

𝛾𝑖
𝑖 for ∑I 𝛾𝑖 = 1, which makes the O-ring

production function an infinite-dimensional analog to the Cobb-Douglas production function;

• the translog production function

𝐹[𝑥]  = exp(∫
I
𝛾(𝑖) log (𝑥(𝑖)) + 𝛾(𝑖) log (𝑥(𝑖)2) 𝑑𝑖) .

 

  Using a similar approach to the utility functional, for the CES production function (7.29), we
have the marginal productivity for a particular input 𝑖 ∈ I,

𝛿F[𝑥]
𝜕𝑥(𝑖) = 𝐴(𝑖) (F[𝑥]

𝑥(𝑖) )
1
𝜀 = 𝐴(𝑖) ( 𝑦

𝑥(𝑖))
1
𝜀 ,

which implies that the marginal rate of transformation between inputs 𝜄 and 𝜄′ is

𝑀𝑅𝑇𝜄,𝜄′  =
𝛿F[𝑥]
𝜕𝑥(𝜄)
𝛿F[𝑥]
𝜕𝑥(𝜄′)

= 𝐴(𝜄)
𝐴(𝜄′)(

𝑥(𝜄′)
𝑥(𝜄) )

1
𝜀 , for any  𝜄, 𝜄′ ∈ I.

The (generalized) Allen-Uzawa elasticities are, for variety 𝜄

𝜀𝜄,𝜄  =
1
𝜀 (1 − 𝐴(𝑖)( 𝑦

𝑥(𝜄))
1−𝜀
𝜀 ), for any 𝜄 ∈ I 

and for varieties 𝜄 and 𝜄′

𝜀𝜄,𝜄′  = −𝐴(𝜄′)
𝜀 ( 𝑦

𝑥(𝜄′))
1−𝜀
𝜀

for any 𝜄 ≠ 𝜄′ ∈ I

which, again, tells us that varieties 𝜄 and 𝜄′ are (generalized) Edgeworth complements.
The elasticity of variety substitution is constant

𝐸𝑉 𝑆𝜄,𝜄′ = 𝜀.
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7.2.10 In information theory and econometrics

In, according to some authors, one of the most influential paper in the XX century Shannon
(1948) introduces a measure of information by entropy. Entropy is a the functional

H[𝑓]  = −∫
X
 𝑓(𝑥) ln(𝑓(𝑥))𝑑𝑥,

which is used in an information theoretic approach to econometrics (see Judge and Mittelhammer
(2012)). The functional derivative is

𝛿H[𝑓]
𝛿𝑓(𝑥) = −( ln (𝑓(𝑥))  + 1).

 

7.3 Problems involving functionals

 
Several (static) problems in economics, and in other sciences, are cast a maximization of func-

tionals with pr without constraints. The first order conditions of those problems involve solving
functional equations.

In the next subsection 7.3.1 we define extremes of functionals, and, in particular maxima of
functionals. In subsections 7.3.2  and 7.3.3 optimum conditions for maximum problems without
or with constraints, respectively, are obtained. In the next section 7.4 we present applications in
microeconomics and statistics.

7.3.1 Extremes of functionals

 
The function 𝑦∗ ∈ 𝒴 is an extremum  of functional F[𝑦] if the value of functional, for that

function 𝑦∗, has the value F[𝑦∗], and any small arbitrary perturbation 𝜂 ∈ 𝒴, such that 𝑦 =
𝑦∗ + 𝜀 + 𝜂 ∈ 𝒴 will deviate the functional from that value. That is F[𝑦]  ≠ F[𝑦∗].

That is locally we have
𝐷𝜂(⋅) F[𝑦∗]  = 0, for  𝑦∗  ∈ 𝒴.

 
An extreme 𝑦∗ ∈ 𝒴 is a maximum, only if, for an arbitrary perturbation 𝜂, such that 𝑦 =

𝑦∗  + 𝜀 𝜂 we have F[𝑦∗] ≥ F[𝑦], and it is a minimum only if F[𝑦∗] ≤ F[𝑦].
From the generalized Taylor expansion in equation (7.5) a necessary condition of second order

for a maximum is
𝐷2

𝜂(⋅) F[𝑦∗]  ≤ 0.
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7.3.2 Maximum of functionals: unconstrained problem

 
Consider the problem: find 𝑦 ∈ 𝒴 that solves the problem

max
𝑦(⋅)

 F[𝑦] (P1)

 

Lemma 3.  A necessary condition for a maximum is that the Gâteaux derivative of 𝐹[𝑦] satisfies
𝛿F[𝑦∗]
𝛿𝑦(𝑥) = 𝛿F[𝑦]

𝛿𝑦(𝑥) ∣𝑦∗(𝑥)
= 0. (7.30)

 

Proof. Assume we know the optimum 𝑦∗(𝑥). The objective functional evaluated at the optimum
is F[𝑦∗], which is a number. Introducing an arbitrary admissible perturbation 𝜂(𝑥) ∈ 𝒴 at the
optimum, we obtain 𝑦(𝑥) = 𝑦∗(𝑥) + 𝜀 𝜂(𝑥) which has the value F[𝑦] = F[𝑦∗ + 𝜀𝜂]. If 𝑦∗(𝑥) is an
optimum then we should have F[𝑦∗] ≥ F[𝑦]. Expanding F[𝑦] in a neighborhood of the optimum we
have

F[𝑦]  = F[𝑦∗] + 𝐷𝜂(⋅)F[𝑦∗] 𝜀 +
1
2 𝐷𝜂(⋅),𝜂(⋅)F[𝑦∗] 𝜀2 + 𝑜(𝜀3)

If 𝑦∗ is a maximum it satisfies 𝐷2
𝜂(⋅)F[𝑦∗] ≤ 0. Therefore we can have F[𝑦∗] ≥ F[𝑦] only if

𝐷𝜂(⋅)F[𝑦∗] = lim
𝜀→0

 F[𝑦
∗ + 𝜀𝜂] − F[𝑦∗]

𝜀 = 0.
 

The Taylor expansion also allows us to find a sufficient condition. Assume that: first, the
functional is concave in the sense that it satisfies the condition:

𝐷2
𝜂(⋅) F[𝑦]  ≤ 0, for any  𝑦 ∈ 𝒴

and, second, there is an element of 𝒴, 𝑦∗(𝑥) satisfying the condition 𝐷𝜂(⋅)F[𝑦∗] = 0. Then 𝑦∗(𝑥) ∈ 𝒴
is a maximum.

Example For functional (7.6) we have, assuming that we know 𝑦∗(𝑥), and for any admissible
perturbation 𝑦∗(𝑥) → 𝑦(𝑥) = 𝑦∗(𝑥) + 𝜀𝜂(𝑥), we have

F[𝑦]  − F[𝑦∗] = ∫
X
 𝑓(𝑦∗(𝑥) + 𝜀𝜂(𝑥)) − 𝑓(𝑦∗(𝑥)) 𝑑𝑥

Therefore, the Gâteaux differential is

𝐷𝜂(⋅)F[𝑦∗] = ∫
X
 𝑓 ′(𝑦∗(𝑥)) 𝜂(𝑥) 𝑑𝑥

which implies that, for any admissible perturbation, the first-order conditions for a maximum is

𝑓 ′(𝑦∗(𝑥)) = 0 for each  𝑥 ∈ X.
Exercise Prove that the maximum for functional (7.7) is

𝑔′(F[𝑦∗])  𝑓 ′(𝑦∗(𝑥)) = 0 for each  𝑥 ∈ X.
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7.3.3 Constrained maximum of functionals

 
In economics we are generally interested in problems defined by the maximization of a functional

depending on constraints. We next consider two types of problems which differ as regards the nature
of their constraints: problems with functional constraints and problems with point-wise constraints.
The first type of constraints involve all the distribution and the second type of constraint are more
stringent because they should hold at every point of the distribution.

We restrain to problems involving linear functionals.

Problems with functional constraints

Consider the two linear functionals over function 𝑦 ∶ X → ℝ belonging to the set 𝑦 ∈ 𝒴 of bounded
functions:

F[𝑦]  = ∫
X
 𝑓(𝑦(𝑥), 𝑥)𝑑𝑥

and
G[𝑦]  = ∫

X
 𝑔(𝑦(𝑥), 𝑥)𝑑𝑥

The first problem is: find function 𝑦 ∈ 𝒴 that solves

max
𝑦(⋅)

∫
X
 𝑓(𝑦(𝑥), 𝑥) 𝑑𝑥

subject to

∫
X
 𝑔(𝑦(𝑥), 𝑥)𝑑𝑥 = 0

(P2)

Lemma 4.   The function 𝑦∗(𝑥) for 𝑥 ∈ X and th enumber 𝜆 are necessary conditions for an
optimum of problem (P2) if and only if they satisfy

𝜕𝑓(𝑦∗(𝑥), 𝑥)
𝜕𝑦 + 𝜆 𝜕𝑔(𝑦∗(𝑥), 𝑥)

𝜕𝑦 = 0, for each  𝑥 ∈ X (7.31a)

∫
X
 𝑔(𝑦∗(𝑥), 𝑥)𝑑𝑥 = 0, (7.31b)

where the first condition involves a Gâteaux derivative for every point in 𝑥 ∈ X, the second is an
equation for the whole distribution.

Proof.  We define a generalized Lagrangean functional We define the Lagrangean functional can
be written as a parameterized (by 𝜆) functional

L[𝑦] = F[𝑦]  + 𝜆G[𝑦]  = ∫
X
𝐿(𝑦(𝑥), 𝑥, 𝜆) 𝑑𝑥.

where the Lagrangean (function) is

𝐿(𝑦(𝑥), 𝑥, 𝜆) ≡ 𝑓(𝑦(𝑥), 𝑥) + 𝜆 𝑔(𝑦(𝑥), 𝑥),
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  where 𝜆 ∈ ℝ is the Lagrange multiplier. At the optimum (𝑦∗(𝑥))𝑥∈X we have L[𝑦∗] = F[𝑦∗].
Introducing an admissible perturbation 𝑦∗(𝑥) → 𝑦(𝑥) = 𝑦∗(𝑥) + 𝜀 𝜂(𝑥) ∈ 𝒴 and taking the limit we
have the Gâteux differential

𝐷𝜂(⋅) L[𝑦∗]  = ∫
X
 (𝜕𝑓(𝑦

∗(𝑥))
𝜕𝑦 + 𝜆 𝜕𝑔(𝑦∗(𝑥))

𝜕𝑦 ) 𝜂(𝑥) 𝑑𝑥.

The maximum of the functional is attained only if 𝐷𝜂(⋅) L[𝑦∗]  = 0, for any admissible perturbation.
Therefore the necessary condition for an optimum, which must satisfy the constraint of the problem,
equation (7.31b), is in equation(7.31a).

 

Problems with point-wise constraints

The previous problem involved a constraint on all the distribution. Now we consider problems in
which there are point-wise constraints for every component of the distribution

max
𝑦(⋅)

∫
X
  𝑓(𝑦(𝑥), 𝑥) 𝑑𝑥 

subject to
𝑔(𝑦(𝑥), 𝑥) = 0, for all 𝑥 ∈ X.

(P3)

Lemma 5.   The pair of functions 𝑦∗(𝑥) and 𝜆(𝑥) for 𝑥 ∈ X are necessary conditions for an
optimum of problem (P3) if and only if they satisfy

𝜕𝑓(𝑦∗(𝑥), 𝑥)
𝜕𝑦 + 𝜆(𝑥) 𝜕𝑔(𝑦

∗(𝑥), 𝑥)
𝜕𝑦 = 0, for each  𝑥 ∈ X (7.32a)

𝑔(𝑦∗(𝑥), 𝑥) = 0, for each  𝑥 ∈ X (7.32b)

where both equations the first condition involves a Gâteaux derivative and the second a classical
derivative.

Proof.   While in problem P2 we had one constraint, in this case we have an infinity of constraints.
Therefore, we have to introduce a Lagrangean function 𝜆 ∶ X → ℝ ( instead of a Lagrange multiplier
𝜆 ∈ ℝ as in problem P2). The Lagrangean functional is now

L[𝑦, 𝜆] = ∫
X
𝑓(𝑦(𝑥), 𝑥) + 𝜆(𝑥) 𝑔(𝑦(𝑥), 𝑥)𝑑𝑥.

Therefore, the Gâteux differential for an admissible  perturbation, 𝜂(⋅), in a neighborhood of the
optimum 𝑦∗(⋅) is now

𝐷𝜂(⋅) L[𝑦∗]  = ∫
X
 (𝜕𝑓(𝑦

∗(𝑥))
𝜕𝑦 + 𝜆(𝑥) 𝜕𝑔(𝑦

∗(𝑥))
𝜕𝑦 ) 𝜂(𝑥) 𝑑𝑥.

Setting it to zero yields condition (7.32a).

 



23

7.4 Applications

 
In this subsection we present applications of functionals to problems in microeconomics, to the

consumer problems 7.4.1  to firms’ poblems 7.4.2

7.4.1 Applications to the consumer problem

 

The optimal choice of varieties

Assume we have a continuum of varieties I and a basket of consumption containing different varieties
is 𝑐 = (𝑐(𝑖))𝑖∈I where 𝑐(𝑖) ≥ 0 is the quantity of variety 𝑖 ∈ I in basket 𝑐. The composition of the
basket can be seen as a function mapping between the space of varieties and a real number, the
quantity consumed: 𝑐 ∶ I  → ℝ+, belonging to a space of positively-valued bounded functions,
𝑐 ∈ 𝒞.

The value of the basket is measured by the utility functional U ∶ 𝒞  → ℝ:

U[𝑐]  = (∫
I
𝑐(𝑖)1−𝛾𝑑𝑖)

1
1−𝛾

.

  The consumer has income 𝑦 > 0 which can be spent on the purchase of baskets. The total
expenditure is the functional

E[𝑐]  = ∫
I
𝑝(𝑖) 𝑐(𝑖) 𝑑𝑖

  where 𝑝(.) is the relative price of variety relative to the income deflator. Assuming that there are
no savings, and denoting nominal income by 𝑌 , the budget constraint is E[𝑝, 𝑐] = 𝑌 .

The consumer problem is to find the basket (𝑐(𝑖))
𝑖∈I

that solves the problem

 

 max
𝑐(⋅)

U[𝑐] = (∫
I
𝑐(𝑖)1−𝛾𝑑𝑖)

1
1−𝛾

subject to 

E[𝑐] = ∫
I
𝑝(𝑖) 𝑐(𝑖) 𝑑𝑖 = 𝑌 .

(PC)

  The solution is the basket 𝑐∗  = (𝑐∗(𝑖))𝑖∈I where

 𝑐∗(𝑖) = 𝑌
𝑃 ( 𝑃

𝑝(𝑖))
1
𝛾 , for each  𝑖 ∈ I. (7.33)

where 𝑃 = (∫I 𝑝(𝑖)
𝛾−1
𝛾 )

𝛾
𝛾−1

is the true cost of living index.
The Lagrangean functional can be interpreted as the indirect utility functional

L[𝑐; 𝜆] = U[𝑐] − 𝜆E[𝑐] = (∫
I
𝑐(𝑖)1−𝛾𝑑𝑖)

1
1−𝛾

− 𝜆 ∫
I
𝑝(𝑖) 𝑐(𝑖) 𝑑𝑖.
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  The first order conditions for problem (PC) are

  𝛿L[𝑐∗]
𝛿𝑐(𝑖) = 𝛿U[𝑐∗]

𝛿𝑐(𝑖) − 𝜆𝛿E[𝑐∗]
𝛿𝑐(𝑖) = 0, for each  𝑖 ∈ I, (7.34a)

E[𝑐∗] = 𝑦. (7.34b)

The optimality condition (7.34a) is equivalent to

( 𝑐(𝑖)
U[𝑐])

−𝛾
= 𝜆𝑝(𝑖) ⟺ 𝑐∗(𝑖) = U[𝑐∗](𝜆 𝑝(𝑖))

− 1
𝛾 .

Substituting in the utility functional yields

U[𝑐∗]  = (∫
I
 (U[𝑐∗](𝜆 𝑝(𝑖))

− 1
𝛾)

1−𝛾
  𝑑𝑖)

1
1−𝛾

allows us to find 𝜆 as
1
𝜆  = 𝑃 ≡ (∫

I
𝑝(𝑖)𝛾−1

𝛾 )
𝛾

𝛾−1 ,

that we interpret as the consumer price deflactor (or the true index of cost of living) using as
numéraire the income deflactor. Substuting in the constraint (7.34b), and simplifying, yields
𝑃 U[𝑐∗] = 𝑌 . Substituting again in the expression for 𝑐(𝑖) yields the solution to the consumer
problem in equation (7.33).

Several comparative statics results can be obtained from equation (7.33): First, consumption
of variety 𝑖 is a linear function of real income 𝑦 = 𝑌 /𝑃 , where nominal income is deflated by the
true cost of living index 𝑃 ,

Second, observing that the 𝑃 is a functional of the distribution of prices,

𝑃 = P[𝑝]  = (∫
I
𝑝(𝑖)𝛾−1

𝛾 )
𝛾

𝛾−1 ,

then 𝑐∗(𝑖) = C∗(𝑖)[𝑝] can be seen as a functional over the price distribution. As

𝛿P[𝑝]
𝛿𝑝(𝑖) = ( 𝑃

𝑝(𝑖))
1
𝛾 , for any  𝑖 ∈ I,

using the previous results on functional differentiation, we find the response of the demand for
variety 𝑖 to increases in its own price

𝛿C∗(𝑖)[𝑝]
𝛿𝑝(𝑖)   = 𝑐∗(𝑖)

𝛾 𝑝(𝑖) (1 + (𝛾 − 1) ( 𝑃
𝑝(𝑖))

1−𝛾
𝛾 ),

and
𝛿C∗(𝑖)[𝑝]
𝛿𝑝(𝑗)   = 𝑐∗(𝑖) (1 − 𝛾)

𝛾 𝑝(𝑗)− 1
𝛾 , for any  𝑗 ≠ 𝑖 ∈ I

for the change of the price of any other variety.
We see that the responses to both own and other price changes depend on the elasticity of

variety substitution 𝐸𝑉 𝑆𝑖,𝑗  = 1/𝛾 (see subsection 7.2.8). If 𝑝(𝑖) ≈ 𝑃 and 𝐸𝑉 𝑆𝑖,𝑗 > 1 then an
increase in the own price, 𝑝(𝑖), decreases the consumption of variety 𝑖 and an increase in the price
of any other variety, 𝑝(𝑗) for 𝑗 ≠ 𝑖 increases its consumption. This means that although different
varieties are Edgeworth complements, they are Hicks substitutable.
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7.4.2 Application to production theory

Single-product firm

This problem is a component of most new-Keynesian models, as the problem for a final producer
using a continuum of inputs 𝑥 = (𝑥(𝑖))𝑖∈I. When bundles of inputs are Infinite-dimensional, as 𝑥,
models usually consider they refer to intermediary goods not factors of production.

Total sales in a competitive sales market are 𝑆(𝑝, 𝑦) = 𝑝𝑦, where 𝑝 is the final good price and is
given to the firm, and 𝑦 is the output. Assume that the firm has a generalized constant elasticity
of substitution (CES) production function

𝑦 = F[𝑥] ≡ (∫
I
𝐴(𝑖) 𝑥(𝑖) 𝜖−1

𝜖 𝑑𝑖)
𝜖

𝜖−1

  with specific factor productivity 𝐴(𝑖). Therefore, nominal sales are a functional

S[𝑥]  = 𝑝 F[𝑥],

where 𝑝 is the price of the output. The total cost is also a functional

C[𝑥]  = ∫
I
𝑤(𝑖)𝑥(𝑖)𝑑𝑖,

where 𝑤(𝑖) denotes the price of input 𝑖 ∈ I. We can denote by 𝐴 = (𝐴(𝑖))𝑖∈I and 𝑤 = (𝑤(𝑖))𝑖∈I the
profiles of productivity and costs associated to the input profile 𝑥 = (𝑥(𝑖))𝑖∈I.

Therefore, firms profits are also a functional over the 𝑥

Π[𝑥] = 𝑝 F[𝑥] − C[𝑥].

Assuming a price-taker firm in all the markets, both the in the product market and the I markets
for inputs, the firm’s problem is to find the optimal input bundle 𝑋∗ = (𝑥∗)𝑖∈I that solves the
problem

max
𝑥(⋅)

 Π[𝑥] = 𝑝 (∫
I
𝐴(𝑖) 𝑥(𝑖) 𝜖−1

𝜖 𝑑𝑖)
𝜖

𝜖−1 −∫
I
𝑤(𝑖)𝑥(𝑖)𝑑𝑖

subject to 

(∫
I
𝐴(𝑖) 𝑥(𝑖) 𝜖−1

𝜖 𝑑𝑖)
𝜖

𝜖−1 = 𝑑

where 𝑑 is the market demand. In equilibrium 𝑦 = F[𝑥] = 𝑑.
Exercise: Prove that the solution is

𝑥∗(𝑖) = (𝑊 𝐴(𝑖)
𝑤(𝑖) )

𝜖
  𝑑, for each  𝑖 ∈ I

where 𝑊 = W[𝐴, 𝑤] ≡ (∫I 𝐴(𝑖)𝜖 𝑤(𝑖)1−𝜖 𝑑𝑖)
1

1−𝜖
is a measure of the aggregate marginal costs.
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7.4.3 Optimal taxation

 
Let 𝜃 ∈ Θ ⊆ ℝ+ denote the skill level of the population and let 𝑓(𝜃) be their density. Therefore

∫Θ 𝑓(𝜃) 𝑑𝜃 = 1. Let ℓ(𝜃), 𝑦(𝜃) = 𝜃 ℓ(𝜃), and 𝑐(𝜃) denote the work effort, income and consumption,
respectively, by people of skill level 𝜃. The utility for a household with skill level 𝜃 is 𝑢(𝜃) =
𝑈(𝑐(𝜃), ℓ(𝜃)).

Assume the government has an exogenous expenditure level 𝐺 and wants to find an optimal
tax schedule 𝑇 (𝜃) = 𝜏(𝜃) 𝑦(𝜃) which implements a social optimum. Assume that the social optimal
criterium is the average social welfare

W[𝑢]  = ∫
Θ
 𝑊(𝑢(𝜃)) 𝑓(𝜃) 𝑑𝜃.

  Assume that the central planner not only observes the distribution of income 𝑦(𝜃) = 𝜃 ℓ(𝜃) but
has also complete information on the work effort, that is it is able to separate the productivity 𝜃
from the work effort ℓ(𝜃).

The problem is simpler if we use the implicit function theorem to solve 𝑢(𝜃) = 𝑈(𝑐(𝜃), ℓ(𝜃)) for
𝑐(𝜃) = 𝐶(𝑢(𝜃), ℓ(𝜃)).

We can find the optimal allocation of utility and work effort by solving the functional problem

max
𝑢(⋅),ℓ(⋅)

 ∫
Θ
 𝑊(𝑢(𝜃)) 𝑓(𝜃) 𝑑𝜃

subject to 

∫
Θ
 (𝜃 ℓ(𝜃) − 𝐶(𝑢(𝜃), ℓ(𝜃))) 𝑓(𝜃) 𝑑𝜃 = 𝐺

 

  The Lagrangean functional is

L[𝑢, ℓ] = ∫
Θ
 (𝑊(𝑢(𝜃)) − 𝜆 (𝜃 ℓ(𝜃) − 𝐶(𝑢(𝜃), ℓ(𝜃))) 𝑓(𝜃) 𝑑𝜃 + 𝐺.

The first order conditions are

  𝛿L
𝛿𝑢(𝜃) = (𝑊 ′(𝑢(𝜃)) + 𝜆𝐶𝑢(𝑢(𝜃), ℓ(𝜃))) 𝑓(𝜃) = 0, for each  𝜃 ∈ Θ  (7.35a)

𝛿L
𝛿ℓ(𝜃) = −𝜆(𝜃 − 𝐶ℓ(𝑢(𝜃), ℓ(𝜃))) 𝑓(𝜃) = 0, for each  𝜃 ∈ Θ (7.35b)

∫
Θ
(𝜃 ℓ(𝜃) − 𝐶(𝑢(𝜃), ℓ(𝜃))) 𝑓(𝜃) 𝑑𝜃 = 𝐺. (7.35c)

  Equations (7.35a) and (7.35b) hold if and only if

𝑊 ′(𝑢(𝜃)) + 𝜆𝐶𝑢(𝑢(𝜃), ℓ(𝜃)) = 0
𝐶ℓ(𝑢(𝜃), ℓ(𝜃)) = 𝜃.

If this system has a unique solution, we can write it as 𝑢(𝜃) = 𝑈(𝜃,  𝜆), ℓ(𝜃) = 𝐿(𝜃,  𝜆) then,
substituting in the budget constraint (7.35c) yields, an hopefully unique, value for 𝜆

𝜆∗  = Λ(𝐺,𝑊(⋅), 𝐶(⋅), 𝑓(⋅)) = { 𝜆 ∶ ∫
Θ
(𝜃𝐿(𝜃,  𝜆) − 𝐶(𝑈(𝜃,  𝜆), 𝐿(𝜃,  𝜆))) 𝑓(𝜃) 𝑑𝜃 = 𝐺}. 



27

If this is the case, the solution to the optimal tax problem is the distribution of utility and labor
effort

 𝑢∗ (𝜃) = 𝑈(𝜃,  𝜆∗)
ℓ∗ (𝜃) = 𝐿(𝜃,  𝜆∗)

 

depending on the level of government expenditure, and on the properties of the social welfare,
consumption, and population density functions.

If we can find 𝑐∗ = 𝐶(𝑢∗, ℓ∗) and 𝑦∗ = 𝜃 ℓ∗, then the optimal optimal tax-transfer policy that
implements the social optimum, and finances the government expenditure 𝐺, has the following
property

𝑇 ∗ (𝜃) = 𝑦∗(𝜃)  − 𝑐∗(𝜃),
depends also on the level of government expenditure, and on the properties of the social welfare,
consumption, and population density functions.

7.4.4 Statistics: optimal derivation of statistical distributions

Maximum entropy with a simple constraint

 
Problem 1 find the continuous maximum entropy for function 𝑓 ∶ X → (0, 1) with support

X = [𝑎, 𝑏] where 𝑏 > 𝑎, such that it is a distribution. Formally, we seek to find function 𝑓(⋅) that
solves the problem

 max
𝑓(⋅)

 H[𝑓]  = −∫
𝑏

𝑎
𝑓(𝑥) ln(𝑓(𝑥)) 𝑑𝑥 (entropy functional) 

subject to 

G[𝑓]  = ∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 = 1 (functional constraint)

The solution is: function 𝑓 follows a uniform distribution with support X = [𝑎, 𝑏]

𝑓∗(𝑥) = 1
𝑏 − 𝑎 for any  𝑥 ∈ X = [𝑎, 𝑏].

 
To prove this result we write the Lagrangean functional

L[𝑓]  = ∫
𝑏

𝑎
𝐿(𝑓(𝑥), 𝜆)𝑑𝑥 = ∫

𝑏

𝑎
−𝑓(𝑥) ln(𝑓(𝑥)) − 𝜆𝑓(𝑥) 𝑑𝑥

  where 𝜆 is a Lagrange multiplier. The previously obtained the first-order conditions yield
𝛿L[𝑓∗]
𝛿𝑓(𝑥) = 𝜕𝐿(𝑓(𝑥))

𝜕𝑓   = −( ln(𝑓(𝑥)) + 1) − 𝜆 = 0

  if and only if 𝑓(𝑥) = 𝑒−(1+𝜆). Substituting in the constraint

G[𝑓]  = ∫
𝑏

𝑎
𝑒−(1+𝜆) 𝑑𝑥 = 1,

  we find 𝑒−(1+𝜆) = 1
𝑏−𝑎 and therefore 1 + 𝜆 = ln (𝑏 − 𝑎). Therefore 𝑓∗(𝑥) = 1/(𝑏 − 𝑎).
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Maximum entropy with constraints in the first and second moments

 
Problem 2:10  find the continuous maximum entropy distribution with support (−∞,∞) such

that the average satisfies 𝔼[𝑥] = 𝜇 and the variance satisfies 𝔼[(𝑥 − 𝜇)2] = 𝜎2, where 𝜇 and 𝜎 are
real numbers. Recall that

𝔼[𝑥] = ∫
∞

−∞
𝑥𝑓(𝑥)𝑑𝑥,

𝕍[𝑥] = ∫
∞

−∞
(𝑥 − 𝜇)2𝑓(𝑥)𝑑𝑥.

Formally, the problem is: find 𝑓 ∶ X → (0, 1), where X = (−∞,∞) that solves the problem

 max
𝑓(⋅)

H[𝑓]  = −∫
𝑏

𝑎
𝑓(𝑥) ln(𝑓(𝑥)) 𝑑𝑥,

subject to 

∫
∞

−∞
𝑓(𝑥)𝑑𝑥 = 1 (𝑓 is a density function) 

∫
∞

−∞
𝑥𝑓(𝑥)𝑑𝑥 = 𝜇 (with average equal to 𝜇) 

∫
∞

−∞
𝑥2𝑓(𝑥)𝑑𝑥 = 𝜎2 + 𝜇2 (with variance equal to 𝜎2). 

The last restriction is equivalent to 𝕍[𝑥] = 𝜎2, because

𝕍[𝑥]  = ∫
∞

−∞
(𝑥−𝜇)2𝑓(𝑥)𝑑𝑥 = ∫

∞

−∞
𝑥2𝑓(𝑥)𝑑𝑥−2∫

∞

−∞
𝜇𝑥𝑓(𝑥)𝑑𝑥+∫

∞

−∞
𝜇2𝑓(𝑥)𝑑𝑥 = ∫

∞

−∞
𝑥2𝑓(𝑥)𝑑𝑥−𝜇2.

 
Observation: the problem is to assume we have an unknown distribution which is required to

have an average equal to 𝜇 and a variance equal to 𝜎2, two known numbers, what is this distribution
if we require the principle of maximum entropy to apply ? The answer is: the normal distribution.

The Lagrangean functional is

L [𝑓]  = ∫
𝑏

𝑎
𝐿(𝑥, 𝑓(𝑥)) 𝑑𝑥 =

= ∫
𝑏

𝑎
−𝑓(𝑥) ln(𝑓(𝑥)) − 𝜆0𝑓(𝑥) − 𝜆1𝑥𝑓(𝑥) − 𝜆2𝑥2𝑓(𝑥)𝑑𝑥

  where 𝜆0, 𝜆1 and 𝜆2 are Lagrange multipliers (they are all numbers).
The first order condition is

𝛿L[𝑓∗]
𝛿𝑓(𝑥) = − ln(𝑓(𝑥)) − 1 − 𝜆0 − 𝜆1𝑥 − 𝜆2𝑥2 = 0

10See (Shannon, 1948, p.36), or (Cover and Thomas, 2006, ch. 12)
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  Therefore
𝑓(𝑥) = 𝑒−(1+𝜆0+𝜆1𝑥+𝜆2𝑥2)

  There are two methods for finding the solution:

1. First approach: conjecture that the solution is a Gaussian integral

𝑔(𝑥) = 𝑎𝑒− (𝑥−𝑏)2
2𝑐2

  where 𝑎, 𝑏, and 𝑐 are undetermined coefficients, and should be 𝑐 a real and positive number.
If the conjecture on the general form of the solution is correct, then we can obtain the three
parameters by substituting this function in the three constraints. Fortunately, this is the case
because we obtain a system of three equations in the three unknowns 𝑎, 𝑏, and 𝑐:

∫
∞

−∞
𝑔(𝑥)𝑑𝑥 = 𝑎

√
2𝜋𝑐

∫
∞

−∞
𝑥𝑔(𝑥)𝑑𝑥 = 𝑏𝑎

√
2𝜋𝑐

∫
∞

−∞
𝑥2𝑔(𝑥)𝑑𝑥 = 𝑎

√
2𝜋𝑐 (𝑏2 + 𝑐)

  Solving the system yields 𝑎 = 1
2𝜋𝜎2 , 𝑏 = 𝜇 and 𝑐 = 𝜎2, implying function 𝑔(𝑥) becomes

𝑔(𝑥) = 𝑒log (𝑎)− 1
2𝑐 (𝑥2−2𝑏𝑥+𝑏2).

  Matching the exponent with 𝑓(𝑥), we find the Lagrange multipliers

𝜆0 = −1 − ln (2𝜋𝜎2)− 1
2 + 𝜇2

2𝜎2 , 𝜆1 = − 𝜇
𝜎2 , 𝜆2 = 1

2𝜎2 .

 

2. Second approach: alternatively, we can substitute our candidate solution in the constraints
and try to determine the Lagrange multipliers. Assuming that Re(𝜆2) > 0, we find

∫
∞

−∞
𝑓(𝑥)𝑑𝑥 = √ 𝜋

𝜆2
𝑒−1−𝜆0+

𝜆2
1

4𝜆2 = 1

∫
∞

−∞
𝑥𝑓(𝑥)𝑑𝑥 = − 𝜆1

2𝜆2
∫

∞

−∞
𝑓(𝑥)𝑑𝑥 = 𝜇

∫
∞

−∞
𝑥2𝑓(𝑥)𝑑𝑥 = (𝜆2

1 + 2𝜆2
(2𝜆2)2

)∫
∞

−∞
𝑓(𝑥)𝑑𝑥 = 𝜎2 + 𝜇2.

We obtain a system of three equations for the Lagrange multipliers

√ 𝜋
𝜆2

𝑒−1−𝜆0+
𝜆2
1

4𝜆2 = 1

− 𝜆1
2𝜆2

= 𝜇

(𝜆2
1 + 2𝜆2
(2𝜆2)2

) = 𝜎2 + 𝜇2.

 

   If we solve it we obtain the same result.
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The optimal density function is the Normal distribution:

𝑓∗(𝑥) = 1√
2𝜋𝜎2 𝑒

− (𝑥−𝜇)2
2𝜎2 .

 

7.5 References

Generalized calculus in economics: Ok (2007), which observes that in most textbooks in functional
analysis there is not much applications to differential and integral calculus and applications to
optimizations.

Generalized calculus in applied mathematics: (Siddiqi, 2018, ch 5), (Drabek and Milota, 2013,
ch 3) 

Application of functional analysis to optimization, however with an emphasis in non-differentiable
functions Clarke (2013) 



Chapter 8

Introduction to optimal control: the
maximum principle approach

 

8.1 Introduction

The Pontriagin’s maximum principle (PMP), see Pontryagin et al. (1962), provides first order
necessary conditions for the optimal control problem, from a slightly different approach than the
Calculus of Variations approach. Although the two approaches lead to the same solution, when
applied to the same simple problems, the PMP can be more flexible when dealing with some type
of problems (singular problems, for instance). As we will see that the first-order conditions are
a system of two ordinary differential equations (and not an implicit second order ODE as in the
calculus of variations approach) it allows a more direct use of results from the theory of ODE’s, and
also to use geometrical methods when the constitutive functions of the problem are not completely
specified or the first-order conditions do not have explicit solutions. In this chapter we will consider
optimal control problems on a general state space X, and in the next chapter we consider problems
in which the independent variable is time.

We denote again the independent variable by 𝑥 and assume it has the domain X ⊆ ℝ. We can
write X = [𝑥0, 𝑥1] if it is a closed set, or X = (𝑥0, 𝑥1) if it is open, where 𝑥0 < 𝑥1 are fixed or
determined optimally, and 𝑥1 can be bounded or unbounded.

The optimal control problem has two variables we need to find: the state variable, denoted by
𝑦(𝑥) and the control variable, denoted by 𝑢(𝑥). As we consider only problems in which the state
variable is of dimension one, the state variable is a mapping 𝑦 ∶ X → Y ⊆ 𝑅 and the control variable
is a mapping   𝑢 ∶ X → U ⊆ 𝑅𝑚. That is, we may have more 𝑚 ≥ 1 control variables. Again it
is important to distinguish between the point-wise level  of variables, i.e 𝑦(𝑥′) and 𝑢(𝑥´), for a
specific 𝑥 = 𝑥′, from the curves or profiles traced out in the range of variables (𝑦(𝑥))𝑥∈X
and   (𝑢(𝑥))𝑥∈X.

A solution to an optimal control problem allows for finding optimal curves (optimal trajectories),
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traced out in the specified or optimized domain, (or time interval) according to one criterium (a
functional) and given some constraints. The constraints can be be specified point-wise for all the
domain of the independent variable, can be specified in particular points (usually boundary points
in X), or for all the domain.

If we can find an optimality criterium for the pointwise behavior of the state and control
variables, say functions 𝑦∗(𝑥) and 𝑢∗(𝑥) for every 𝑥 ∈ X then we can trace-out the optimal curves
𝑦∗ = (𝑦∗(𝑥))𝑥∈X and   𝑢∗ = (𝑢∗(𝑥))𝑥∈X.

An optimal control problem  consists in finding functions 𝑦 ∈ 𝒴 and 𝑢 ∈ 𝒰, where 𝒴 ∈
𝐶1(X), the set of continuous and continuously differentiable functions 𝑦 ∶ X → Y ⊆ ℝ, and 𝒰 ∈
𝑃𝐶1(X), the set of piecewise continuous functions 𝑢 ∶ X → 𝑈 ⊆ ℝ𝑚, such that

𝑦′(𝑥) = 𝐺(𝑦(𝑥), 𝑢(𝑥), 𝑥), for 𝑥 ∈ [𝑥0, 𝑥1] (8.1)

  that maximize the functional

J[𝑦, 𝑢] ≡ ∫
𝑥1

𝑥0

𝐹(𝑥, 𝑦(𝑥), 𝑢(𝑥)) 𝑑𝑥 (8.2)

  with side conditions, for the aggregate curve or point-wise on the boundaries of sets X and Y. The
additional data is related to the information concerning the boundary values of the independent
variable 𝑥0 and 𝑥1 and/or the boundary values for the state variable 𝑦(𝑥0) and 𝑦(𝑥1).

The necessary conditions for an optimum according to the Pontriyagin’s maximum princi-
ple are set by using the Hamiltonian function, defined as

𝐻(𝑥, 𝑦, 𝑢, 𝜆) = 𝐹(𝑥, 𝑦, 𝑢) + 𝜆𝐺(𝑥, 𝑦, 𝑢).

  where 𝜆, called the co-state variable, is a piecewise continuous mapping 𝜆 ∶ 𝑋 → ℝ.
Next we present the optimality conditions for a bounded domain, in section 8.2 , and problems

with integral constraints in section 8.3.

8.2 Constraints on boundaries

 
In this subsection we assume that the data of the problem includes the boundary values for

the independent variable: i.e., 𝑥0 and 𝑥1 are known. The optimal control problem is to find an
optimal control curve (𝑢∗(𝑥))𝑥∈[𝑥0,𝑥1] that maximizes the functional (8.2) subject to ODE constraint
(8.1) and, possibly additional information for the state variables at the boundary values for the
independent variable.

In other words: the bounds of the domain X are known and the limits of the curves 𝑦 ∈ Y,
traced out by 𝑦(𝑥) for 𝑥 ∈ X, may be known or may be chosen optimally.
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Formally, the problem is

 

max
𝑢(⋅)

∫
𝑥1

𝑥0

𝐹(𝑥, 𝑦(𝑥), 𝑢(𝑥)) 𝑑𝑥

subject to
𝑦′ = 𝐺(𝑦(𝑥), 𝑢(𝑥), 𝑥), for 𝑥 ∈ [𝑥0, 𝑥1]
𝑥0 and 𝑥1 given
conditions on 𝑦(𝑥0) and 𝑦(𝑥1)

(P1)

 
We can consider the following cases:

(a) both boundary values are known: 𝑦(𝑥0) = 𝑦0 and  𝑦(𝑥1) = 𝑦1 fixed;   (P1a)
(b) the lower boundary value is known: 𝑦(𝑥0) = 𝑦0 fixed and  𝑦(𝑥1) free;   (P1b)
(c) the upper boundary value is known: 𝑦(𝑥0) free  and  𝑦(𝑥1) = 𝑦1 fixed;   (P1c)
(d) both boundary values are free: 𝑦(𝑥0) and  𝑦(𝑥1) free; . (P1d)

 

Proposition 1. [First order necessary conditions for fixed boundary values of the in-
dependent variable] Let (𝑦∗, 𝑢∗) be a solution (curve) to the OC problem (P1) in which one of
the conditions (P1a), or (P1b), or (P1c) or (P1d) is introduced. Then there is a piecewise contin-
uous function 𝜆 ∶ [𝑥0, 𝑥1] → ℝ , called co-state variable, such that the curves (𝑦∗, 𝑢∗, 𝜆) satisfy the
following conditions:

• the optimality condition 1:

𝐻𝑢(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥)) = 0, for each  𝑥 ∈ [𝑥0, 𝑥1] (8.4)

• the multiplier equation

𝜆′(𝑥) = −𝐻𝑦(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥)), for each  𝑥 ∈ (𝑥0, 𝑥1) (8.5)

• the constraint of the problem:

𝑦∗′(𝑥) = 𝐺(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥)), for each  𝑥 ∈ (𝑥0, 𝑥1) (8.6)

• and the adjoint conditions associated to the boundary conditions (P1a) to (P1d)

– for problem (P1a)

𝑦∗(𝑥0) = 𝑦0 for 𝑥 = 𝑥0, and  𝑦∗(𝑥1) = 𝑦1 for 𝑥 = 𝑥1, (8.7)
1We use the notation 𝐻𝑢(𝑥, 𝑦(𝑥), 𝑢(𝑥), 𝜆(𝑥))  ≡ 𝜕𝐻(𝑥,𝑦(𝑥),𝑢(𝑥),𝜆(𝑥))

𝜕𝑢 is the derivative evaluated at point 𝑥 ∈ X for
any curves (𝑦, 𝑢,𝜆) and 𝐻𝑢(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥)) is the derivative evaluated for the optimal curves (𝑦∗, 𝑢∗). The
derivatives for 𝑦 are denoted in analogous way.
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– for problem (P1b)

𝑦∗(𝑥0) = 𝑦0 for 𝑥 = 𝑥0, and  𝜆(𝑥1) = 0 for 𝑥 = 𝑥1, (8.8)

– for problem (P1c)

𝜆(𝑥0) = 0 for 𝑥 = 𝑥0, and  𝑦∗(𝑥1) = 𝑦1 for 𝑥 = 𝑥1, (8.9)

– for problem (P1d)

𝜆(𝑥0) = 0 for 𝑥 = 𝑥0, and  𝜆(𝑥1) = 0 for 𝑥 = 𝑥1. (8.10)

Proof. (Heuristic) Let 𝑢∗ = (𝑢∗ (𝑥))𝑥∈X be an optimal control curve and let 𝑦∗ = (𝑦∗ (𝑥))𝑥∈X be
the associated state curve. The value of the problem is

J[𝑦∗, 𝑢∗] = ∫
𝑥1

𝑥0

𝐹(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥)) 𝑑𝑥.

  The pair (𝑦∗, 𝑢∗) is an optimiser if J[𝑦∗, 𝑢∗] ≥ J[𝑦, 𝑢] is satisfied for any other admissible pair of
functions (𝑢(𝑥), 𝑦(𝑥)).

It is convenient to write

J[𝑦∗, 𝑢∗] = ∫
𝑥1

𝑥0

𝐹(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥))𝑑𝑥 =

= ∫
𝑥1

𝑥0

[𝐹(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥)) + 𝜆(𝑥)(𝐺(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥)) − 𝑦∗′(𝑥))] 𝑑𝑥 =

= ∫
𝑥1

𝑥0

[𝐻(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥)) − 𝑦∗′(𝑥)𝜆(𝑥)]  𝑑𝑥

We introduce a perturbation on the optimal state-control pair (𝑦, 𝑢) = (𝑦∗, 𝑢∗) + 𝜀𝜂𝜂𝜂, where 𝜀
is a constant and 𝜂𝜂𝜂 = (𝜂𝑦, 𝜂𝑢). The admissible perturbations differ for the different versions of the
problem: for (P1a) we have 𝜂𝑦(𝑥0) = 𝜂𝑦(𝑥1) = 0, for (P1b) we have 𝜂𝑦(𝑥0) = 0 and 𝜂𝑦(𝑥1) ≠ 0, for
(P1c) we have 𝜂𝑦(𝑥0) ≠ 0 and 𝜂𝑦(𝑥1) = 0, and for (P1d) we have 𝜂𝑦(𝑥0) ≠ 0 and 𝜂𝑦(𝑥1) ≠ 0.

The first-order Taylor approximation of the functional at (𝑦∗, 𝑢∗) is

J[𝑦, 𝑢] = J[𝑦∗, 𝑢∗] + 𝐷𝜂𝜂𝜂(⋅) J[𝑦∗, 𝑢∗] 𝜖 + 𝑜(𝜖2)

  where the Gâteaux differential is

𝐷𝜂𝜂𝜂(⋅) J[𝑦∗, 𝑢∗] = ∫
𝑥1

𝑥0

{ 𝐻𝑢(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥)) 𝜂𝑢(𝑥) + 𝐻𝑦(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥)) 𝜂𝑦(𝑥) − 𝜆(𝑥)𝜂′𝑦(𝑥) }𝑑𝑥 =

= ∫
𝑥1

𝑥0

{𝐻𝑢(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥)) 𝜂𝑢(𝑥) + (𝐻𝑦(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥)) + 𝜆′(𝑥)) 𝜂𝑦(𝑥)}  𝑑𝑥+

+ 𝜆(𝑥0)𝜂𝑦(𝑥0) − 𝜆(𝑥1)𝜂𝑦(𝑥1).
  Then J[𝑦, 𝑢] ≤ J[𝑦∗, 𝑢∗] only if 𝐷𝜂𝜂𝜂(⋅) J[𝑦∗, 𝑢∗] = 0, which, using similar arguments as in the
case of the calculus of variations problem, is equivalent to the Pontriyagin’s conditions: 𝐻𝑢(.) =
𝜆′ − 𝐻𝑦(.) = 0. The adjoint constraints should verify 𝜆(𝑥0)𝜂𝑦(𝑥0) = 𝜆(𝑥1)𝜂𝑦(𝑥1) = 0. From this
and the admissibility values for 𝜂𝑦(𝑥0) and 𝜂𝑦(𝑥1) then the adjoint constraints are as in equations
(8.7) to (8.10)
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8.2.1 Constraints on the boundary values of the independent variable

 
In this subsection we consider the case in which one or both bounds in the domain of independent

variables can be optimally chosen, i.e 𝑥 ∈ X∗ = [𝑥∗
0, 𝑥∗

1], where one or both 𝑥∗
𝑗, for 𝑗 = 0, 1 are

free, but the boundary values for the state variable are fixed: i.e. 𝑦(𝑥∗
0) = 𝑦0 and/or 𝑦(𝑥∗

1) = 𝑦1
are fixed. The optimal control problem is to find the optimal cut-off values for the independent
variable, 𝑥∗

0 and/or 𝑥∗
1 and an optimal control (𝑢∗(𝑥))𝑥∈[𝑥∗

0,𝑥∗
1]

that maximizes the functional (8.2)
subject to ODE constraint (8.1).

In other words: the bounds of the domain X∗ can be known or can be chosen optimally while
the limits of the curves 𝑦 ∈ Y, traced out by 𝑦(𝑥) for 𝑥 ∈ X∗ are known.

Formally, the problem is

 

max
𝑢(⋅)

∫
𝑥1

𝑥0

𝐹(𝑥, 𝑦(𝑥), 𝑢(𝑥)) 𝑑𝑥

subject to
𝑦′ = 𝐺(𝑦(𝑥), 𝑢(𝑥), 𝑥), for 𝑥 ∈ [𝑥0, 𝑥1]
𝑦(𝑥0) = 𝑦0 and 𝑦(𝑥1) = 𝑥1 given
conditions on𝑥0 and 𝑥1

(P2)

 
We can consider the following cases:

(a) both cut-offs are known: 𝑥0 and  𝑥1 fixed;   (P2a)
(b) the lower cut-off is known: 𝑥0 fixed  and  𝑥1 free;   (P2b)
(c) the upper cut-off is known: 𝑥1 free  and  𝑥1 fixed;   (P2c)
(d) both cut-offs are free: 𝑥0 and  𝑥1 free; . (P2d)

 

Proposition 2 (First order necessary conditions for free domain and fixed boundary
state variable optimal control problems). Let (𝑦∗, 𝑢∗) be a solution curve to the OC problem
(P2) where 𝑦(𝑥0) = 𝑦0 and 𝑦(𝑥1) = 𝑦1 are fixed. Then there is an optimal domain for the
independent variable 𝑥∗ = [𝑥∗

0, 𝑥∗
1] ⊂ ℝ, a piecewise continuous function 𝜆 ∶ 𝑥∗ → ℝ , called co-state

variable, such that (𝑦∗, 𝑢∗, 𝜆) satisfy the optimality condition (8.4), the multiplier equation (8.5) and
the ODE constraint of the problem (8.6), all for 𝑥 ∈ Int(X∗) and the adjoint conditions associated
to the boundary conditions (P2a) to (P2d)

• for problem (P2a) 𝑦∗(𝑥0) = 𝑦0 and 𝑦∗(𝑥∗
1) = 𝑦1 and 𝑥0 and 𝑥1 are fixed;

• for problem (P2b) 𝑦∗(𝑥0) = 𝑦0 and 𝑦∗(𝑥∗
1) = 𝑦1 and

𝑥∗
0 = 𝑥0 and  𝐻(𝑥∗

1, 𝑦1, 𝑢∗(𝑥∗
1)) − 𝑦∗′(𝑥∗

1)𝜆(𝑥∗
1) = 0; (8.12)
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• for problem (P2c) 𝑦∗(𝑥∗
0) = 𝑦0 and 𝑦∗(𝑥1) = 𝑦1 and

𝐻(𝑥∗
0, 𝑦0, 𝑢∗(𝑥∗

0)) − 𝑦∗′(𝑥∗
0)𝜆(𝑥∗

0) = 0 and  𝑥∗
1 = 𝑥1; (8.13)

• for problem (P2d) 𝑦∗(𝑥∗
0) = 𝑦0 and 𝑦∗(𝑥∗

1) = 𝑦1 and

𝐻(𝑥∗
0, 𝑦0, 𝑢∗(𝑥∗

0)) − 𝑦∗′(𝑥∗
0)𝜆(𝑥∗

0) = 0 and  𝐻(𝑥∗
1, 𝑦1, 𝑢∗(𝑥∗

1)) − 𝑦∗′(𝑥∗
1)𝜆(𝑥∗

1) = 0. (8.14)

Proof. In this case in addition to the optimal pair (𝑦∗, 𝑢∗) we have to find optimal boundary values
for the independent variables, 𝑥∗

0 and 𝑥∗
1. Using the same method as in the previous proof, but

introducing additional perturbations for the terminal values of the independent variables, 𝑥𝑗 =
𝑥∗
𝑗 + 𝜀𝜒𝑗 for 𝑗 ∈ {0, 1}, 2  the Gâteaux differential of the value functional becomes

𝐷(𝜂(⋅),𝜒)J[𝑦∗, 𝑢∗; 𝑥∗] =∫
𝑥∗
1

𝑥∗
0

(𝐻𝑢(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥))𝜂𝑢(𝑥) + 𝐻𝑦(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥))𝜂𝑦(𝑥) − 𝜆(𝑥)𝜂′𝑦(𝑥)) 𝑑𝑥+

+ 𝐻(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥))|𝑥=𝑥∗
1
𝜒1 − 𝐻(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥))|𝑥=𝑥∗

0
𝜒0.

Denoting 𝐻∗(𝑥) = 𝐻(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥)), and integrating by parts, yields

𝐷(𝜂(⋅),𝜒)J[𝑦∗, 𝑢∗; 𝑥∗]  =∫
𝑥∗
1

𝑥∗
0

(𝐻∗
𝑢(𝑥)𝜂𝑢(𝑥) + (𝐻∗

𝑦(𝑥) + 𝜆′(𝑥)) 𝜂𝑦(𝑥)) 𝑑𝑥 + 𝜆(𝑥∗
0)𝜂𝑦(𝑥∗

0) − 𝜆(𝑥∗
1)𝜂𝑦(𝑥∗

1)+

+𝐻∗(𝑥∗
1)𝜒1 −𝐻∗(𝑥∗

0)𝜒0.

  Using the approximation 𝜂(𝑥𝑗) ≈ 𝜂(𝑥∗
𝑗) + 𝑦′(𝑥∗

𝑗) 𝜒𝑗, for 𝑗 = 0, 1, 3 yields

𝐷(𝜂(⋅),𝜒)J[𝑦∗, 𝑢∗; 𝑥∗] =∫
𝑥∗
1

𝑥∗
0

(𝐻∗
𝑢(𝑥)𝜂𝑢(𝑥) + (𝐻∗

𝑦(𝑥) + 𝜆′(𝑥)) 𝜂𝑦(𝑥)) 𝑑𝑥 + 𝜆(𝑥∗
0)𝜂0 − 𝜆(𝑥∗

1)𝜂1+

+ (𝐻∗(𝑥∗
1) − 𝑦∗′(𝑥∗

1)𝜆(𝑥∗
1)) 𝜒1 − (𝐻∗(𝑥∗

0) − 𝑦∗′(𝑥∗
0)𝜆(𝑥∗

0)) 𝜒0

(8.15)

  The adjoint necessary conditions for the optimum, because 𝜂1 = 𝜂0 = 0, are presented, for the
different versions of the problem, in equations (8.12) to (8.14).

8.2.2 A taxonomy for optimal control problems

This is a general case that encompasses combinations of all the previous cases: we assume both
the domains of the independent variables and the boundary values of the state variables are free.
That is 𝑥0 and/or 𝑥1 can be fixed or free and 𝑦(𝑥0) and/or 𝑦(𝑥1) can be fixed or free.

When there is a free boundary condition, for the independent variable 𝑥 or for the state variable
𝑦(𝑥), it should be optimized. In the first case, the optimal control problem is to find the optimal cut-
off values for the indepdendent variable, 𝑥∗

0 and/or 𝑥∗
1 and an optimal control (𝑢∗(𝑥))𝑡∈[𝑥∗

0,𝑥∗
1]

that
maximizes the functional (8.2) subject to ODE constraint (??) and having fixed or free boundary

2For more details see the proofs of propositions ?? and 1, in chapter ??.
3As in the proof of Proposition ?? in chapter ??, and analogous to equation (??).
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values for the state variable. In the second case, the optimal control problem is to find the optimal
boundary values for the state variable , 𝑦∗(𝑥0) and/or 𝑦∗(𝑥1) and an optimal control (𝑢∗(𝑥))𝑡∈[𝑥0,𝑥1]
that maximizes the functional (8.2) subject to ODE constraint (??) and having fixed or free cut-off
values for the independent variable.

The necessary conditions include the optimality condition (8.4), the multiplier equation (8.5)
and the ODE constraint of the problem (8.6), all for 𝑥 ∈ int(𝑥∗). To get the adjoint condition
associated to the terminal values of the state variable, when they need to be optimized, are obtained
by setting in equation (8.15), 𝜂0 ≠ 0 and 𝜂1 ≠ 0. Therefore, the adjoint condition associated to
𝑦∗(𝑥∗

𝑗) and 𝜆(𝑥∗
𝑗) = 0, implying that the adjoint condition associated to the optimal boundary value

of the independent variable, 𝑥∗
𝑗 is 𝐻∗(𝑥∗

𝑗) = 0, for 𝑗 = 0, 1.
The adjoint conditions presented in Table 8.1 cover the 16 possible cases:

Table 8.1: Adjoint conditions for bounded domain OC problems

data optimum
𝑥𝑗 𝑦(𝑥𝑗) 𝑥∗

𝑗 𝑦∗(𝑥∗
𝑗)

fixed fixed 𝑥𝑗 𝑦𝑗
fixed free 𝑥𝑗 𝜆(𝑥𝑗) = 0
free fixed 𝐻(𝑥∗

𝑗, 𝑦𝑗, 𝑢∗(𝑥∗
𝑗)) − 𝑦∗′(𝑥∗

𝑗)𝜆(𝑥∗
𝑗) = 0 𝑦𝑗

free free 𝐻(𝑥∗
𝑗, 𝑦∗(𝑥∗

𝑗), 𝑢∗(𝑥∗
𝑗)) = 0 𝜆(𝑥∗

𝑗) = 0

The index 𝑗 refers to the lower boundary when 𝑗 = 0 and to the upper boundary when 𝑗 = 1, 𝑦𝑗 and
𝑥𝑗 refer to the cases when the values are fixed, and 𝑦∗𝑗 and 𝑥∗

𝑗 when they are optimally determined.

8.2.3 Example

 
Let X = [𝑥, 𝑥] where the two boundaries are not necessarily fixed, has the following problem

max
𝑢(⋅)

 ∫
𝑥

𝑥
 𝑝 𝑦(𝑥) − 1

2 (𝑢(𝑥))2 𝑑𝑥

subject to 
𝑦′(𝑥) = 𝑢(𝑥) − 𝛿 𝑦(𝑥)
other side conditions

(8.16)

  where 𝑦(𝑥) represents quantities of a product sold in location 𝑥, 𝑢(𝑥) is the net increase in sales
in location 𝑥 and 𝑝 is the price, assuming that the firm is price taking and that there is no spatial
discrimination and the market price is the same everywhere. It is assumed there are quadratic
adjustment costs for targeting a particular location. The side conditions correspond for different
cases presented in Table 8.1.

The Hamiltonian for this control problem is

𝐻(𝑦, 𝑢, 𝜆) = 𝑝 𝑦 + 𝜆 (𝑢 − 𝛿 𝑦).
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The static optimality and the canonical conditions are

𝑢(𝑥) = 𝜆(𝑥)
𝜆′(𝑥) = 𝛿 𝜆(𝑥) − 𝑝.

Therefore, an optimal distribution (𝑦∗(𝑥), 𝑢∗(𝑥))
𝑥∈X

, satisfies the linear planar ODE

𝑦′(𝑥) = 𝑢(𝑥) − 𝛿 𝑦(𝑥)  (8.17a)
𝑢′(𝑥) = 𝛿 𝑢(𝑥) − 𝑝 (8.17b)

plus the side conditions and their duals. Solving the linear ODE system (8.17a)-(8.17b) yields a
general solution for 𝑥 ∈ X

𝑦(𝑥) = 𝑝
𝛿2 + ℎ1 𝑒−𝛿𝑥  + ℎ2 𝑒𝛿 𝑥   (8.18a)

𝑢(𝑥) = 𝑝
𝛿 + 2 𝛿 ℎ2 𝑒𝛿 𝑥 (8.18b)

where ℎ1 and ℎ2 are two arbitrary constants. Next we consider four cases.

Fixed initial boundary values for the independent and for the state variable We assume
𝑥 and 𝑥 are fixed and the associated values of sales are fixed as well 𝑦(𝑥) = 𝑦 and 𝑦(𝑥) = 𝑦.

Using the general solution for the state variable (8.18a) for the two terminal values for the
independent variable and their associated values for 𝑦 we obtain a linear system on the two arbitrary
constants ℎ1 and ℎ2,

𝑦 = 𝑝
𝛿2 + ℎ1 𝑒−𝛿𝑥  + ℎ2 𝑒𝛿 𝑥

𝑦 = 𝑝
𝛿2 + ℎ1 𝑒−𝛿𝑥  + ℎ2 𝑒𝛿 𝑥.

 

Solving this system and substituting back in equation (8.18a) and (8.18b), yields the solution to
the problem

𝑦∗  = 𝑝
𝛿2   + (𝑦  − 𝑝

𝛿2)(𝑒𝛿 (𝑥−𝑥) − 𝑒𝛿 (𝑥−𝑥)

𝑒𝛿 (𝑥−𝑥) − 𝑒𝛿 (𝑥−𝑥  ) + (𝑦  − 𝑝
𝛿2)(𝑒𝛿 (𝑥−𝑥) − 𝑒𝛿 (𝑥−𝑥)

𝑒𝛿 (𝑥−𝑥) − 𝑒𝛿 (𝑥−𝑥  ), for  𝑥 ∈ [𝑥, 𝑥]

and

𝑢∗(𝑥) = 𝑝
𝛿 + 2𝛿(

(𝑦  − 𝑝
𝛿2) 𝑒𝛿 (𝑥−𝑥) − (𝑦  − 𝑝

𝛿2) 𝑒𝛿 (𝑥−𝑥)

𝑒𝛿 (𝑥−𝑥) − 𝑒𝛿 (𝑥−𝑥  ).

  

8.3 Extension: integral constraints

In this section we present an optimal control problem in which there is a integral constraint of the
iso-perimetric type, that is a constraint involving the integration of a known function of the state,
and or control variables for all the domain of the independent variable. This case should not be
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confused to other types of optimal control problems in which there are integral constraints only
for a sub-domain of the independent variable. While in the case we deal here, the constraint is of
dimension zero (it is a scalar) in the second case the constraint is infinite-dimensional. This means
that while in the case we address here we associate an adjoint variable, in the second case we to
introduce an adjoint function.

Let the the independent variable be 𝑥 ∈ X ⊆ ℝ, where X = [𝑥0, 𝑥1], the state variable be
𝑦 ∶ X →→ ℝ, and the control variable be 𝑢 ∶ X → ℝ.

We consider the following constraints

∫
𝑥1

𝑥0

𝐺0 (𝑥, 𝑦(𝑥), 𝑢(𝑥)) 𝑑𝑥 ≤ ̄𝐺 (8.19a)

𝑑𝑦(𝑥)
𝑑𝑥 = 𝐺1 (𝑥, 𝑦(𝑥), 𝑢(𝑥)) 𝑥 ∈ X (8.19b)

𝑥0, 𝑥1, 𝑦(𝑥0), 𝑦(𝑥1) free (8.19c)

where ̄𝐺 is a constant.
The problem is

  max
𝑥0,𝑥1,𝑢(⋅)

∫
𝑥1

𝑥0

𝐹(𝑥, 𝑦(𝑥), 𝑦′(𝑥))𝑑𝑥

subject to 

∫
𝑥1

𝑥0

𝐺0(𝑥, 𝑦(𝑥), 𝑢(𝑥))𝑑𝑥 ≤ ̄𝐺

𝑑𝑦(𝑥)
𝑑𝑥 = 𝐺1(𝑥, 𝑦(𝑥), 𝑢(𝑥)), 𝑥 ∈ X

𝑥0, 𝑥1, 𝑦(𝑥0), 𝑦(𝑥1) free

(ICP)

 
This problem optimal control problem has one functional constraint of the iso-perimetric type,

(8.19a), one ordinary differential equation constraint, (8.19b), and has free initial and terminal
indices and free initial and terminal values for the state variable .

There are several versions for this problem. For instance: (1) the simplest problem is the one in
which 𝑥0, 𝑥1, 𝑦(𝑥0) and 𝑦(𝑥1) are fixed; (2) the free terminal problem which is common in optimal
control problems in which the index variable is time in which 𝑥0 and 𝑦(𝑥0) are known and 𝑥1 and
𝑦(𝑥1) are free; (3) a problem in which the limit values of the indices, 𝑥0 and 𝑥1, are fixed and the
state values, 𝑦(𝑥0) and 𝑦(𝑥1), are free; or (4) a problem in which the limit values of the indices, 𝑥0
and 𝑥1, are free and the state values, 𝑦(𝑥0) and 𝑦(𝑥1), are fixed.

We define the Hamiltonian function

𝐻 (𝑥, 𝑦, 𝑢, 𝜆0, 𝜆1) = 𝐹 (𝑥, 𝑦, 𝑢) − 𝜆0𝐺0 (𝑥, 𝑦, 𝑢) + 𝜆1𝐺1 (𝑥, 𝑦, 𝑢)

where 𝜆0 is a constant, and 𝜆1 is a mapping 𝜆1 ∶ X → ℝ. The maximized Hamiltonian, is

𝐻∗(𝑥) = 𝐻(𝑥, 𝑦∗(𝑥), 𝑦∗(𝑥), 𝜆0, 𝜆1(𝑥)) = max
𝑢(⋅)

 𝐻 (𝑥, 𝑦(𝑥), 𝑢(𝑥), 𝜆0, 𝜆1(𝑥)) , for each  𝑥 ∈ X.
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Proposition 3.  [First order necessary conditions for the integral-constrained optimal
control problem] Let (𝑦∗, 𝑢∗) be a solution to the OC problem (ICP). Then there is a variable
𝜆0 and a piecewise continuous function 𝜆 ∶ X → ℝ , such that (𝑦∗, 𝑢∗, 𝜆0, 𝜆1) satisfy the following
conditions:

• the optimality condition:
𝐻∗

𝑢(𝑥) = 0, for 𝑥 ∈ [𝑥∗
0, 𝑥∗

1] (8.20)

• the multiplier equation
𝜆′
1(𝑥) + 𝐻∗

𝑦(𝑥) = 0, for 𝑥 ∈ [𝑥∗
0, 𝑥∗

1] (8.21)

• initial and terminal conditions associated to the independent and state variables

𝜆1(𝑥∗
𝑗) = 0, for 𝑗 = 0, 1 (8.22a)

𝐻∗(𝑥∗
𝑗) − 𝜆𝑗(𝑥∗

𝑗) 𝑦∗
′(𝑥∗

𝑗) = 0, for 𝑗 = 0, 1 (8.22b)

• for admissible solutions, i.e., satisfying

∫
𝑥∗
1

𝑥∗
0

𝐺0 (𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥)) 𝑑𝑥 = ̄𝐺 (8.23a)

𝑦∗′(𝑥) = 𝐺1 (𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥)) 𝑥 ∈ (𝑥∗
0, 𝑥∗

1) (8.23b)

Proof. The value functional at the optimum is

J∗  = ∫
𝑥∗
1

𝑥∗
0

𝐹 (𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥)) 𝑑𝑥. (8.24)

Equivalently, substituting the definition of the Hamiltonian and using integration by parts

J∗ = ∫
𝑥∗
1

𝑥∗
0

(𝐻 (𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆0, 𝜆1(𝑥)) − 𝑦∗′(𝑥)) 𝑑𝑥 + 𝜆0 ̄𝐺

= ∫
𝑥∗
1

𝑥∗
0

(𝐻(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆0, 𝜆1(𝑥)) + 𝜆′
1(𝑥)𝑦∗(𝑥)) 𝑑𝑥 + 𝜆1(𝑥∗

1) 𝑦∗ (𝑥∗
1) − 𝜆1 (𝑥∗

0) 𝑦∗ (𝑥∗
0) + 𝜆0 ̄𝐺

  Introduce the arbitrary (functional) perturbations 𝑦∗(𝑥) → 𝑦(𝑥) = 𝑦∗(𝑥)+𝜀𝜂𝑦(𝑥), 𝑢∗(𝑥) → 𝑢(𝑥) =
𝑢∗(𝑥)+𝜀𝜂𝑢(𝑥), and the (point) perturbations 𝑥∗

𝑡 → 𝑥𝑡 = 𝑥∗
𝑡+𝜀𝜒𝑡, for 𝑡 = 0, 1 and 𝑦∗𝑡 → 𝑦𝑡 = 𝑦∗𝑡+𝜀𝜄𝑡,

for 𝑡 = 0, 1, such that
𝜄(𝑥∗

𝑡) = 𝜄𝑡 − 𝑦′(𝑥∗
𝑡) 𝜒𝑡, 𝑡 = 0, 1 (8.25)

  At the optimum 𝛿J[𝑦∗, 𝑢∗] = 0 where the variational derivative is

𝛿J[𝑦∗, 𝑢∗] = lim
𝜖→0

ΔJ
𝜖
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  where ΔJ = J[𝑦∗ + 𝜀𝜄, 𝑢∗ + 𝜀𝜂𝑢] − J[𝑦∗, 𝑢∗]. Using derivations from the previous problems we find

ΔJ[𝑦, 𝑢] = ∫
𝑥∗
1

𝑥∗
0

[𝐻 (𝑥, 𝑦∗(𝑥) + 𝜀𝜂𝑦(𝑥), 𝑢∗(𝑥) + 𝜀𝜂𝑢(𝑥), 𝜆0, 𝜆1(𝑥)) − 𝐻 (𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆0, 𝜆1(𝑥)) +

+𝜆′
1(𝑥) (𝑦∗(𝑥) + 𝜀𝜂𝑦(𝑥) − 𝑦∗(𝑥))]  𝑑𝑥+

+ 𝜆1(𝑥∗
1) (𝑦∗(𝑥∗

1) + 𝜀𝜂𝑦(𝑥∗
1)) − 𝜆1(𝑥∗

0) (𝑦∗(𝑥∗
0) + 𝜀𝜂𝑦(𝑥∗

0)) − 𝜆1(𝑥∗
1)𝑦∗(𝑥∗

1) + 𝜆1(𝑥∗
0)𝑦∗(𝑥∗

0)+
+ (𝐻 (𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆0, 𝜆1(𝑥))|𝑥=𝑥∗

1
)𝜒1 − (𝐻 (𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆0, 𝜆1(𝑥))|𝑥=𝑥∗

0
)𝜒0

  Using a first-order Taylor approximation and equation (8.25), collecting terms, factoring out and
simplifying the notation we have,

𝛿J[𝑦, 𝑢]  = ∫
𝑥∗
1

𝑥∗
0

[ 𝐻∗
𝑢(𝑥)𝜂𝑢(𝑥) + (𝐻∗

𝑦(𝑥) + 𝜆′
1(𝑥)) 𝜂𝑦(𝑥)]  𝑑𝑥 + 𝜆1(𝑥∗

1)𝜂𝑦(𝑥∗
1) − 𝜆1(𝑥∗

0)𝜂𝑦(𝑥∗
0)+

+𝐻∗(𝑥∗
1)𝜒1 −𝐻∗(𝑥∗

0)𝜒0  =

= ∫
𝑥∗
1

𝑥∗
0

[ 𝐻∗
𝑢(𝑥)𝜂𝑢(𝑥) + (𝐻∗

𝑦(𝑥) + 𝜆′
1(𝑥)) 𝜂𝑦(𝑥)]  𝑑𝑥+

+ 𝜆1(𝑥∗
1)𝜄1 − 𝜆1(𝑥∗

0)𝜄0 + (𝐻∗(𝑥∗
1) − 𝜆1(𝑥∗

1)(𝑦∗)
′(𝑥∗

1)) 𝜒1 − (𝐻∗(𝑥∗
0) − 𝜆1(𝑥∗

0)(𝑦∗)
′(𝑥∗

0)) 𝜒0,

  at the optimum 𝛿J [𝑦∗, 𝑢∗] = 0 from which we derive equations (8.20)-(8.22b).

 



Chapter 9

Introduction to optimal control: the
maximum principle approach in the
time domain

 

9.1 Introduction

In most applications in macroeconomics and growth theory the independent variable is time. In
this case there is a rich characterisation of the solutions by seen them through the lens of dynamic
systems theory. In particular, there is a closed connection between the existence and uniqueness of
solutions and the fact they have a saddle-point structure.

In problems in which time is the independent variable we use instead 𝑡 as the independent
variable and T ⊆ ℝ+ as its domain, and we usually set 𝑡0 = 0, and 𝑡1 = 𝑇 finite or 𝑡1 = ∞.
Again, the optimal control problem features two variables we need to find: the state variable,
𝑦(𝑡), and the control variable, 𝑢(𝑡). We consider again only problems in which the state variable
is of dimension one, the state variable is a mapping 𝑦 ∶ T → Y ⊆ 𝑅, and the control variable is
a mapping 𝑚−dimensional mapping   𝑢 ∶ T → U ⊆ 𝑅𝑚, where 𝑚 ≥ 1, and it is important to
distinguish between the temporary level  of variables, i.e 𝑦(𝑡′) and 𝑢(𝑡´), for a specific 𝑡 = 𝑡′,
from the paths or trajectories over the some time-domain 𝑦 = (𝑦(𝑡))𝑡∈T and   𝑢 = (𝑢(𝑡))𝑡∈T.

A solution to an optimal control problem allows for finding optimal trajectories, 𝑦∗ = (𝑦∗(𝑡))𝑡∈T
and 𝑢∗ = (𝑢∗(𝑡))𝑡∈T, traced out over a time interval, according to one criterium (a functional),
and given some other constraints. The constraints can be be specified for the whole time domain
domain, for points in time (usually the initial and the terminal times), or for every points in the
time domain (we will see this case in the next chapter).

Formally, the optimal control problem  consists in finding functions 𝑦 ∈ 𝒴 and 𝑢 ∈ 𝒰,
where 𝒴 ∈ 𝐶1(ℝ), the set of continous and continuously differentiable functions 𝑦 ∶ T → Y ⊆ ℝ,

42
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and 𝒰 ∈ 𝑃𝐶1(ℝ), the set of piecewise continuous functions 𝑢 ∶ T → 𝑈 ⊆ ℝ𝑚, governed by the ODE

̇𝑦 = 𝐺(𝑦(𝑡), 𝑢(𝑡), 𝑡), for 𝑡 ∈ [𝑡0, 𝑡1] (9.1)

  and maximizes the functional

J[𝑦, 𝑢] ≡ ∫
𝑡1

𝑡0
𝐹(𝑡, 𝑦(𝑡), 𝑢(𝑡))𝑑𝑡 (9.2)

  subject to additional constraints on the aggregate curve or on the boundaries of sets T and Y. The
additional data is related to the information concerning the boundary values of the independent
variable 𝑡0 and 𝑡1 and the boundary values for the state variable 𝑦(𝑡0) and 𝑦(𝑡1).

The necessary conditions for an optimum according to the Pontriyagin’s maximum princi-
ple are set by using the Hamiltonian function, defined as

𝐻(𝑡, 𝑦, 𝑢, 𝜆) = 𝐹(𝑡, 𝑦, 𝑢) + 𝜆𝐺(𝑡, 𝑦, 𝑢).

  where 𝜆 is a piecewise continuous function 𝜆 ∶ T → ℝ.
Next we present the optimality conditions for a bounded domain in section 9.2, in section 9.3

we deal with other specific problems when time is the independent variable 9.3, in section 9.4 we
study the generic dynamics of the solution of optimal control problems, and in section 9.5 several
economic applications can be found

9.2 Constraints on boundaries states and times

 
Just for completeness, in this section we deal with the cases analogous to section 8.2 of chapter

??. We skip proofs as they were already provides in that chapter.

9.2.1 Constraints on the boundary values of the state variables

In this subsection we assume that the data of the problem includes the boundary values for the
independent variable: i.e., 𝑡0 and 𝑡1 are known. The optimal control problem is to find an optimal
control curve (𝑢∗(𝑡))𝑡∈[𝑡0,𝑡1] that maximizes the functional (9.2) subject to ODE constraint (9.1) and,
possibly additional information for the state variables at the boundary values for the independent
variable.

In other words: the bounds of the domain T are known and the limits of the curves 𝑦 ∈ Y,
traced out by 𝑦(𝑡) for 𝑡 ∈ T, may be known or may be chosen optimally.
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Formally, the problem is

 

max
𝑢(⋅)

∫
𝑡1

𝑡0
𝐹(𝑡, 𝑦(𝑡), 𝑢(𝑡)) 𝑑𝑡

subject to
̇𝑦 = 𝐺(𝑦(𝑡), 𝑢(𝑡), 𝑡), for 𝑡 ∈ [𝑡0, 𝑡1]

𝑡0 and 𝑡1 given
conditions on 𝑦(𝑡0) and 𝑦(𝑡1)

(P1)

 
We can consider the following cases:

(a) both boundary values are known: 𝑦(𝑡0) = 𝑦0 and  𝑦(𝑡1) = 𝑦1 fixed;   (P1a)
(b) the lower boundary value is known: 𝑦(𝑡0) = 𝑦0 fixed and  𝑦(𝑡1) free;   (P1b)
(c) the upper boundary value is known: 𝑦(𝑡0) free  and  𝑦(𝑡1) = 𝑦1 fixed;   (P1c)
(d) both boundary values are free: 𝑦(𝑡0) and  𝑦(𝑡1) free; . (P1d)

 

Proposition 1. [First order necessary conditions for fixed boundary values of the in-
dependent variable] Let (𝑦∗, 𝑢∗) be a solution (curve) to the OC problem (P2) in which one of the
conditions (P2a), or (P2b), or (P2c) or (P2d) is introduced. Then there is a piecewise continuous
function 𝜆 ∶ [𝑡0, 𝑡1] → ℝ , called co-state variable, such that the curves (𝑦∗, 𝑢∗, 𝜆) satisfy the following
conditions:

• the optimality condition 1:

𝐻𝑢(𝑡, 𝑦∗(𝑡), 𝑢∗(𝑡), 𝜆(𝑡)) = 0, for each  𝑡 ∈ [𝑡0, 𝑡1] (9.4)

• the multiplier equation

�̇� = −𝐻𝑦(𝑡, 𝑦∗(𝑡), 𝑢∗(𝑡), 𝜆(𝑡)), for each  𝑡 ∈ (𝑡0, 𝑡1) (9.5)

• the constraint of the problem:

̇𝑦∗ = 𝐺(𝑡, 𝑦∗(𝑡), 𝑢∗(𝑡)), for each  𝑡 ∈ (𝑡0, 𝑡1) (9.6)

• and the adjoint conditions associated to the boundary conditions (P2a) to (P2d)

– for problem (P2a)

𝑦∗(𝑡0) = 𝑦0 for 𝑡 = 𝑡0, and  𝑦∗(𝑡1) = 𝑦1 for 𝑡 = 𝑡1, (9.7)
1We use the notation 𝐻𝑢(𝑥, 𝑦(𝑡), 𝑢(𝑡), 𝜆(𝑥))  ≡ 𝜕𝐻(𝑥,𝑦(𝑡),𝑢(𝑡),𝜆(𝑥))

𝜕𝑢 is the derivative evaluated at point 𝑡 ∈ T for
any curves (𝑦, 𝑢,𝜆) and 𝐻𝑢(𝑥, 𝑦∗(𝑥), 𝑢∗(𝑥), 𝜆(𝑥)) is the derivative evaluated for the optimal curves (𝑦∗, 𝑢∗). The
derivatives for 𝑦 are denoted in analogous way.
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– for problem (P2b)

𝑦∗(𝑡0) = 𝑦0 for 𝑡 = 𝑡0, and  𝜆(𝑡1) = 0 for 𝑡 = 𝑡1, (9.8)

– for problem (P2c)

𝜆(𝑡0) = 0 for 𝑡 = 𝑡0, and  𝑦∗(𝑡1) = 𝑦1 for 𝑡 = 𝑡1, (9.9)

– for problem (P2d)

𝜆(𝑡0) = 0 for 𝑡 = 𝑡0, and  𝜆(𝑡1) = 0 for 𝑡 = 𝑡1. (9.10)

Proof.  See proof of Proposition 1 in Chapter 8, for a generic independent variable 𝑥.

 

9.2.2 Constraints on the boundary values of the independent variable

 
Now consider the case in which one or both bounds in the domain of independent variables

can be optimally chosen, i.e 𝑡 ∈ T∗ = [𝑡∗0, 𝑡∗1], where one or both 𝑡∗𝑗, for 𝑗 = 0, 1 are free, but
the boundary values for the state variable are fixed: i.e. 𝑦(𝑡∗0) = 𝑦0 and/or 𝑦(𝑡∗1) = 𝑦1 are fixed.
The optimal control problem is to find the optimal limit values for the indepdendent variable, 𝑡∗0
and/or 𝑡∗1 and an optimal control (𝑢∗(𝑡))𝑡∈[𝑡∗0,𝑡∗1] that maximizes the functional (9.2) subject to ODE
constraint (9.1).

In other words: the bounds of the domain T∗ can be known or can be chosen optimally while
the limits of the curves 𝑦 ∈ Y, traced out by 𝑦(𝑡) for 𝑡 ∈ T∗ are known.

Formally, the problem is

 

max
𝑢(⋅)

∫
𝑡1

𝑡0
𝐹(𝑡, 𝑦(𝑡), 𝑢(𝑡)) 𝑑𝑡

subject to
̇𝑦 = 𝐺(𝑦(𝑡), 𝑢(𝑡), 𝑡), for 𝑡 ∈ [𝑡0, 𝑡1]

𝑦(𝑡0) = 𝑦0 and 𝑦(𝑡1) = 𝑡1 given
conditions on 𝑡0 and 𝑡1

(P2)

 
We can consider the following cases, depending on the specification of the boundary values for

the state variable:

(a) both limits are known: 𝑡0 and  𝑡1 fixed;   (P2a)
(b) the lower limit is known: 𝑡0 fixed  and  𝑡1 free;   (P2b)
(c) the upper limit is known: 𝑡1 free  and  𝑡1 fixed;   (P2c)
(d) both limits are free: 𝑡0 and  𝑡1 free; . (P2d)
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Proposition 2 (First order necessary conditions for free domain and fixed boundary
state variable optimal control problems). Let (𝑦∗, 𝑢∗) be a solution curve to the OC problem
(P2) where 𝑦(𝑡0) = 𝑦0 and 𝑦(𝑡1) = 𝑦1 are fixed. Then there is an optimal domain for the independent
variable 𝑡∗ = [𝑡∗0, 𝑡∗1] ⊂ ℝ, a piecewise continuous function 𝜆 ∶ 𝑡∗ → ℝ , called co-state variable, such
that (𝑦∗, 𝑢∗, 𝜆) satisfy the optimality condition (9.4), the multiplier equation (9.5) and the ODE
constraint of the problem (9.6), all for 𝑡 ∈ Int(T∗) and the adjoint conditions associated to the
boundary conditions (P2a) to (P2d)

• for problem (P2a) 𝑦∗(𝑡0) = 𝑦0 and 𝑦∗(𝑡∗1) = 𝑦1 and 𝑡0 and 𝑡1 are fixed;

• for problem (P2b) 𝑦∗(𝑡0) = 𝑦0 and 𝑦∗(𝑡∗1) = 𝑦1 and

𝑡∗0 = 𝑡0 and  𝐻(𝑡∗1, 𝑦1, 𝑢∗(𝑡∗1)) − ̇𝑦∗(𝑡∗1)𝜆(𝑡∗1) = 0; (9.12)

• for problem (P2c) 𝑦∗(𝑡∗0) = 𝑦0 and 𝑦∗(𝑡1) = 𝑦1 and

𝐻(𝑡∗0, 𝑦0, 𝑢∗(𝑡∗0)) − ̇𝑦∗(𝑡∗0)𝜆(𝑡∗0) = 0 and  𝑡∗1 = 𝑡1; (9.13)

• for problem (P2d) 𝑦∗(𝑡∗0) = 𝑦0 and 𝑦∗(𝑡∗1) = 𝑦1 and

𝐻(𝑡∗0, 𝑦0, 𝑢∗(𝑡∗0)) − ̇𝑦∗(𝑡∗0)𝜆(𝑡∗0) = 0 and  𝐻(𝑡∗1, 𝑦1, 𝑢∗(𝑡∗1)) − ̇𝑦∗(𝑡∗1)𝜆(𝑡∗1) = 0. (9.14)

Proof.  See proof of Proposition 2 in Chapter 8, for a generic independent variable 𝑥.

 

9.2.3 Summing up

This is a general case that encompasses combinations of all the previous cases: we assume both
the domains of the independent variables and the boundary values of the state variables are free.
That is 𝑡0 and/or 𝑡1 can be fixed or free and 𝑦(𝑡0) and/or 𝑦(𝑡1) can be fixed or free.

When there is a free boundary condition, for the independent variable 𝑡 or for the state variable
𝑦(𝑡), it should be optimized. In the first case, the optimal control problem is to find the optimal
limit values for the indepdendent variable, 𝑡∗0 and/or 𝑡∗1 and an optimal control (𝑢∗(𝑡))𝑡∈[𝑡∗0,𝑡∗1] that
maximizes the functional (9.2) subject to ODE constraint (9.1) and having fixed or free boundary
values for the state variable. In the second case, the optimal control problem is to find the optimal
boundary values for the state variable , 𝑦∗(𝑡0) and/or 𝑦∗(𝑡1) and an optimal control (𝑢∗(𝑡))𝑡∈[𝑡0,𝑡1]
that maximizes the functional (9.2) subject to ODE constraint (9.1) and having fixed or free limit
values for the time interval.

The necessary conditions include the optimality condition (9.4), the multiplier equation (9.5)
and the ODE constraint of the problem (9.6), all for 𝑡 ∈ int(T∗). The adjoint conditions associated
to the terminal values of the state variable, when they need to be optimized, are obtained by setting
in equation (8.15), 𝜂0 ≠ 0 and 𝜂1 ≠ 0. Therefore, the adjoint conditions associated to 𝑦∗(𝑡∗𝑗) and
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𝜆(𝑡∗𝑗) = 0, implying that the adjoint condition associated to the optimal boundary value of the
independent variable, 𝑡∗𝑗, is 𝐻∗(𝑡∗𝑗) = 0, for 𝑗 = 0, 1.

The adjoint conditions presented in Table 9.1 cover the 16 possible cases and it is the analogue
to Table 8.1 for optimal control problems in any other domain.

Table 9.1: Adjoint conditions for bounded domain OC problems

data optimum
𝑡𝑗 𝑦(𝑡𝑗) 𝑡∗𝑗 𝑦∗(𝑡∗𝑗)

fixed fixed 𝑡𝑗 𝑦𝑗
fixed free 𝑡𝑗 𝜆(𝑡𝑗) = 0
free fixed 𝐻(𝑡∗𝑗, 𝑦𝑗, 𝑢∗(𝑡∗𝑗)) − ̇𝑦∗(𝑡∗𝑗)𝜆(𝑡∗𝑗) = 0 𝑦𝑗
free free 𝐻(𝑡∗𝑗, 𝑦∗(𝑡∗𝑗), 𝑢∗(𝑡∗𝑗)) = 0 𝜆(𝑡∗𝑗) = 0

The index refers to the lower boundary when 𝑗 = 0 and to the upper boundary when 𝑗 = 1

9.3 Specific time domain problems

Next we present two problems which are common when the independent variable is time: the
constrained terminal state problem and the discounted infinite horizon problem. While the second
is typical from time-domain problems, the first can also occur in general 𝑥-domain problems. If
this is the case we can simply adapt the results from the previous section.

In both problem we take already presented objective functional and dynamic constraint, in
equations (9.2) and (9.1), respectively.

9.3.1 Constrained terminal state problem

A common problem in macroeconomics is the following: the set of independent variables is known
such as 𝑡0 = 0 and 𝑡1 = ̄𝑡, the initial value of the state value is fixed, 𝑦(0) = 𝑦0, the structure of the
economy given by the ODE (9.1), the value functional is (9.2), and we assume that the terminal
value for the state variable is constrained by 𝑅( ̄𝑡, 𝑦( ̄𝑡)) ≥ 0 where 𝑦( ̄𝑡) is free. Our goal is to
determine the optimal trajectories for the state variable 𝑦∗  = (𝑦∗(𝑡))𝑡∈T and the 𝑢∗  = (𝑢∗(𝑡))𝑡∈T.

Formally the problem is

 

max
𝑢(⋅)

∫
̄𝑡

0
𝐹(𝑡, 𝑢(𝑡), 𝑦(𝑡)) 𝑑𝑡

subject to
̇𝑦 = 𝐺(𝑡, 𝑢(𝑡), 𝑦), for  𝑡 ∈ T
̄𝑡 given

𝑦(0) = 𝑦0 fixed
𝑅( ̄𝑡, 𝑦( ̄𝑡)) ≥ 0,

(P3)
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where T = [0, ̄𝑡] and functions 𝑅(⋅), 𝐹(⋅), and 𝐺(⋅) are known.
The Hamiltonian function is

𝐻(𝑡) = 𝐻(𝑡, 𝑢, 𝑦, 𝜆) ≡ 𝐹(𝑡, 𝑢, 𝑦) + 𝜆𝐺(𝑡, 𝑢, 𝑦), for  𝑡 ∈ T

where 𝜆 is called co-state (or adjoint) and is a piecewise continuous function 𝜆 ∶ T → ℝ. We
assume 𝐻 to be continuous, and continuously differentiable, and except otherwise mentioned that
𝐻𝑢𝑢(𝑡) ≠ 0 for every 𝑡 ∈ T.

Proposition 3. 1st order necessary conditions for the constrained terminal value prob-
lem Let (𝑦∗, 𝑢∗) be the solution trajectories for problem P3. Then it satisfies

• the optimality condition

𝐻𝑢(𝑡, 𝑢∗, (𝑡)𝑦∗(𝑡), 𝜆(𝑡)) = 0, for each  𝑡 ∈ T; (9.15)

• the multiplier equation

�̇� =   − 𝐻𝑦(𝑡, 𝑢∗(𝑡), 𝑦∗(𝑡), 𝜆(𝑡)) = 0, for each  𝑡 ∈ T; (9.16)

• the transversality condition
𝜆( ̄𝑡)𝑅( ̄𝑡, 𝑦∗( ̄𝑡)) = 0, (9.17)

and the admissibility conditions:

̇𝑦∗  =  𝐺(𝑡, 𝑢∗(𝑡), 𝑦∗(𝑡)) = 0, for each  𝑡 ∈ T; (9.18)

and
𝑦∗(0) = 𝑦0, for  𝑡 = 0 (9.19)

Proof. In this case the value at the optimum is

J[𝑦∗, 𝑢∗] = ∫
̄𝑡

0
(𝐻(𝑡, 𝑢∗(𝑡), 𝑦∗(𝑡), 𝜆(𝑡)) − ̇𝑦∗(𝑡)𝜆(𝑡))  𝑑𝑡 + 𝜓𝑅( ̄𝑡, 𝑦( ̄𝑡))

  where 𝜓 is a Lagrange multiplier. The functional derivative, for an arbitrary perturbation
(𝛿𝑦, 𝛿𝑢) = 𝜀(𝜂𝑦, 𝜂𝑢) around (𝑦∗, 𝑢∗), is now

𝐷(𝜂𝑦(⋅),𝜂𝑢(⋅))J[𝑦∗, 𝑢∗] = ∫
̄𝑡

0
[𝐻𝑢(𝑡, 𝑦∗(𝑡), 𝑢∗(𝑡), 𝜆(𝑡))𝜂𝑢(𝑡) + (𝐻𝑦(𝑡, 𝑦∗(𝑡), 𝑢∗(𝑡), 𝜆(𝑡)) + �̇�(𝑡))𝜂𝑦(𝑡)] 𝑑𝑡+

+ 𝜆(0)𝜂𝑦(0) + (𝜓𝑅𝑦( ̄𝑡, 𝑦∗( ̄𝑡)) − 𝜆( ̄𝑡)) 𝜂𝑦( ̄𝑡),
  where admissible perturbations satisfy 𝜂𝑦(0) = 0 and 𝜂𝑦( ̄𝑡) ≠ 0. Given the inequality constraint,
the KKT conditions

𝑅( ̄𝑡, 𝑦∗( ̄𝑡)) ≥ 0, 𝜓 ≥ 0, 𝜓𝑅( ̄𝑡, 𝑦∗( ̄𝑡)) = 0,
  are also necessary for an optimum. The differential 𝐷(𝜂𝑦(⋅),𝜂𝑢(⋅))J[𝑦∗, 𝑢∗] = 0 only if 𝐻∗

𝑢(𝑡) =
�̇� (𝑡) − 𝐻∗

𝑦(𝑡) = 𝜂𝑦(0) = 0, as presented in conditions (9.15)-(9.16). At last, because 𝜂𝑦( ̄𝑡) ≠ 0, the
remaining necessary condition for an optimum is 𝜓𝑅𝑦( ̄𝑡, 𝑦∗( ̄𝑡)) − 𝜆( ̄𝑡) = 0. Multiplying both terms
by 𝑅( ̄𝑡, 𝑦∗( ̄𝑡)) and using the KKT condition yields condition (9.17).
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9.3.2 Infinite horizon problems

Necessary conditions for an optimum

The benchmark problem in macroeconomics and growth theory is the (autonomous ) discounted
infinite horizon problem is

 

max
𝑢(⋅)

∫
∞

0
𝑒−𝜌𝑡𝑓(𝑦(𝑡), 𝑢(𝑡))𝑑𝑡

subject to
̇𝑦 = 𝑔(𝑦, 𝑢), for  𝑡 ∈ T

𝑦(0) = 𝑦0 fixed
boundary conditions at infinity.

(P4)

Two versions, related to different boundary conditions, are usually considered  

lim
𝑡→∞

𝑦(𝑡) is free   (P4a)

lim
𝑡→∞

𝑅(𝑡, 𝑦(𝑡)) ≥ 0  (P4b)

where 𝜌 > 0, and function 𝑅(𝑡, 𝑦) is known and takes the form of a solvability or sustainability
condition. Observe that the utility function is 𝐹(𝑡, 𝑦(𝑡), 𝑢(𝑡)) ≡ 𝑒−𝜌𝑡𝑓(𝑦(𝑡), 𝑢(𝑡)) is directly depen-
dent on time by a discount factor, which is a bounded function of time, and we consider a version
of the problem in which the constraint ODE os autonomous.

For discounted optimal control problems define the current-value Hamiltonian function

ℎ(𝑦(𝑡), 𝑢(𝑡), 𝑞(𝑡)) = 𝑓(𝑦(𝑡), 𝑢(𝑡)) + 𝑞(𝑡) 𝑔(𝑦(𝑡), 𝑢(𝑡)) =
= 𝑒−𝜌𝑡 𝐻(𝑡, 𝑦(𝑡), 𝑢(𝑡), 𝜆(𝑡)).

where 𝑞(𝑡) = 𝑒𝜌𝑡𝜆(𝑡) is the current-value co-state variable. Consistently with the previous definitions
we call discounted Hamiltonian and discounted co-state variable to 𝐻(𝑡, 𝑦, 𝑢, 𝜆) and 𝜆,
respectively. Again 𝑞 (or 𝜆) are piecewise continuous functions 𝑞 ∶ T → ℝ (or 𝜆 ∶ T → ℝ).

Observe the current-value Hamiltonian is time-independent. If the constraint is time-dependent,
i.e, if 𝑔(𝑡, 𝑦, 𝑢), then Hamiltonian is also explicitly time dependent

ℎ(𝑡, 𝑦(𝑡), 𝑢(𝑡), 𝑞(𝑡)) = 𝑓(𝑦(𝑡), 𝑢(𝑡)) + 𝑞(𝑡) 𝑔(𝑡, 𝑦(𝑡), 𝑢(𝑡)).

 

Proposition 4 (First order necessary conditions: Pontriyagin maximum principle). Let
(𝑦∗, 𝑢∗) be the optimal state and control trajectory pair. Then there is a 𝑃𝐶1 continuous co-state
variable 𝑞 such that the following conditions hold:

• the optimality condition 

 ℎ𝑢(𝑦∗(𝑡), 𝑢∗(𝑡), 𝑞(𝑡)) = 0, for each  𝑡 ∈ [0,∞) (9.21)
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• the multipliers equation for the current co-state variable (also called adjoint equation)

   ̇𝑞 = 𝜌𝑞 − ℎ𝑦(𝑦∗(𝑡), 𝑢∗(𝑡), 𝑞(𝑡)), for each  𝑡 ∈ [0,∞) (9.22)

• the transversality condition or (P4b):

– associated to (P4a)
lim
𝑡→∞

𝑒−𝜌𝑡𝑞(𝑡) = 0, (9.23)

– associated to (P4b)
  lim
𝑡→∞

𝑒−𝜌𝑡𝑞(𝑡)𝑦∗(𝑡) = 0; (9.24)

 

• and the admissibility conditions

  ̇𝑦∗ = 𝑔(𝑦∗(𝑡), 𝑢∗(𝑡)), for each  𝑡 ∈ [0,∞) (9.25a)
𝑦∗(0) = 𝑦0, for  𝑡 = 0. (9.25b)

Proof. We can see this proposition as a particular case of Propositions 1 and Proposition 3.

Remark: if the constraint ODE is non-autonomous, i.e, if ̇𝑦  = 𝑔(𝑡, 𝑦(𝑡), 𝑢(𝑡)) equations (9.22)
and (9.25a) will become non-autonomous ODE’s, because the current value Hamiltonian becomes
(directly) time-dependent, i.e. ℎ(𝑡) = ℎ(𝑡, 𝑦(𝑡), 𝑢(𝑡), 𝑞(𝑡)) = 𝑓(𝑦(𝑡), 𝑢(𝑡)) + 𝑞(𝑡) 𝑔(𝑡, 𝑦(𝑡), 𝑢(𝑡)).

Sufficient conditions for an optimum

The nature of the transversality condition (9.24) is a difficult technical issue associated with the
solution to infinite-horizon optimal control problems (see Michel (1982) and Kamihigashi (2001)).

From now on, we assume the Arrow sufficiency condition: ℎ∗
𝑢𝑢 = ℎ(𝑦∗, 𝑢∗, 𝑞) ≤ 0. This

condition guarantees that the first-order necessary conditions for an extremum, presented in Propo-
sition 4, are also necessary.

9.4 The dynamics of optimal control problems

The infinite-horizon discounted problem is the central structure to macroeconomics and growth
theory since the 1960’s.

In several applications the constitutive functions 𝑓(𝑦, 𝑢) and 𝑔(𝑦, 𝑢) are specified explicitly, or, if
they have a non-linear structure , the resulting system of ODE’s usually cannot be solved explicitly.
However, we can have a geometric interpretation for the solution of an optimal control problem in
regular cases.

Writing
ℎ(𝑦, 𝑢, 𝑞) = 𝑓(𝑦, 𝑢) + 𝑞 𝑔(𝑦, 𝑢),



51

  the necessary (and possibly sufficient as well) conditions for the infinite-horizon discounted optimal
control problem, presented in Proposition 4, can be compactly presented as a differential-algebraic
system:

̇𝑦 = 𝑔(𝑦, 𝑢)
̇𝑞 = 𝜌𝑞 − ℎ𝑦(𝑦, 𝑢, 𝑞)

0 = ℎ𝑢(𝑦, 𝑢, 𝑞)
. (9.26)

Observe that ℎ𝑞(𝑦, 𝑢, 𝑞) = 𝑔(𝑦, 𝑢), ℎ𝑞𝑦 (𝑦, 𝑢, 𝑞) = ℎ𝑦𝑞 (𝑦, 𝑢, 𝑞) = 𝑔𝑦(𝑦, 𝑢), and ℎ𝑞𝑢 (𝑦, 𝑢, 𝑞) =
ℎ𝑢𝑞 (𝑦, 𝑢, 𝑞) = 𝑔𝑢(𝑦, 𝑢).

The (local) existence and uniqueness of a steady state can be assessed from the Jacobian of
system (9.26) evaluated at ̇𝑦  = ̇𝑞  = 0, that if

F (𝑦, 𝑢, 𝑞) = ⎛⎜⎜⎜
⎝

𝑔𝑦(𝑦, 𝑢) 𝑔𝑢(𝑦, 𝑢) 0
−ℎ𝑦𝑦(𝑦, 𝑢, 𝑞) −ℎ𝑢𝑦(𝑦, 𝑢, 𝑞) 𝜌 − 𝑔𝑦(𝑦, 𝑢)
ℎ𝑦𝑢(𝑦, 𝑢, 𝑞) ℎ𝑢𝑢(𝑦, 𝑢, 𝑞) 𝑔𝑢(𝑦, 𝑢)

⎞⎟⎟⎟
⎠

.

  The determinant of F is

 det (F)(𝑦, 𝑢, 𝑞)  = (𝑔𝑦 − 𝜌) (𝑔𝑦 ℎ𝑢𝑢 − 𝑔𝑢 ℎ𝑢𝑦) + 𝑔𝑢 (𝑔𝑢 ℎ𝑦𝑦  − 𝑔𝑦 ℎ𝑦𝑢) 

where all the partial derivatives are evaluated at an arbitrary point (𝑦, 𝑢, 𝑞). As ℎ𝑦𝑦(𝑦, 𝑢, 𝑞) =
𝑓𝑦𝑦(𝑦, 𝑢) + 𝑞 𝑔𝑦𝑦 (𝑦, 𝑢), and if the functions are continuous ℎ𝑦𝑢(𝑦, 𝑢, 𝑞) = ℎ𝑦𝑢(𝑦, 𝑢, 𝑞) = 𝑓𝑦𝑢(𝑦, 𝑢) +
𝑞 𝑔𝑦𝑢 (𝑦, 𝑢) = 𝑓𝑢𝑦(𝑦, 𝑢)+ 𝑞 𝑔𝑢𝑦 (𝑦, 𝑢) and ℎ𝑢𝑢 (𝑦, 𝑢, 𝑞) = 𝑓𝑢𝑢(𝑦, 𝑢)+ 𝑞 𝑔𝑢𝑢 (𝑦, 𝑢), we readily see that:

1. if 𝑓(𝑦, 𝑢) and  𝑔(𝑦, 𝑢) are linear functions both in the state and the control variable, that is
in (𝑦, 𝑢), all the second derivatives of ℎ(⋅, 𝑞) are equal to zero, then det (F)(𝑦, 𝑢, 𝑞) = 0, which
implies that either a steady state does not exist, or there is an infinite number of steady states
(and possibly a solution to the problem does not exist);

2. if ℎ is linear in the control variable, that is if ℎ𝑢𝑢  = ℎ𝑦𝑢  = ℎ𝑢𝑦  = 0 then det (F)  = (𝑔𝑢)2 ℎ𝑦𝑦,
where 𝑔𝑢 is a constant, and a steady state can exist, if ℎ𝑦𝑦 ≠ 0. If ℎ𝑦𝑦 < 0 at a steady state
then it is a saddle point;

3. in several models applied to macroeconomics, the objective function is independent of the
state variable, that is 𝑓 = 𝑓(𝑢) and the constraint is linear in 𝑦. This implies ℎ𝑢𝑦 = 𝑞 𝑔𝑢𝑦 and
ℎ𝑦𝑦  = 0 In this case, we have

det (F)  = (𝑔𝑦 − 𝜌) (𝑔𝑦 ℎ𝑢𝑢 − 𝑔𝑢 𝑞 𝑔𝑢𝑦) − 𝑔𝑢 𝑔𝑦 𝑞 𝑔𝑦𝑢

which does not rule out the existence of a steady state.  However, if the constraint function
is also linear in 𝑢 we cannot rule out that det (F) = 0. Indeed, this is the case in simple
endogenous growth models and simple models for the representative household.
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4. if functions 𝑓(𝑦, 𝑢) and 𝑔(𝑦, 𝑢) are nonlinear, such that we have locally det (F)(𝑦, 𝑢, 𝑞) = 0, a
necessary condition for the existence of a local bifurcation can be satisfied. This can generate
complex dynamics in the solution of the optimal control problem. Although, the number of
possible cases is enormous, we can say, in abstract, that any bounded trajectory converging
to a steady state or a limit cycle is a candidate for optimality, although we cannot rule out
the possibility of existence of multiple solutions.

If functions 𝑓(.) and 𝑔(.) are sufficiently smooth we may qualitative characterize the optimal
dynamics of (𝑦, 𝑞) (or for (𝑦, 𝑢)).

The algebraic equation in system (9.26) allows us to determine uniquely the control variable.
If we assume that ℎ𝑢𝑢(𝑦, 𝑢, 𝑞)  ≠ 0 for any (𝑦, 𝑢, 𝑞) ∈ Y × U × Q. Then, from the implicit function
theorem, we can find uniquely the control as a function of the state and the co-state variables

𝑢 = 𝑈(𝑦, 𝑞)

  where, from the implicit function theorem

𝑈𝑦 = −ℎ𝑢𝑦
ℎ𝑢𝑢

, and  𝑈𝑞 = − 𝑔𝑢
ℎ𝑢𝑢

.

 
If we substitute this control representation in the differential equations of (9.26) we obtain the

modified Hamiltonian dynamic system (MHDS) as a non-linear planar ODE,

( ̇𝑦
̇𝑞) = M (𝑦, 𝑞) ≡ ( 𝑔(𝑦, 𝑈(𝑦, 𝑞))

𝜌 𝑞 − ℎ𝑦(𝑦, 𝑈(𝑦, 𝑞), 𝑞)) . (9.27)

  The Jacobian of the MHDS is

𝐷M (𝑦, 𝑞) =
⎛⎜⎜⎜
⎝

𝜕 ̇𝑦(𝑦, 𝑞)
𝜕𝑦   𝜕 ̇𝑦(𝑦, 𝑞)

𝜕𝑞
𝜕 ̇𝑞(𝑦, 𝑞)

𝜕𝑦   𝜕 ̇𝑞(𝑦, 𝑞)
𝜕𝑞

⎞⎟⎟⎟
⎠

= ( 𝑔𝑦(𝑦, 𝑞) + 𝑔𝑢(𝑦, 𝑞) 𝑈𝑦(𝑦, 𝑞) 𝑔𝑢(𝑦, 𝑞) 𝑈𝑞(𝑦, 𝑞)
−ℎ𝑦𝑦(𝑦, 𝑞) − ℎ𝑦𝑢(𝑦, 𝑞) 𝑈𝑦(𝑦, 𝑞) 𝜌 − ℎ𝑦𝑢(𝑦, 𝑞) 𝑈𝑞(𝑦, 𝑞) − ℎ𝑦𝑞(𝑦, 𝑞)

) .

Lemma 6. Let 𝜌 > 0 and assume that ℎ𝑢𝑢(𝑦, 𝑢, 𝑞)  ≠ 0 for any (𝑦, 𝑢, 𝑞) ∈ Y × U × Q. Then the
Jacobian 𝐷M (𝑦, 𝑞) has trace𝐷 M (𝑦, 𝑞) = 𝜌 > 0 for any point (𝑦, 𝑞) ∈ Y × Q.

  

Proof.   As 𝑔𝑢 𝑈𝑦 = −𝑔𝑢
ℎ𝑢𝑦
ℎ𝑢𝑢

= ℎ𝑢𝑦  𝑈𝑞 = −ℎ𝑢𝑦 
𝑔𝑢
ℎ𝑢𝑢

, we readily see that the Jacobian matrix has
the following structure

𝐷M (𝑦, 𝑞) = ( 𝑀11(𝑦, 𝑞) 𝑀12 (𝑦, 𝑞)
𝑀21(𝑦, 𝑞) 𝜌 −𝑀11(𝑦, 𝑞)

)

Therefore trace 𝐷M (𝑦, 𝑞) = 𝑀11  + 𝜌 −𝑀11 = 𝜌 > 0
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Observe that this result has a global nature. The only requirement is that ℎ𝑢𝑢  ≠ 0 globally.

This assures that there is steady state and that there are no singularities. 2

Assume the MHDS has, at least, one steady state, ( ̄𝑦, ̄𝑞) = {(𝑦, 𝑞) ∶ ̇𝑦 = ̇𝑞 = 0}. In the
neighbourhood of ( ̄𝑦, ̄𝑞) we can approximate the non-linear MHDS (9.27) by the linear system

( ̇𝑦(𝑡)
̇𝑞(𝑡)) = 𝐷(𝑦,𝑞)M( ̄𝑦, ̄𝑞)(𝑦(𝑡) − ̄𝑦

𝑞(𝑡) − ̄𝑞)

  where the Jacobian, evaluated at the steady state ( ̄𝑦, ̄𝑞) is the matrix of constants

𝐷(𝑞,𝑦)M( ̄𝑦, ̄𝑞) =  
⎛⎜⎜⎜
⎝

𝜕 ̇𝑦( ̄𝑦, ̄𝑞)
𝜕𝑦

𝜕 ̇𝑦( ̄𝑦, ̄𝑞)
𝜕𝑞

𝜕 ̇𝑞( ̄𝑦, ̄𝑞)
𝜕𝑦

𝜕 ̇𝑞( ̄𝑦, ̄𝑞)
𝜕𝑞

⎞⎟⎟⎟
⎠

.

  If functions 𝑓(.) and 𝑔(.) have no singularities we can obtain a generic characterization of the
dynamics of the MHDS, and, therefore, of the solution to the optimal control problem.

Proposition 5. Let there be a steady state ( ̄𝑦, ̄𝑞) for the MHDS system. This steady state can
never be locally a stable node or a stable focus. There is transitional dynamics converging to the
steady state only if it is a saddle point, that is if det (𝐷(𝑞,𝑦)M( ̄𝑦, ̄𝑞)) < 0.

Proof. Evaluating the Jacobian at a steady state ( ̄𝑦, ̄𝑞), with �̄� = 𝑢( ̄𝑦, ̄𝑞), we find that the Jacobian
matrix becomes a matrix of constants

𝐷(𝑦,𝑞)M ( ̄𝑦, ̄𝑞) =
⎛⎜⎜⎜⎜⎜
⎝

̄𝑔𝑦 − ̄𝑔𝑢ℎ̄𝑢𝑦
ℎ̄𝑢𝑢

  −( ̄𝑔𝑢)2
ℎ̄𝑢𝑢

 

−ℎ̄𝑦𝑦 + (ℎ̄𝑢𝑦)2
ℎ̄𝑢𝑢

𝜌 − ̄𝑔𝑦 + ̄𝑔𝑢ℎ̄𝑢𝑦
ℎ̄𝑢𝑢

⎞⎟⎟⎟⎟⎟
⎠

  where ̄𝑔𝑦 = 𝑔𝑦(𝑢( ̄𝑦, ̄𝑞), ̄𝑦), etc3. Observe that the Jacobian matrix has a particular structure

 𝐷(𝑦,𝑞)M( ̄𝑦, ̄𝑞) = (�̄�11 �̄�12
�̄�21 𝜌 − �̄�11

). (9.28)

  impiying that the trace is equal to the rate of time preference,

 trace (𝐷(𝑞,𝑦)M( ̄𝑦, ̄𝑞)) = 𝜌 > 0 (9.29)

  and is always positive and

det (𝐷(𝑞,𝑦)M( ̄𝑦, ̄𝑞)) = �̄�11 (𝜌 − �̄�11) − �̄�12 �̄�21. (9.30)

  This implies that, if there is a steady state, it can never a stable node or focus. Therefore, it can
be an unstable node or focus if det (𝐷(𝑞,𝑦)M( ̄𝑦, ̄𝑞)) > 0, a saddle-point if det (𝐷(𝑞,𝑦)M( ̄𝑦, ̄𝑞)) < 0 or
a degenerate saddle node if det (𝐷(𝑞,𝑦)M( ̄𝑦, ̄𝑞)) = 0. There can only be transitional dynamics if it
is a saddle-point.

2In Brito et al. (2017) we deal with the case in which we can have locally ℎ𝑢𝑢  = 0. This tends to make the
solution to be non-unique locally for a subset of the space Y × Q.

3because if ℎ(.) is continuous then ℎ𝑢𝑦(.) = ℎ𝑦𝑢(.).
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Then we can conclude the following:

1. in generic cases the equilibrium point ( ̄𝑦, ̄𝑞) is a saddle point if det (𝐷(𝑞,𝑦)M( ̄𝑦, ̄𝑞)) < 0, and:

(a) the stable manifold associated with ( ̄𝑦, ̄𝑞)

𝑊 𝑠 = { (𝑦, 𝑞) ∈ Y × Q  ⊆ ℝ2 ∶ lim
𝑡→

(𝑦(𝑡), 𝑞(𝑡)) = ( ̄𝑦, ̄𝑞)}

  passing through point 𝑦(0) = 𝑦0 is the solution set of the OC problem;

(b) the solution to the OC problem is (at least locally) unique;

(c) the optimal trajectory is asymptotically tangent to the stable eigenspace 𝐸𝑠 associated
to Jacobian 𝐷(𝑞,𝑦)M( ̄𝑦, ̄𝑞)

 

2. if det (𝐷(𝑞,𝑦)M( ̄𝑦, ̄𝑞)) > 0 the equilibrium point is unstable. In this case the candidate so-
lutions tend to diverge away from the steady state. The existence of a solution depends on
the satisfaction of the transversality condition (equation (9.25b)). If this is the case, the
solution to the optimal control problem is non-stationary, that is, it will be asymptotically
unbounded;

3. if det (𝐷(𝑞,𝑦)M( ̄𝑦, ̄𝑞)) = 0, there will be an infinite number of candidate steady states. The
system is ”anchored” however by the initial condition 𝑦(0) = 𝑦0, which means that the solution
to the optimal control problem exists, it is unique, but it is stationary;

A relatively common problem in economics, involve functions 𝑓(𝑦, 𝑢) and 𝑔(𝑦, 𝑢), in which 𝑔 is
a linear function and 𝑓 is independent from the state variable, that is 𝑓 = 𝑓(𝑢) with 𝑓𝑢𝑢  < 0 and
𝑔(𝑦, 𝑢) = 𝑎 𝑦 + 𝑏𝑢. In this case, which is common in economics, the last two cases tend to occur:

1. the MHDS has the structure of matrix (9.28) with possibly the coefficients �̄�11, �̄�12 and
�̄�21 linearly dependent upon 𝑦 and/or 𝑞. In this case a steady state (unless at 𝑦 = 𝑢 = 0)
and the MHDS displays unbounded growth. This means that evaluating the MHDS at the
steady state the determinant (9.30) will be positive. The existence of a solution depends
on the satisfaction of the transversality condition (equation (9.25b)). If this is the case, the
solution to the optimal control problem is non-stationary, that is, it will be asymptotically
unbounded;

2. the MHDS has the structure of matrix (9.28) with �̄�11 = 𝜌 and �̄�12 = 0. In this case,
the det (𝐷(𝑞,𝑦)M( ̄𝑦, ̄𝑞)) = 0 and there will be an infinite number of candidate steady states.
The system is ”anchored” however by the initial condition 𝑦(0) = 𝑦0, which means that the
solution to the optimal control problem exists, it is unique, but it is stationary;
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Conclusion

 
Therefore, if there is a unique solution to the infinite-horizon discounted optimal control prob-

lem, and if the constitutive functions are monotonic, three types of solutions can occur:

1. a unique time varying solution converging to a steady state;

2. a stationary solution;

3. a time-varying unbounded solution which grows in time such that is satisfies the transversality
condition.

A last message: be careful if your optimal control problem has linear constitutive functions, as
in singular optimal control problems (see next chapter).

9.5 Economic applications

9.5.1 Two simple problems

Example 1: Resource depletion problem

The (non-renewable) resource depletion problem can now be solved by using the Pontriyagin’s
principle. Recall that the problem is

max
𝑐(⋅)

∫
∞

0
𝑒−𝜌𝑡 ln (𝑐(𝑡))𝑑𝑡, 𝜌 > 0

  subject to
⎧{{
⎨{{⎩

�̇�(𝑡) = −𝑐(𝑡), 𝑡 ∈ [0,∞)
𝑤(0) = 𝑤0, given

lim𝑡→∞ 𝑤(𝑡) ≥ 0.
  In this problem, the control variable is consumption, 𝑐, and the state variable is the remaining
level of the resource, 𝑤. What is the best path for consumption-depletion ?

For applying the Pontryiagin maximum principle we write the current-value Hamiltonian

ℎ = ln (𝑐) − 𝑞 𝑐.

  The first order conditions are

𝑐(𝑡) = 1/𝑞(𝑡)
̇𝑞 = 𝜌𝑞(𝑡)

lim
𝑡→∞

𝑒−𝜌𝑡𝑞(𝑡)𝑤(𝑡) = 0
�̇� = −𝑐(𝑡)

𝑤(0) = 𝑤0 ∶
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and can be written as a planar differential equation in (𝑤, 𝑐), together with the initial and the
transversality condition is

�̇� = −𝑐(𝑡)
̇𝑐 = −𝜌𝑐(𝑡)

𝑤(0) = 𝑤0

lim
𝑡→∞

𝑒−𝜌𝑡𝑤(𝑡)
𝑐(𝑡) = 0

If we want to find the solution we must solve the system, together with the conditions on time.
There are several ways to solve it. Here is a simple one. First, define 𝑧(𝑡) ≡ 𝑤(𝑡)/𝑐(𝑡). Time-

differenting and substituting, we get the scalar terminal-value problem

⎧{
⎨{⎩

̇𝑧 = −1 + 𝜌𝑧
lim𝑡→∞ 𝑒−𝜌𝑡𝑧(𝑡) = 0

  which has a constant solution 𝑧(𝑡) = 1
𝜌 for every 𝑡 ∈ [0,∞). Second, substitute 𝑐(𝑡) = 𝑤(𝑡)/𝑧(𝑡) =

𝜌𝑤(𝑡). therefore,
⎧{
⎨{⎩

�̇� = −𝑐(𝑡) = −𝜌𝑤(𝑡)
𝑤(0) = 𝑤0

  Then 𝑤∗(𝑡) = 𝑤0𝑒−𝜌𝑡 for 𝑡 ∈ [0,∞) and 𝑐∗(𝑡) = 𝜌𝑤∗(𝑡).
Characterization of the solution: there is asymptotic extinction

lim
𝑡→∞

𝑤∗(𝑡) = 0,

  at a speed given by the half-life of the process

𝜏 ≡ { 𝑡 ∶ 𝑤∗(𝑡) = 𝑤(0) − 𝑤∗(∞)
2 } = − ln (1/2)

𝜌  

  if 𝜌 = 0.02 then 𝜏 ≈ 34.6574 years.

Example 2: the consumption-savings problem

Problem: find the functions (𝑎(𝑡), 𝑐(𝑡)) that maximize the functional

max
𝑐(⋅)

∫
∞

0
𝑒−𝜌𝑡 𝑐(𝑡)1−𝜃 − 1

1 − 𝜃 𝑑𝑡, 𝜌 > 0

  subject to
⎧{{
⎨{{⎩

̇𝑎(𝑡) = 𝑦 − 𝑐(𝑡) + 𝑟 𝑎, 𝑡 ∈ [0,∞)
𝑎(0) = 𝑎0, given

lim𝑡→∞ 𝑎(𝑡)−𝑟 𝑡 ≥ 0.
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  In this problem, the control variable is consumption, 𝑐, and the state variable is the level of net
wealth, 𝑎. The current value Hamiltonian is

ℎ(𝑎, 𝑐, 𝑞) = 𝑐1−𝜃 − 1
1 − 𝜃 + 𝑞 (𝑦 − 𝑐 + 𝑟 𝑎)

  and the first order conditions according to the Pontiyagin’s principle are

⎧{{{{
⎨{{{{⎩

𝑐(𝑡)−𝜃 = 𝑞(𝑡)
̇𝑞 = 𝑞 (𝜌 − 𝑟)
̇𝑎 = 𝑦 − 𝑐 + 𝑟 𝑎

𝑎(0) = 𝑎0
lim𝑡→∞ 𝑞(𝑡) 𝑎(𝑡)𝑒−𝜌𝑡 = 0

  As
̇𝑞

𝑞 = −𝜃 ̇𝑐
𝑐

  we can obtain the solution by solving the mixed initial-terminal value problem for ODE’s

⎧{{{
⎨{{{⎩

̇𝑎 = 𝑦 − 𝑐 + 𝑟 𝑎
̇𝑐 = 𝛾 𝑐

𝑎(0) = 𝑎0
lim𝑡→∞ 𝑐(𝑡)−𝜃𝑎(𝑡) 𝑒−𝜌𝑡 = 0

  where again 𝛾 ≡ 𝑟 − 𝜌
𝜃 . We present and discuss next the solution to this problem.

9.5.2 Qualitatively specified problems

Next we present a general Ramsey (1928) model in which the behavioral functions are qualitatively
specified. This allows us to study the qualitative solution to the optimal control problem.

The Ramsey problem is:

 max
𝑐(⋅)

∫
∞

0
𝑒−𝜌𝑡𝑈(𝑐(𝑡))𝑑𝑡, 𝜌 > 0,

subject to 
�̇�(𝑡) = 𝐹(𝑘(𝑡)) − 𝑐(𝑡), 𝑡 ∈ [0,∞)
𝑘(0) = 𝑘0 fixed 
lim
𝑡→∞

𝑒−𝜌𝑡𝑘(𝑡) ≥ 0.
 

We also assume that (𝑘, 𝑐) ∶ ℝ+ → ℝ2
+. In this problem the control variable is 𝑐 and the state

variable is the stock of capital 𝑘.
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The utility and the production functions, 𝑢(𝑐) and 𝐹(𝑘), are usually assumed to have the
following properties: Increasing, concave and Inada :

𝑈 ′(.) > 0, 𝑈″(.) < 0, 𝐹 ′(.) > 0, 𝐹″(.) < 0

𝑈 ′(0) = ∞, 𝑈 ′(∞) = 0, 𝐹 ′(0) = ∞, 𝐹 ′(∞) = 0.

Although we do not have explicit utility and production functions we can still characterize the
optimal consumption-accumulation process (we are using the Grobman-Hartmann theorem).

The current-value Hamiltonian is

ℎ(𝑐, 𝑘, 𝑞) = 𝑈(𝑐) + 𝑞 (𝐹(𝑘) − 𝑐)

  The necessary (and sufficient) conditions according to Pontriyagin’s maximum principle are

𝑈 ′(𝑐(𝑡)) = 𝑞(𝑡)
̇𝑞 = 𝑞(𝑡) (𝜌 − 𝐹 ′(𝑘(𝑡)))

lim
𝑡→∞

𝑒−𝜌𝑡 𝑞(𝑡) 𝑘(𝑡) = 0

�̇� = 𝐹(𝑘(𝑡)) − 𝑐(𝑡)
𝑘(0) = 𝑘0

The MHDS and the initial and transversality conditions become

�̇� = 𝐹(𝑘(𝑡)) − 𝑐(𝑡)

̇𝑐 = 𝑐(𝑡)
𝜃(𝑐(𝑡))   (𝐹

′(𝑘(𝑡)) − 𝜌)

𝑘(0) = 𝑘0 > 0
0 = lim

𝑡→∞
𝑒−𝜌𝑡𝑈 ′(𝑐(𝑡))𝑘(𝑡)

where 𝜃(𝑐) = −𝑈″ (𝑐) 𝑐
𝑈′ (𝑐) > 0 is the inverse of the elasticity of intertemporal substitution.

The MHDS has no explicit solution (it is not even explicitly defined) : we can only use quali-
tative methods. They consist in:

• determining the steady state(s): ( ̄𝑐, �̄�)

• characterizing the linearised dynamics (it is useful to build a phase diagram).

The steady state (if 𝑘 > 0) is

𝐹 ′(�̄�) = 𝜌 ⇒ �̄� = (𝐹 ′)−1(𝜌)
̄𝑐 = 𝐹(�̄�)
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The linearized MHDS is

(�̇�
̇𝑐) = ( 𝜌 −1

̄𝑐
𝜃( ̄𝑐)𝐹

″(�̄�)  0 )(𝑘(𝑡) − �̄�
𝑐(𝑡) − ̄𝑐)

where we denote 𝐷M the Jacobian matrix. The jacobian 𝐽 has trace and determinant:

tr(𝐷M) = 𝜌, det (𝐷M) = ̄𝑐
𝜃( ̄𝑐)𝐹

″(�̄�) < 0

  the steady state ( ̄𝑐, �̄�) is a saddle point. The eigenvalues of 𝐷M are

𝜆𝑠 = 𝜌
2 −

√
Δ  < 0,  𝜆𝑢 = 𝜌

2 +
√
𝛿  > 𝜌 > 0

  where the discriminant is
Δ =  (𝜌2)

2
− ̄𝑐

𝜃( ̄𝑐)𝐹
″(�̄�) > (𝜌2)

2
.

and the eigenvector matrix of 𝐷M is

P  = (P𝑠P𝑢) = ( 1 1
𝜆𝑢 𝜆𝑠

)

  Then the approximate solution for the Ramsey problem, in the neighbourhood of the steady
state, is

(𝑘∗(𝑡)
𝑐∗(𝑡)) = ( �̄�

̄𝑐 ) + 𝑘0 (
1
𝜆𝑢

)𝑒𝜆𝑠𝑡, 𝑡 ∈ [0,∞) (9.31)

  Then the local stable manifold has slope higher than the isocline �̇�(𝐶,𝐾) = 0

𝑑𝑐
𝑑𝑘 ∣𝑊𝑠

= 𝜆𝑢 > 𝑑𝑐
𝑑𝑘 ∣�̇�

= 𝐹 ′(�̄�) = 𝜌

  Geometrically (see figure 9.1) the approximate solution (9.31) belongs to the stable sub space
𝐸𝑠

𝐸𝑠 = { (𝑘, 𝑐) ∶ (𝑐 − ̄𝑐) = 𝜆𝑢(𝑘 − �̄�)} 

  while the exact solution belongs to the stable manifold 𝑊 𝑠 (which cannot be determined explic-
itly). Observe that while the slope of the isocline in the neighborhood of the steady is flatter then
the slope of the stable manifold

𝑑𝑐
𝑑𝑘 ∣�̇�=0

= 𝐹 ′(�̄�) = 𝜌 < 𝑑𝑐
𝑑𝑘 ∣𝑊𝑠

= 𝜆𝑢

  meaning that the solution approaches the steady state by accumulating (reducing) capital is the
initial capital level is smaller (bigger) than the steady state level.
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Figure 9.1: The phase diagram for the Ramsey model: it depicts the isoclines ̇𝑐 = 0 and �̇� = 0, the
stable manifold 𝑊 𝑠 and the stable eigenspace, 𝐸𝑠, which is tangent asymptotically to the stable
manifold. The exact solution follows along the stable manifold, but we have determined just the
approximation along the stable eigenspace.

9.5.3 Unbounded solutions

In the previous section we saw that if the solution converges to a steady state we can have a
qualitative characterization of the solution appealing to the Grobman-Hartman theorem. However,
in some cases, in particular in endogenous growth theory models, solutions may not converge to a
steady state, or the solution which interests us can be unbounded in time.

In particular, the consumer-saver problem may have an unbounded solution:

 max
𝑐(⋅)

∫
∞

0
𝑒−𝜌𝑡𝑈(𝐶(𝑡))𝑑𝑡, 𝜌 > 0,

subject to 
̇𝐴(𝑡) = 𝑌 − 𝐶 + 𝑟𝐴, 𝑡 ∈ [0,∞)

𝐴(0) = 𝐴0 fixed 
lim
𝑡→∞

𝑒−𝜌𝑡𝐴(𝑡) ≥ 0.

  If we write the MHDS in the (𝐴,𝑄) space, we have

⎧{
⎨{⎩

̇𝐴 = 𝑌 −𝑄− 1
𝜃 + 𝑟𝐴

�̇� = 𝑄(𝜌 − 𝑟)

  the solution of the optimal control problem are the solutions of that MHDS together with the
inicial and transversality conditions

𝐴(0) = 𝑎0, lim
𝑡→∞

𝑄(𝑡)𝐴(𝑡)𝑒−𝜌𝑡 = 0.
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  There are two interesting cases. First, if 𝑟 = 𝜌 then there is an infinity of stationary solutions
satisfying 𝑄− 1

𝜃 = 𝑌 +𝑟𝐴. Second, if 𝑟 ≠ 𝜌 it has no steady state in ℝ. To see this note that, �̇� = 0
if and only if 𝑄 = 0 but then ̇𝐴 = 0 can only be reached asymptotically when 𝐴 → ∞.

We can have a clearer characterization if we recast the problem in the (𝐴,𝐶) spac. Recall that
in this case we have the MHDS

⎧{
⎨{⎩

̇𝐴 = 𝑌 − 𝐶 + 𝑟𝐴
̇𝐶 = 𝛾𝐶,

  where
𝛾 ≡ 𝑟 − 𝜌

𝜃 ,
  which, for the moment, we assume has an ambiguous sign.

The solution of the optimal control problem are the solutions of that MHDS together with the
inicial and transversality conditions

⎧{
⎨{⎩

𝐴(0) = 𝑎0,
lim𝑡→∞ 𝑐(𝑡)− 1

𝜃𝐴(𝑡)𝑒−𝜌𝑡 = 0.

  The MHDS is linear planar ODE with coefficient matrix is

A = (𝑟 −1
0 𝛾 )

  that has eigenvalues
𝜆− = 𝛾, 𝜆+ = 𝑟 > 0.

  and has eigenvector matrix

P = ( 1 1
𝑟 − 𝛾 0)

  The solution to the MHDS is, for 𝛾 ≠ 0

(𝐴(𝑡)
𝑐(𝑡)) = ⎛⎜

⎝
−𝑌

𝑟
0

⎞⎟
⎠

+ ℎ− ( 1
𝑟 − 𝛾)𝑒𝛾𝑡 + ℎ+ (1

0)𝑒𝑟𝑡.

  For later use, observe that the trajectories starting from 𝐴(0) = 𝑎0 and travelling along the
eigenspace associated to eigenvalue 𝜆− are

(𝐴(𝑡)
𝑐(𝑡)) = ⎛⎜

⎝
−𝑌

𝑟
0

⎞⎟
⎠

+ (𝐴0 +
𝑌
𝑟 )( 1

𝑟 − 𝛾)𝑒𝛾𝑡.

  that is
𝔼− = { (𝐴,𝐶) ∈ ℝ × ℝ+ ∶ 𝐶 = (𝑟 − 𝛾)(𝐴 + 𝑌

𝑟 )} . 
 

We saw that the only requirement for the transversality condition to be me, and therefore for
the optimal control problem to have a solution was 𝑟 > 𝛾. Even if we keep this assumption, three
cases are possible
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1. if 𝑟 < 𝜌 then 𝜆− = 𝛾 < 0 and and the steady state ( ̄𝐴, ̄𝐶) = (−𝑌 /𝑟, 0) is a saddle-point. The
solution of the optimal control problem, which lies along the stable manifold converges to
𝑐∗(∞) = 0 and 𝐴∗(∞) = −𝑌 /𝑟 < 0. The steady state is a saddle point. The intuition is: the
consumer is more impatient than the market and therefore will be asymptotically a debtor
to a point in which it can collateralize the debt by its human capital 𝐴(∞) +𝐻(0) = 0;

2. if 𝛾 < 𝑟 = 𝜌 then 𝜆− = 0 and the solution is constant 𝑐∗(𝑡) = 𝑌 + 𝑟𝐴0 and 𝐴∗(𝑡) = 𝐴0
for all 𝑡 ∈ [0,∞). This was the case corresponding to the existence of an infinite number of
equilibria when the characterization is conducted in the (𝐴,𝑄) space;

3. if 𝑟 > 𝜌 then 𝜆− = 𝛾 > 0 and the steady state ( ̄𝐴, ̄𝐶) = (−𝑌 /𝑟, 0) is an unstable node. In
this case, there are admissible solutions only if 𝐴0 ≥ −𝑌 /𝑟, otherwise consumption would
be negative. However, if 𝐴0 > −𝑌 /𝑟 there is an admissible solution to the optimal control
problem but it is unbounded.

The question the last case poses is the following. First, if we look at the MHDS as a dynamical
system we would say that it is unstable but most of the qualitative theory of ODE characterizes
the dynamics close to a steady state. But we already found that this case is indeed a solution to
the optimal control problem. How can we reconcile the two points ?

A way to deal with the last type of behavior is to consider convergence of the solution to a kind
of invariant structure and to consider convergence to that structure. An approach which is used in
the economic growth literature (see Acemoglu (2009)) is to consider convergence to an exponential
solution, called balanced growth path, such that the initial and the transversality conditions
hold.

The method proceeds along five steps.
First, define the variables using multiplicative deviations along an exponential trends with

proportional growth rates. In our case we try the case in which the rates of growth are equal

𝐴(𝑡) = 𝑎(𝑡)𝑒𝑔𝑡, 𝑐(𝑡) = 𝑐(𝑡)𝑒𝑔𝑡

  Second, obtain the dynamic system for the detrended variables (𝑎, 𝑐). If we observe that

̇𝑎
𝑎 =

̇𝐴
𝐴 − 𝑔, ̇𝑐

𝑐 =
̇𝐶

𝐶 − 𝑔,

  we get
⎧{
⎨{⎩

̇𝑎 = 𝑌 𝑒−𝑔𝑡 − 𝑐 + (𝑟 − 𝑔)𝑎
̇𝑐 = (𝛾 − 𝑔)𝑐

  Third, obtain 𝑔 from a stationary solution to the system in detrended variables. In our case
setting 𝑔 = 𝛾 transforms the previous system to

⎧{
⎨{⎩

̇𝑎 = 𝑌 𝑒−𝛾𝑡 − 𝑐 + (𝑟 − 𝛾)𝑎
̇𝑐 = 0
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  which implies that 𝑐(𝑡) = ̄𝑐 which is an unknown constant. Setting 𝑎(0) = 𝐴0 and 𝑐(𝑡) = ̄𝑐 we
can solve the equation for the detrended asset holdings

𝑎(𝑡) = (𝐴0 −
̄𝑐

𝑟 − 𝛾 + 𝑌
𝑟 (1 − 𝑒−𝑟𝑡)) 𝑒(𝑟−𝛾)𝑡 + ̄𝑐

𝑟 − 𝛾 .

  Fourth, we can determine ̄𝑐 from the transversality condition

lim
𝑡→∞

(𝑐(𝑡))−𝜃𝐴(𝑡)𝑒−𝜌𝑡 = lim
𝑡→∞

̄𝑐−𝜃𝑒(𝛾(1−𝜃)−𝜌)𝑡𝑎(𝑡) =

= lim
𝑡→∞

̄𝑐−𝜃𝑒(𝛾(𝜃−1)−𝜌+𝑟−𝛾)𝑡 (𝐴0 −
̄𝑐

𝑟 − 𝛾 + 𝑌
𝑟 (1 − 𝑒−𝑟𝑡) + ̄𝑐

𝑟 − 𝛾 𝑒
−(𝑟−𝛾)𝑡) =

= lim
𝑡→∞

̄𝑐−𝜃 (𝐴0 −
̄𝑐

𝑟 − 𝛾 + 𝑌
𝑟 (1 − 𝑒−𝑟𝑡) + ̄𝑐

𝑟 − 𝛾 𝑒
−(𝑟−𝛾)𝑡) =

= ̄𝑐−𝜃 (𝐴0 −
̄𝑐

𝑟 − 𝛾 + 𝑌
𝑟 ) = 0

  if and only if ̄𝑐 = 𝑐∗ = (𝑟 − 𝛾)(𝐴0 +
𝑌
𝑟 ).

At last we get the solution

𝑐∗(𝑡) = 𝑐∗𝑒𝛾𝑡, 𝐴∗(𝑡) = 𝑎∗(𝑡)𝑒𝛾𝑡

where
𝑐∗ = (𝑟 − 𝛾)(𝑎0 +

𝑌
𝑟 ) , 𝑎∗(𝑡) = 𝐴0 +

𝑌
𝑟 (1 − 𝑒−𝛾𝑡) .

  We see that
𝑐∗(𝑡) = (𝑟 − 𝛾)(𝐴∗(𝑡) + 𝑌

𝑟 ) , for 𝑡 ∈ [0,∞)

  which means that the solution to the optimal control problem evolves along the eigenspace
associated to the eigenvalue 𝜆− (see figure 9.2).

Figure 9.2: Phase diagram for the benchmark consumer problem for the case 𝑟 > 𝛾.
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If 𝑟 < 𝜌, and therefore 𝛾 < 0 , the solution evolves along the eigenspace associated to 𝜆− butit
converges to the steady state in which 𝐴(∞) = −𝑌 /𝑟. In this case 𝔼− = 𝔼𝑠 that is this is the stable
eigenspace (which as the model is linear is the stable manifold).

From this we have a geometrical interpretation of the solution to the optimal control problem:
if 𝑟 ≠ 𝜌 the solution will belong to the eigenspace 𝔼−, and it converges to the steady state if 𝑟 < 𝜌
and diverges from it if 𝑟 > 𝜌.

This illustrates, and reinforces, the fact that interpreting phase diagrams for MHDS of optimal
control problems should be done with care: if the optimal control problem has a single solution,
the geometrical analog of it is also unique.
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Chapter 10

Introduction to the dynamic
programming approach

 
The dynamic programming principle (DPP) provides another approach to solve optimal

control problems. It states basically that finding an optimal solution to the problem may be
achieved by finding the best rule for the immediate (infinitesimal in continuous time) step, called
a policy function. In the literature the DPP is associated to a recursive approach to solving the
optimal control problem by finding a feedback rule.

The first order conditions according to the principle of dynamic programming are represented
by the Hamilton-Jacobi-Bellman  (HJB) equation which is a partial differential equation (for
the finite horizon problem) or a implicit ordinary differential equation (for the infinite horizon
problem).

It has some advantages and some disadvantages when compared to the maximum principle
approach:

• on the plus side: it provides a clearer intuition to dynamic optimization, it allows for an
easier extension to stochastic optimal control problems, and, it is preferred by researchers
who prefer to solve problems numerically;

• on the minus side: giving place to a differential equation, the terminal condition to solving
that equation is not always clear (in fact it is a way to circumvent the need to a terminal
condition9; studying the differentiability properties of the HJB equation requires advanced
functional analysis; and does not lead immediately to the use of the qualitative theory of
ODE’s to qualitative analysing of the solution. However, w will see that this shortcoming can
be eliminated by the use of the envelope theorem.

In section 10.1  we solve the finite-horizon problem, in section 10.2, in section 10.3, and in
section 10.4  we related the DPP with the Pontryiagin’s principle via the envelope theorem.

65
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10.1 The finite horizon case

   
Consider again the free terminal state optimal control problem: among functions 𝑦 ∈ Y and

𝑢 ∈ 𝑈 satisfying
̇𝑦 = 𝐺(𝑦(𝑡), 𝑢(𝑡), 𝑡), for 𝑡 ∈ [0, ̄𝑡] (10.1)

  and 𝑦(0) = 𝑦0 find the pair (𝑦∗, 𝑢∗) that maximize the functional

J[𝑦, 𝑢] ≡ ∫
̄𝑡

0
 𝐹 (𝑡, 𝑦(𝑡), 𝑢(𝑡))𝑑𝑡 (10.2)

  where ̄𝑡 is given and 𝑦∗( ̄𝑡) is free.

Proposition 1 (Necessary conditions according to the principle of dynamic program-
ming). Consider the optimal state and control functions 𝑦∗ ∈ Y and 𝑢∗ ∈ 𝑈 for the optimal control
problem with free terminal state. Then the Hamilton-Jacobi-Bellman  equation must hold

−𝑉𝑡(𝑡, 𝑦) = max
𝑢∈𝒰

{ 𝐹(𝑡, 𝑦, 𝑢) + 𝑉𝑦(𝑡, 𝑦)𝐺(𝑡, 𝑦, 𝑢)}   (10.3)

  for all 𝑡 ∈ [0, ̄𝑡) and all 𝑦 ∈ 𝑌   ⊆ ℝ.

Proof. (heuristic) We define the functional over the state and control functions continuing from an
arbitrary time 𝑡 ≥ 0: (𝑦, 𝑢) ∶ [𝑡, ̄𝑡] → 𝑌 × 𝑈 ⊆ ℝ2

J[𝑦, 𝑢](𝑡) = ∫
̄𝑡

𝑡
 𝐹 (𝑠, 𝑦(𝑠), 𝑢(𝑠))𝑑𝑠.

and call value function to
𝑉 (𝑡, 𝑦(𝑡)) ≡ max

(𝑢(𝑠)|𝑠∈[𝑡, ̄𝑡])
J[𝑦, 𝑢; 𝑡]

  for 𝑦(𝑡) ∈ 𝑌 .
The Principle of dynamic programming optimality states the following: for every (𝑡, 𝑦) ∈

[0, ̄𝑡] × 𝑌 and every Δ𝑡 ∈ (0, ̄𝑡 − 𝑡] the value function satisfies

𝑉 (𝑡, 𝑦(𝑡)) = max
(𝑢(𝑠)|𝑠∈[𝑡,𝑡+Δ𝑡])

{ ∫
𝑡+Δ𝑡

𝑡
𝐹(𝑠, 𝑦(𝑠), 𝑢(𝑠))𝑑𝑠 + 𝑉 (𝑡 + Δ𝑡, 𝑦(𝑡 + Δ𝑡))}  

  where
𝑦(𝑡 + Δ𝑡) = 𝑦(𝑡) + 𝐺(𝑡, 𝑦(𝑡), 𝑢(𝑡))Δ𝑡 + 𝑜(Δ𝑡2).

  Performing a first-order Taylor expansion to the value function yields

𝑉 (𝑡 + Δ𝑡, 𝑦(𝑡 + Δ𝑡)) = 𝑉 (𝑡, 𝑦(𝑡)) + 𝑉𝑡(𝑡, 𝑦(𝑡))Δ𝑡 + 𝑉𝑦(𝑡, 𝑦(𝑡))𝐺(𝑡, 𝑦(𝑡), 𝑢(𝑡))Δ𝑡 + 𝑜(Δ𝑡2)

  (this requires that 𝑉 is 𝐶1). If the interval Δ𝑡 is sufficiently small, we can use the mean-value
theorem

 ∫
𝑡+Δ𝑡

𝑡
𝐹(𝑠, 𝑦(𝑠), 𝑢(𝑠))𝑑𝑠 = 𝐹(𝑡, 𝑦(𝑡), 𝑢(𝑡))Δ𝑡
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  Then

𝑉 (𝑡, 𝑦(𝑡)) ≈ max
(𝑢(𝑠)|𝑠∈[𝑡,𝑡+Δ𝑡])

{ 𝐹(𝑡, 𝑦(𝑡), 𝑢(𝑡))Δ𝑡 + 𝑉 (𝑡, 𝑦(𝑡)) + 𝑉𝑡(𝑡, 𝑦(𝑡))Δ𝑡 + 𝑉𝑦(𝑡, 𝑦)𝑔(𝑡, 𝑦(𝑡), 𝑢(𝑡))Δ𝑡} . 

Cancelling out 𝑉 (𝑡, 𝑦(𝑡)), dividing by Δ𝑡, taking Δ𝑡 → 0 and observing that the pair (𝑡, 𝑦(𝑡)) is an
arbitrary element of 𝑇 × 𝑌 we get the HJB equation (10.3).

For solving the optimal control problem, while the Pontriagyin’s principle provides necessary
conditions in a form of a initial-terminal value problem for a planar ODE, the principle of the
dynamic programming provides a formula for evaluating the value of our resource in a recursive
way and independent of time.

The HJB equation (10.3) is a PDE (partial differential equation).

10.2 Infinite horizon discounted optimal control problem

 
The infinite horizon discounted optimal control problem is, again, to find functions 𝑢∗ ∈ U and

𝑢∗ ∈ Y satisfying
⎧{{
⎨{{⎩

̇𝑦 = 𝑔(𝑦(𝑡), 𝑢(𝑡)), 𝑡 ∈ [0,∞)
𝑦(0) = 𝑦0,
lim𝑡→∞ ℎ(𝑡)𝑦(𝑡) ≥ 0

that maximize the objective functional

J[𝑦, 𝑢] ≡ ∫
∞

0
𝑒−𝜌𝑡𝑓(𝑦(𝑡), 𝑢(𝑡))𝑑𝑡

Proposition 2 (Necessary conditions according to the principle of dynamic program-
ming for the infinite horizon problem). Let (𝑦∗, 𝑢∗) be the solution to the discounted infinite
horizon problem. Then it satisfies the HJB equation

𝜌 𝑣(𝑦) = max
𝑢

{𝑓(𝑦, 𝑢) + 𝑣′(𝑦) 𝑔(𝑦, 𝑢)} (10.4)

Proof. For 𝑦(𝑡) = 𝑦 the value function is

𝑉 (𝑡, 𝑦) ≡ ∫
∞

𝑡
𝑒−𝜌𝑠𝑓(𝑦∗(𝑠), 𝑢∗(𝑠))𝑑𝑠

  Multiplying by a inverse of the discount factor, the value function becomes independent of the
initial time,

𝑒𝜌𝑡𝑉 (𝑡, 𝑦) = ∫
∞

𝑡
𝑒−𝜌(𝑠−𝑡)𝑓(𝑦∗(𝑠), 𝑢∗(𝑠))𝑑𝑠 = 𝑣(𝑦).

  If we take derivatives of 𝑉 (𝑡, 𝑦) = 𝑒−𝜌𝑡𝑣(𝑦), we have 𝑉𝑡(𝑡, 𝑦) = −𝜌 𝑒−𝜌𝑡𝑣(𝑦) and 𝑉𝑦(𝑡, 𝑦) =
𝑒−𝜌𝑡𝑣′(𝑦), which after substituting in equation (10.3) yields equation (10.4).
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In the case of the discounted infinite horizon the HJB equation is not a PDE but an ODE in
implicit form. In order to see this we need to determine another important element of the DP
approach: the policy function.

If we define the function ℎ(𝑢, 𝑦) ≡ 𝑓(𝑦, 𝑢)+𝑣′(𝑦)𝑔(𝑦, 𝑢) the HJB equation (10.4) can be written
as

𝜌𝑣(𝑦) = max
𝑢

ℎ(𝑢, 𝑣).

  We can obtain the optimal control from the first-order condition

𝜕ℎ(𝑢, 𝑦)
𝜕𝑢 = 0.

  If function ℎ(𝑢, 𝑣) is monotonic as regards 𝑢, by appealing to the implicit function theorem, we
can obtain the optimal control as a function of the state variable, 𝑢∗ = 𝜋(𝑦). Function 𝜋(.) in the
DP literature is called policy function. It gives the optimal control as a function of the state
variable. This is why it is called a feedback control problem.

The reason for this is the following. If we substitute the policy function in equation (10.4) we
finally obtain the HJB equation as an ODE in implicit form

𝜌𝑣(𝑦) = 𝑓(𝜋(𝑦), 𝑦) + 𝑣′(𝑦)𝑔(𝜋(𝑦), 𝑦)

  where the state variable 𝑦 is the independent variable and the value function, 𝑣(𝑦), is the unknown
function.

If we are able to determine a solution to this equation, we can usually specify the utility function,
which means that we are able to obtain the optimal control as a function of the state variable. We
can obtain the solution to the optimal control problem by substituting in the ODE constraint to
get

̇𝑦  = 𝑔(𝑦, 𝜋(𝑦)), 𝑡 ∈ [0,∞)

  which, together with the initial condition 𝑦(0) = 𝑦0, would, hopefully, allow for the determination
of the solution for the state variable.

If we can find the policy function, then obtaining the optimal dynamics for 𝑦 reduces to solving
an initial-value problem instead of a mixed initial-terminal value problem (or two-point boundary
value problem) as is the case when we use the calculus of variations of the Pontriyagin’s principle
approaches.

However, only in a very small number of cases we can obtain closed form solutions to the HJB
equation. Next we show some cases in which this is possible.

10.3 Applications
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10.3.1 Example 1: The resource depletion problem

 
We solve again resource-depletion problem for an infinite horizon

max
𝐶

∫
∞

0
𝑒−𝜌𝑡 ln (𝐶(𝑡))𝑑𝑡, s.t �̇� = −𝐶, 𝑊(0) = 𝑊0

  by using the DP principle.
The HJB equation is

𝜌𝑣(𝑊) = max
𝐶

[  ln (𝐶) + 𝑣′(𝑊)(−𝐶)]
  Policy function

1
𝐶∗ − 𝑣′(𝑊) = 0 ⇔ 𝐶∗ = (𝑣′(𝑊))−1

  Then the HJB becomes
𝜌𝑣(𝑊) = −  ln (𝑣′(𝑊)) − 1

 
The textbook method for solving the HJB equation through is by using the method of un-

determined coefficients  after we make a conjecture over the form of the value function (no
constructive way here).

We conjecture the following trial function

𝑣(𝑊) = 𝑎 + 𝑏 ln (𝑊),

where parameters 𝑎 and 𝑏 are undetermined. We seek to find them by substituting this trial function
into the optimized HJB equation.

  As 𝑣′(𝑊) = 𝑏/𝑊 and substituting and collecting terms we get

𝜌𝑎 + 1 + ln (𝑏) = ln (𝑊) (1 − 𝜌𝑏)

  then 𝑏 = 1/𝜌 and 𝑎 = (ln 𝜌 − 1)/𝜌.
Then:

𝑣(𝑊) = ln 𝜌 − 1 + ln (𝑊)
𝜌 , 𝐶∗ = (𝑣′(𝑊))−1 = 𝜌𝑊

A second method: the HJB equation is an ODE, where 𝑊 is the independent variable, so we
can try to solve it (this is a constructive method).

The HJB is equivalent to the ODE

𝑣′(𝑊) = 𝑒−(1+𝜌𝑣(𝑊)).

  which has the general solution 1

𝑣(𝑊) = −1
𝜌 (1 + ln( 1

𝜌(𝑊 + 𝑘) ))  

1The ODE 𝑦′(𝑥) = 𝑒(𝑎+𝑏𝑦(𝑥)) has the closed form solution

𝑦(𝑥) = 1
𝑏  (−𝑎 + ln(− 1

𝑏(𝑘 + 𝑥)  )) .
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where 𝑘 is an arbitrary constant. Therefore,

𝐶∗ = (𝑉 ′(𝑊))−1 = 𝜌(𝑊 + 𝑘)

 
Substituting in the constraint �̇� = −𝐶 = −𝜌(𝑊 + 𝑘), we get the solution

𝑊(𝑡) = −𝑘 + (𝑊(0) + 𝑘)𝑒−𝜌𝑡.

  The problem is somewhat incompletely specified, which reveals a potential problem when using
the DP approach.

In our case, as it is natural to assume that lim𝑡→∞ 𝑊(𝑡) = 0 we would obtain 𝑘 = 0 and
therefore we would get the same solution we would obtain by using the CV or the Pontriyagin’s
approaches:

𝐶∗(𝑡) = 𝜌𝑊0𝑒−𝜌𝑡, 𝑊 ∗(𝑡) = 𝑊0𝑒−𝜌𝑡, for 𝑡 ∈ [0,∞).

 

10.3.2 Example 2: The benchmark consumption-savings problem

Applying the HJB equation (10.4) to our problem we have

𝜌𝑣(𝐴) = max
𝐶

{ 𝐶
1−𝜃 − 1
1 − 𝜃 + 𝑣′(𝐴)(𝑌 − 𝐶 + 𝑟𝐴)} . (10.5)

   Define a indirect utility function by

�̃�(𝑣′(𝐴)) = max
𝐶

{𝐶1−𝜃 − 1
1 − 𝜃 − 𝑣′(𝐴)𝐶} 

  and total wealth, summing up human and financial wealth, by 𝑊(𝐴) ≡ 𝑌
𝑟 + 𝐴, then the HJB

equation (10.5) at the optimum is a implicit ODE

𝜌𝑣(𝐴) = �̃�(𝑣′(𝐴)) + 𝑟 𝑣′(𝐴)𝑊(𝐴). (10.6)

   Solving the static utility problem we get the optimum policy for consumption

𝐶∗ = 𝜋(𝐴) ≡ (𝑣′(𝐴))−
1
𝜃 .

  as a function of the (unknown) marginal value function, and upon substitution yields

�̃�(𝑣′(𝐴)) = 1
1 − 𝜃( (𝑣′(𝐴))

𝜃−1
𝜃 − 1).

  Therefore, equation (10.6) becomes

𝜌 𝑣(𝐴) = 𝜃
1 − 𝜃 (𝑣′(𝐴))

𝜃−1
𝜃 − 1

1 − 𝜃  + 𝑟 𝑣′(𝐴)𝑊(𝐴) (10.7)
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  To solve this (implicit ODE) equation, we use again the method of undetermined coefficients.
Conjecturing the trial function

𝑣(𝐴) = 𝑎 + 𝑏𝑊(𝐴)1−𝜃,

  with arbitrary parameters 𝑎 and 𝑏. Then

𝑣′(𝐴) = 𝑏 (1 − 𝜃)𝑊(𝐴)−𝜃

  and after substitution in equation (10.7) we get

𝑎𝜌 + 1
1 − 𝜃 = 𝑊(𝐴)1−𝜃 𝑏 𝜃 [ (𝑏 (1 − 𝜃))

−1/𝜃
− (𝑟 − 𝛾)] 

  where we have again 𝛾 ≡ (𝑟 − 𝜌)/𝜎. Setting both sides to zero, yields

𝑎 = 1
𝜌(𝜃 − 1) and 𝑏 = (𝑟 − 𝛾)−𝜃

1 − 𝜃

  Then, the value function is

𝑣(𝐴) = 1
1 − 𝜃[ (𝑟 − 𝛾)−𝜃 (𝑌

𝑟 + 𝐴)
1−𝜃

− 1
𝜌]. 

  Taking the derivative as regards 𝐴 and substituting in the policy function for 𝐶, we find the
optimal consumption in feedback form

𝐶∗(𝐴) = (𝑟 − 𝛾)(𝑌
𝑟 + 𝐴)

  which only makes sense if 𝑟 > 𝛾.
We can get the optimal asset path by substituting optimal consumption in the budget constraint

̇𝐴∗ = 𝑌 + 𝑟𝐴 − 𝐶∗(𝐴) = 𝛾 (𝑌
𝑟 + 𝐴) .

  Solving this equation with 𝐴(0) = 𝐴0 we get the optimal paths for asset holdings

𝐴∗(𝑡) = −𝑌
𝑟 + (𝑌

𝑟 + 𝐴0)𝑒𝛾𝑡, for 𝑡 ∈ [0,∞),

  and consumption
𝐶∗(𝑡) = (𝑟 − 𝛾)(𝑌

𝑟 + 𝐴0)𝑒𝛾𝑡, for 𝑡 ∈ [0,∞).

 
Exercise Prove, by setting 𝜃 = 1, that the value function for 𝑢(𝐶) = ln (𝐶) is

𝑉 (𝐴) = 1
𝜌[ 

𝑟 − 𝜌
𝜌 + ln (𝜌𝑊(𝐴)) ]. 

  Hint: use the property 𝑓(𝑥) = exp (ln 𝑓(𝑥)) and use the l’Hôpital theorem.
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The utility function is a generalized logarithm 𝑢(𝐶) = ln𝜃(𝐶) = 𝐶1−𝜃 − 1
1 − 𝜃 . Sometimes in the

literature people write

𝑢(𝐶) =
⎧{
⎨{⎩

𝐶1−𝜃

1 − 𝜃 if 𝜃 ≠ 1
ln (𝐶)  if 𝜃 = 1

 

  The problem with this formulation is that if we cannot obtain the value function for the logarithm
utility by setting the limit of 𝜃 = 1 for the general case 𝜃 = 1, which is

𝑣(𝐴) = (𝑟 − 𝛾)−𝜃

1 − 𝜃 𝑊(𝐴)1−𝜃.

 

10.3.3 Example 3: The Ramsey model

The HJB for the Ramsey model is

𝜌𝑣(𝑘) = max
𝑐

{ 𝑢(𝑐) + 𝑣′(𝑘) (𝐹(𝑘) − 𝑐)}  

The optimality condition is
𝑢′(𝑐) = 𝑣′(𝑘)

  if 𝑢 is sufficiently smooth then we obtain the policy function 𝑐 = 𝐶(𝑘) = (𝑢′)−1(𝑣′(𝑘)). Substi-
tuting back in the HJB equation yields the implicit ODE in 𝑣(𝑘)

𝜌𝑣(𝑘) = 𝑢(𝐶(𝑘)) + 𝑣′(𝑘)(𝐹(𝑘) − 𝐶(𝑘))

  which does not have a closed form solution in general.

Exercise: for the case in which 𝑢(𝑐) = 𝑐1−𝜃 − 1
1 − 𝜃 and 𝐹(𝑘) = 𝑘𝛼, such that 𝜃 = 𝛼 prove that a

closed form solution can be found.

10.3.4 Example 4: The 𝐴𝐾 model

The Rebelo (1991) 𝐴𝐾 model can be seen as a special case of the previous problem in which the
HJB function is

𝜌𝑣(𝐾) = max
𝐶

{  𝐶
1−𝜃

1 − 𝜃 + 𝑣′(𝐾) (𝐴𝐾 − 𝐶)}  

Using the same steps as before, we get

𝜌𝑣(𝐾) = 𝜃
1 − 𝜃 (𝑣′(𝐾))

𝜃−1
𝜃 + 𝑣′(𝐾)𝐴𝐾 (10.8)

To solve the equation we use again the method of undetermined coefficients and find

𝑣(𝐾) = ((𝐴 − 𝛾)𝐾)1−𝜃

1 − 𝜃 .
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  where
𝛾 = 𝐴 − 𝜌

𝜃 .
  The consumption, in the feedback form is,

𝐶∗(𝐾) = (𝐴 − 𝛾)𝐾

  and the budget constraint of the economy is

�̇�∗ = 𝐴𝐾∗ −𝐶∗(𝐾) = 𝛾𝐾∗.

  Considering the given initial level for capital 𝐾(0) = 𝐾0 we get the optimal paths for capital and
output

𝐾∗(𝑡) = 𝐾0𝑒𝛾𝑡, 𝑌 ∗(𝑡) = 𝐴𝐾0𝑒𝛾𝑡, for 𝑡 ∈ [0,∞).
 

10.4 Relationship with the PMP

 
Consider the HJB equation (10.4).
The optimal policy function 𝑢∗  = 𝑈(𝑦) is obtained from the optimality condition

𝑓𝑢(𝑦, 𝑢∗) + 𝑣′(𝑦) 𝑔𝑢(𝑦, 𝑢∗) = 0

Write 𝑞 = 𝑣′(𝑦). Next we will show that with this change of variables we will obtain the optimality
conditions according to the Pontriyagin’s maximum principle.2

First, observe that, defining ℎ(𝑦, 𝑢) = 𝑓(𝑦, 𝑢)+𝑣′(𝑦) 𝑔(𝑦, 𝑢) = 𝑓(𝑦, 𝑢)+𝑞 𝑔(𝑦, 𝑢) at the optimum
we have ℎ𝑢(𝑦, 𝑢∗) = 𝑓𝑢(𝑦, 𝑢∗) + 𝑞 𝑔𝑢(𝑦, 𝑢∗) = 0 is the static optimality condition according to the
Pontriyagin’s maximum principle.

Taking the derivative of the (10.4), at the optimum, yields

 𝜌 𝑣′(𝑦) = 𝑓𝑦(𝑦, 𝑢∗) + 𝑓𝑢(𝑦, 𝑢∗) 𝑈 ′(𝑦) + 𝑣″(𝑦) 𝑔(𝑦, 𝑢∗) + 𝑣′(𝑦) (𝑔𝑦(𝑦, 𝑢∗) + 𝑔𝑢(𝑦, 𝑢∗ ) 𝑈 ′(𝑦))
= 𝑓𝑦(𝑦, 𝑢∗) + 𝑣″(𝑦) 𝑔(𝑦, 𝑢∗) + 𝑣′(𝑦) 𝑔𝑦(𝑦, 𝑢∗)

 

using the optimality condition. Therefore, if function 𝑣(⋅) is smooth

𝑔(𝑦, 𝑢∗) = 𝜌 𝑣′(𝑦) − 𝑓𝑦(𝑦, 𝑢∗) − 𝑣′(𝑦) 𝑔𝑦(𝑦, 𝑢∗)
𝑣″(𝑦)   = 𝜌 𝑞 − ℎ𝑦(𝑦, 𝑢∗

𝑣″(𝑦)   (10.9)

  using the previous definition.The constraint to the problem evaluated at the optimum, 𝑑𝑦
𝑑𝑡 =

𝑔(𝑦, 𝑢∗). Taking the time derivative of 𝑞 = 𝑣′(𝑦) implies

𝑑𝑞
𝑑𝑡 = 𝑣″(𝑦)  𝑑𝑦𝑑𝑡 = 𝑣″(𝑦)𝑔(𝑦, 𝑢∗) =

2Although the DP approach is silent to what to do with the transversality condition. However, Ekeland
(2010) shows that the solution to the problem exists if there is a steady state vale for the state variable and at
the steady state ̄𝑦 we should have 𝜌𝑣( ̄𝑦) = 𝑣′( ̄𝑦).
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  If we substitute equation (10.9) yields

𝑑𝑞
𝑑𝑡 = 𝜌 𝑞 − ℎ𝑦(𝑦, 𝑢∗)

  which is the multiplier equation from the Pontriyagin’s maximum principle 3 
This allows for a qualitative dynamics analysis of the solution to the optimal control problem

obtained via the HJB equation.

10.4.1 Application to the Ramsey model

 
Consider the Ramsey problem with a CRRA utility function and a Cobb-Douglas production

function. The HJB equation is

𝜌 𝑣(𝑘) = max
𝑐

{ 𝑐
1−𝜃 − 1
1 − 𝜃 + 𝑣′(𝑘) (𝑘𝛼  − 𝑐)}

where 𝜃 > 0 and 0 < 𝛼 < 1. The policy function is 𝑐∗ = 𝐶(𝑘) = (𝑣′(𝑘))−
1
𝜃 . Then

𝑑𝑐
𝑑𝑡 = −𝑐∗ 𝑣″(𝑘)

𝜃 𝑣′(𝑘)
𝑑𝑘
𝑑𝑡 .

  From the envelope theorem, we obtain

𝜌 𝑣′(𝑘) = 𝑣″(𝑘) (𝑘𝛼  − 𝑐∗) + 𝛼𝑘𝛼−1  𝑣′(𝑘)

as
𝑑𝑘
𝑑𝑡 = 𝑘𝛼  − 𝑐∗ = 𝑣′(𝑘) (𝜌 − 𝛼𝑘𝛼−1

𝑣″(𝑘)  

then
𝑑𝑐
𝑑𝑡 = 𝑐(𝛼 𝑘𝛼−1 − 𝜌)

𝜃
which is the Ramsey-Keynes equation associated to the PMP.  

10.5 Bibliography

• The seminal contribution: Bellman (1957).

• Other references: Beckmann (1968)

• Recent textbook: Sethi (2019)

3See (Beckmann, 1968, p.33).



Chapter 11

Optimal control of ODE’s: extensions

11.1 Introduction

In this chapter we consider some extensions of the simple optimal control problems we dealt in the
last chapter

11.2 Singular optimal control

Assume that the Hamiltonian is linear in the control variable. This is equivalent to stating that
𝐻𝑢 (𝑦, 𝑢, 𝑡) = ℎ(𝑦, 𝑡) and 𝐻𝑢𝑢 (𝑦, 𝑢) = 0 for all 𝑢 ∈ 𝒰.

Consider the problem:

max
𝑢(⋅)

 J[𝑦, 𝑢]  = ∫
𝑇

0
 𝐹 (𝑡, 𝑦(𝑡), 𝑢(𝑡)) 𝑑𝑡

subject to 
̇𝑦  = 𝐺(𝑡, 𝑦(𝑡), 𝑢(𝑡))

𝑦(0) = 𝑦0 given 
𝑅(𝑦(𝑇 ), 𝑇 ) ≥ 0.

  (11.1)

In this case define the Hamiltonian function as

𝐻(𝑦, 𝑢, 𝜆0, 𝜆, 𝑡) = 𝜆0 𝐹(𝑦, 𝑢, 𝑡) + 𝜆𝐺(𝑦, 𝑢, 𝑡).

  An informal version of the Pontriyagin’s principle states the following: If (𝑦∗, 𝑢∗) is an optimum,
then there is a scalar 𝜆0 ∈ {0, 1} and a piecewise continuous function 𝜆 ∶ T → 𝑅 such that:

1. for every 𝑡 ∈ [0, 𝑇 )

𝐻∗
𝑢(𝑡) = 0
�̇�  = −𝐻∗

𝑦(𝑡)
̇𝑦  = 𝐻∗

𝜆 (𝑡) = 𝐺(𝑡, 𝑦∗(𝑡), 𝑢∗(𝑡))

75
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2. at the terminal time 𝑡 = 𝑇
𝜆(𝑇 )𝑅∗

𝑦(𝑦(𝑇 ), 𝑇 ) = 0
 

This problem may require enlarging the domain space, also for the state variable 𝑦 to the set
of piecewise-continuous functions 𝑦 ∶ T → ℝ.

Here we are mostly concerned with the household problem with a linear utility function, that
is a isoelastic utility function with an infinitely-valued elasticity of substitution. See (Grass et al.,
2008, ch. 3.5) for a complete reference.

Example The household problem with a linear utility function

max
𝑐(⋅)

 ∫
∞

0
 𝑐(𝑡) 𝑒−𝜌𝑡 𝑑𝑡

subject to 
̇𝑎  = 𝑟 𝑎 − 𝑐

𝑎(0) = 𝑎0, fixed 
lim
𝑡→∞

 𝑒−𝑟 𝑡 𝑎(𝑡) ≥ 0

  The Hamiltonian function is

𝐻(𝑎, 𝑐, 𝜆0, 𝜆) = 𝜆0𝑐 + 𝜆 (𝑟 𝑎 − 𝑐)

where 𝜆0 is a number and 𝜆 is a function of time. The first order conditions (observe that the
Hamiltonian function is a concave, although not strictly concave function of (𝑐, 𝑎)) are

𝜆0 = 𝜆(𝑡), 𝑡 ∈ T
�̇�  = 𝜆 (𝜌 − 𝑟), 𝑡 ∈ T

lim
𝑡→∞

 𝜆(𝑡) 𝑎(𝑡)𝑒−𝜌𝑡  = 0

̇𝑎  = 𝑟 𝑎 − 𝑐
𝑎(0) = 𝑎0.

Setting 𝜆0 = 1 then 𝜆(𝑡) = 1 for every 𝑡 ∈ [0,∞), which implies �̇�  = 0. A solution only exists if
𝑟 = 𝜌, which we assume to be the case from now on. Solving the budget constraint and substituting
in the transversality condition we should have 𝑎0 = ∫∞

0  𝑒−𝜌𝑠  𝑐(𝑠) 𝑑𝑠. As there are no more
constraints on the functional form for 𝑐(𝑡), as in the case with constant elasticity of substitution,
the solution for 𝑐 is indeterminate. That is, there is an infinite number of consumption trajectories
that satisfies that constraint. In particular, a constant consumption path 𝑐(𝑡) = 𝑐∗ = 𝜌 𝑎0 is a
solution.

Setting 𝜆0 = 0 then 𝜆(𝑡) = 0 for every 𝑡 ∈ [0,∞), which implies �̇�  = 0. However, this does
not require that an existence condition is 𝑟 = 𝜌. However, even if we assume that 𝑟 − 𝜌 can have
any sign, the transversality condition will be satisfied for any trajectories of 𝑎 and 𝑐. Again, the
solution is indeterminate.
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From the economic point of view the problem is misspecified. In order to overcome this, either
we introduce more curvature in the utility function, or we introduce some adjustment costs in
consumption, or bounds in the net asset position of the consumer.

11.3 Two-stage optimal control problems

Assume that the independent variable is time 𝑡 ∈ T = [𝑡0, 𝑡2] but there is a discontinuity in the
objective function andor in the constraint to the problem such that

𝐹(𝑡) = 𝐹(𝑡, 𝑦(𝑡), 𝑢(𝑡)) =
⎧{
⎨{⎩

 𝐹1(𝑡, 𝑦(𝑡), 𝑢(𝑡)) if  𝑡0 ≥ 𝑡 < 𝑡1
𝐹2(𝑡, 𝑦(𝑡), 𝑢(𝑡)) if  𝑡1 ≥ 𝑡 ≤ 𝑡2

 

and/or  

𝐺(𝑡) = 𝐺(𝑡, 𝑦(𝑡), 𝑢(𝑡)) =
⎧{
⎨{⎩

 𝐺1(𝑡, 𝑦(𝑡), 𝑢(𝑡)) if  𝑡0 ≥ 𝑡 < 𝑡1
𝐺2(𝑡, 𝑦(𝑡), 𝑢(𝑡)) if  𝑡1 ≥ 𝑡 ≤ 𝑡2

 

where the switching time 𝑡1 ∈ T = [𝑡0, 𝑡2], that it, it satisfies 𝑡0 < 𝑡1 < 𝑡2, and may be known or
may be a decision variable. The optimal control problem in which the switching time is a decision
variable is called in the literature a two-phase optimal control problem.

The common structure of the problems we address in this section is

 

max
𝑢(⋅)

 J[𝑢, 𝑦] = ∫
𝑡1

𝑡0
 𝐹1(𝑡, 𝑦(𝑡), 𝑢(𝑡)) 𝑑𝑡 +∫

𝑡2

𝑡1
 𝐹2(𝑡, 𝑦(𝑡), 𝑢(𝑡)) 𝑑𝑡

subject to 

̇𝑦  =
⎧{
⎨{⎩

 𝐹1(𝑡, 𝑦(𝑡), 𝑢(𝑡)) if  𝑡0 ≥ 𝑡 < 𝑡1
𝐹2(𝑡, 𝑦(𝑡), 𝑢(𝑡)) if  𝑡1 ≥ 𝑡 ≤ 𝑡2

𝑡0, and  𝑡2 fixed 
𝑦(𝑡0) = 𝑦0 fixed 
𝑦(𝑡2) ≥ 𝑦2 constrained

(PTS)

We consider the following versions of the problem depending on the switching conditions:

𝑡1 fixed and  𝑦(𝑡1) free   (PTS1)

𝑡1 free but subject to 𝑡0 ≤ 𝑡1 ≤ 𝑡2 and  𝑦(𝑡1) free   (PTS2)

The Hamiltonian function becomes a piecewise continuous, or piecewise differentiable function

𝐻(𝑡) = 𝐻(𝑡, 𝑦(𝑡), 𝑢(𝑡), 𝜆(𝑡)) =
⎧{
⎨{⎩

 𝐻1(𝑡) = 𝐹1(𝑡) + 𝜆(𝑡)𝐺1(𝑡) if  𝑡0 ≥ 𝑡 < 𝑡1
𝐻2(𝑡) = 𝐹2(𝑡) + 𝜆(𝑡)𝐺2(𝑡) if  𝑡1 ≥ 𝑡 ≤ 𝑡2

 

where the co-state variable is 𝜆 ∶ T → ℝ, and 𝐻𝑖(𝑡) = 𝐻𝑖(𝑡, 𝑦(𝑡), 𝑢(𝑡), 𝜆(𝑡)) for 𝑖 = 1, 2.
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Proposition 1. [First order necessary conditions for the two-stage optimal control
problem] Let (𝑦∗, 𝑢∗) be a solution to the OC problem PTS in which one of the conditions (PTS1),
or (PTS2) is introduced. Then there is a piecewise continuous function 𝜆 ∶ T → ℝ , called co-state
variable, such that (𝑦∗, 𝑢∗, 𝜆) satisfy the following conditions:

• the optimality condition:

 𝐻∗
1,𝑢(𝑡) = 0, for  𝑡 ∈ [𝑡0, 𝑡∗1)

𝐻∗
2,𝑢(𝑡) = 0, for  𝑡 ∈ [𝑡∗1, 𝑡2]

  (11.2)

where 𝐻∗
𝑖,𝑢(𝑡) = 𝐻𝑖,𝑢(𝑡, 𝑦∗(𝑡), 𝑢∗(𝑡), 𝜆(𝑡)) for 𝑖 = 1, 2;

• the multiplier equation

 �̇�  + 𝐻∗
1,𝑦(𝑡) = 0, for  𝑡 ∈ [𝑡0, 𝑡∗1)

�̇�  + 𝐻∗
2,𝑦(𝑡) = 0, for  𝑡 ∈ [𝑡∗1, 𝑡2]

(11.3)

where 𝐻∗
𝑖,𝑦(𝑡) = 𝐻𝑖,𝑦(𝑡, 𝑦∗(𝑡), 𝑢∗(𝑡), 𝜆(𝑡)) for 𝑖 = 1, 2;

• the constraint of the problem:

̇𝑦  =𝐺∗
1(𝑡), for  𝑡 ∈ [𝑡0, 𝑡∗1)

̇𝑦  =𝐺∗
2(𝑡), for  𝑡 ∈ [𝑡∗1, 𝑡2]

(11.4)

where 𝐺∗
𝑖(𝑡) = 𝐺𝑖(𝑡, 𝑦∗(𝑡), 𝑢∗(𝑡)) for 𝑖 = 1, 2;

• the adjoint condition associated to the initial values (𝑡0, 𝑦(𝑡0)): 𝑦∗(𝑡0) = 𝑦0;

• the adjoint conditions associated to the terminal values (𝑡2, 𝑦(𝑡2)):

𝜆(𝑡2) (𝑦∗(𝑡2) − 𝑦2) = 0, and 𝜆(𝑡2) ≥ 0; (11.5)

 

• and the adjoint conditions associated to switching conditions (PTS1) and (PTS2) are

– for problem (PTS1): assuming that 𝑡0 < 𝑡1 < 𝑡2 the switching condition is

𝜆(𝑡−1 ) = 𝜆(𝑡+1 ) (11.6)

where 𝜆(𝑡−1 ) = lim𝑡↑𝑡1 𝜆(𝑡) and 𝜆(𝑡+1 ) = lim𝑡↓𝑡1 𝜆(𝑡) are the limits of the co-state variables
determined from the first stage (i.e., from 𝑡 ∈ [𝑡0, 𝑡1]) and from the second stage (i.e.,
from 𝑡 ∈ [𝑡1, 𝑡2]) respectively;

– for problem (PTS2) there are two conditions,

𝜆(𝑡∗−1 ) = 𝜆(𝑡∗+1 ) (11.7)
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where 𝜆(𝑡∗−1 ) = lim𝑡↑𝑡∗1 𝜆(𝑡) and 𝜆(𝑡∗+1 ) = lim𝑡↓𝑡∗1 𝜆(𝑡) together with one of the one of the
following conditions allowing for the determination of the optimal switching time 𝑡∗1:

𝑡∗1 = 𝑡0 < 𝑡2 ⟺ 𝐻∗
1(𝑡∗−1 ) <  𝐻∗

2(𝑡∗+1 )
𝑡0 < 𝑡∗1 < 𝑡2 ⟺ 𝐻∗

1(𝑡∗−1 ) =  𝐻∗
2(𝑡∗+1 )

𝑡0 < 𝑡∗1 = 𝑡2 ⟺ 𝐻∗
1(𝑡∗−1 ) >  𝐻∗

2(𝑡∗+1 )
(11.8)

where 𝐻∗
1(𝑡∗−1 ) = lim𝑡↑𝑡∗1 𝐻1(𝑡) and ∗2(𝑡∗+1 ) = lim𝑡↓𝑡∗1 𝐻

∗
2(𝑡).

Proof. (Heuristic) Let 𝑢∗ and 𝑦∗ be the optimal control and state variable. The value functional,
at the optimum, is, for (PTS2) problem,

J∗  = ∫
𝑡∗1

𝑡0
𝐹 ∗
1 (𝑡) 𝑑𝑡 +∫

𝑡2

𝑡∗1
 𝐹 ∗

2 (𝑡) 𝑑𝑡

and the associated Lagrangean is

L∗ = J∗ + 𝜇0 (𝑡∗1 − 𝑡0) + 𝜇2 (𝑡2 − 𝑡∗1) + 𝜓 (𝑦∗ (𝑡2) − 𝑦2),

where the complementary slackness conditions should hold

𝜇0 (𝑡∗1 − 𝑡0) = 0,𝜇0 ≥ 0, and  𝑡∗1 ≥ 𝑡0
𝜇2 (𝑡2 − 𝑡∗1) = 0,𝜇2 ≥ 0, and  𝑡∗1 ≤ 𝑡2

𝜓 (𝑦∗ (𝑡2) − 𝑦2) = 0,𝜓 ≥ 0, and  𝑦∗(𝑡2) ≤ 𝑦2.

  Introducing the admissible perturbations 𝑦(𝑡) = 𝑦∗(𝑡) + 𝜀 𝜂𝑦(𝑡) to the state variable, 𝑢(𝑡) =
𝑢∗(𝑡) + 𝜀 𝜂𝑢(𝑡) to the control variable and 𝑡1 = 𝑡∗  + 𝜀 𝜏1, yields the Gâteaux differential

𝛿𝜂(⋅) L [𝑦∗, 𝑢∗; 𝑡∗1]  = ∫
𝑡∗1

𝑡0
[ 𝐻∗

1,𝑢(𝑡) 𝜂𝑢(𝑡) + (𝐻∗
1,𝑦(𝑡) + �̇� (𝑡)) 𝜂𝑦(𝑡)] 𝑑𝑡+

+∫
𝑡2

𝑡∗1
 [ 𝐻∗

2,𝑢(𝑡) 𝜂𝑢(𝑡) + (𝐻∗
2,𝑦(𝑡) + �̇� (𝑡)) 𝜂𝑦(𝑡)] 𝑑𝑡

+ 𝜆(𝑡0) 𝜂(𝑡0) + (𝜆(𝑡∗+1 ) − 𝜆(𝑡∗−1 )) 𝜂(𝑡∗1) + (𝜓 − 𝜆(𝑡2) 𝜂(𝑡2)
+ (𝜇0 − 𝜇2 +𝐻∗

1(𝑡∗−1 ) − 𝐻∗
2(𝑡∗+1 )) 𝜏1.

At the optimum 𝛿𝜂(⋅) L [𝑦∗, 𝑢∗; 𝑡∗1] = 0 should be sarisfied, together with the complementary slackness
conditions for admissible perturbations. As the only constraint on the perturbation is 𝜂(𝑡0) = 0, at
the optimum satisfies 𝐻∗

1,𝑢(𝑡) = 𝐻∗
1,𝑦(𝑡) + �̇�(𝑡) = ̇𝑦  − 𝐺∗

1 (𝑡) = 0 for every 𝑡 ∈ [𝑡0, 𝑡∗−1 ), 𝐻∗
2,𝑢(𝑡) =

𝐻∗
2,𝑦(𝑡) + �̇�(𝑡) = ̇𝑦  − 𝐺∗

2 (𝑡) = 0 for every 𝑡 ∈ (𝑡∗+1 , 𝑡?2], 𝜆(𝑡2)(𝑦∗(𝑡2) − 𝑦2) = 0, and 𝜆(𝑡1) = 𝜆(𝑡1)
if 𝑡1 is fixed, or 𝜆(𝑡∗+1 ) = 𝜆(𝑡∗−1 ) together with 𝜇0 − 𝜇2 +𝐻∗

1(𝑡∗−1 ) − 𝐻∗
2(𝑡∗+1 ) = 0 together with the

associated complementary slackness conditions if 𝑡1 should be optimally determined.

Switching costs: there are version of the problem in which there is a switching cost at time
𝑡 = 𝑡1, depending on the state of the problem, as Φ(𝑡1, 𝑦(𝑡1). In this case we have
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• for the fixed switching time problem (??) instead of condition (11.6) we have

𝜆(𝑡−1 ) + Φ𝑦 (𝑡1, 𝑦∗(𝑡1)) = 𝜆(𝑡+1 )

Φ𝑦 (𝑡, 𝑦) = 𝜕Φ(𝑡,𝑦)
𝜕𝑦 .

• for the free switching time problem (??) instead of condition (11.7) we have

𝜆(𝑡∗−1 ) + Φ𝑦 (𝑡1, 𝑦∗(𝑡∗1) = 𝜆(𝑡∗+1 )

  and instead of conditions (11.8) we have

𝑡∗1 = 𝑡0 < 𝑡2 ⟺ 𝐻∗
1(𝑡∗−1 ) − Φ𝑡 (𝑡1, 𝑦∗(𝑡∗1) <  𝐻∗

2(𝑡∗+1 )
𝑡0 < 𝑡∗1 < 𝑡2 ⟺ 𝐻∗

1(𝑡∗−1 ) − Φ𝑡 (𝑡1, 𝑦∗(𝑡∗1) =  𝐻∗
2(𝑡∗+1 )

𝑡0 < 𝑡∗1 = 𝑡2 ⟺ 𝐻∗
1(𝑡∗−1 ) − Φ𝑡 (𝑡1, 𝑦∗(𝑡∗1) >  𝐻∗

2(𝑡∗+1 )

where Φ𝑡 (𝑡, 𝑦) = 𝜕Φ(𝑡,𝑦)
𝜕𝑡 .

 
Observations: we can extend this approach to multple switcing times.
References: Tomiyama (1985), Rossana (1989), Makris (2001). For an application to endogenous

growth see Boucekkine et al. (2004).

11.4 Constraints on state and control variables

Assume that the independent variable is time 𝑡 ∈ T = [0, 𝑇 ] and one of the following constraints
exist: constraints on state variables such that 𝑄2(𝑦(𝑡), 𝑡) ≤ 0, or constraints in the state and/or
control variables such that 𝑄1(𝑡𝑦(𝑡), 𝑢(𝑡), 𝑡) ≤ 0, for every 𝑡 ∈ T.

max
𝑢(⋅)

 J[𝑦, 𝑢]  = ∫
𝑇

0
 𝐹 (𝑡, 𝑦(𝑡), 𝑢(𝑡)) 𝑑𝑡

subject to 
̇𝑦  = 𝐺(𝑡, 𝑦(𝑡), 𝑢(𝑡))

𝑦(0) = 𝑦0 given 
𝑄1(𝑡, 𝑦(𝑡), 𝑢(𝑡)) ≥ 0, for any  𝑡 ∈ T
𝑄2(𝑡, 𝑦(𝑡)) ≥ 0, for any  𝑡 ∈ T
𝑅(𝑦(𝑇 ), 𝑇 ) ≥ 0.

  (11.9)

where 𝑄1(⋅) ≥ 0 is a joint constraint on the state variable and the control variable and 𝑄2(⋅) ≥ 0
is a pure state constraint.

In this problem we have potencial points of discontinuity for the adjoint variable 𝜆(⋅) when the
constraints are
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In this case an (informal) version of the Pontriyagin maximum principle is presented in Hartl
et al. (1995). Define the Hamiltonian function

𝐻(𝑦, 𝑢, 𝜆0, 𝜆, 𝑡) = 𝜆0 𝐹(𝑦, 𝑢, 𝑡) + 𝜆𝐺(𝑦, 𝑢, 𝑡),

and the Lagrangean

𝐿(𝑦, 𝑢, 𝜆0, 𝜆, 𝑡) = 𝐻(𝑦, 𝑢, 𝜆0, 𝜆, 𝑡) + 𝜈1 𝑄1(𝑦, 𝑢, 𝑡) + 𝜈2 𝑄1(𝑦, 𝑡).

An informal version of the Pontriyagin’s principle states the following: If (𝑦∗, 𝑢∗) is an optimum,
then there is a scalar 𝜆0 ∈ ℝ, a piecewise function 𝜆 ∶ T → 𝑅, Lagrange multipliers 𝜈1 ∶ T → 𝑅,
and/or 𝜈2 ∶ T → 𝑅, variables 𝜁(𝑡𝑖 at the times of discontinuity 𝑡𝑖 for 𝜆(⋅), and three constants 𝛼
and 𝛽 such that:

1. for every 𝑡 ∈ [0, 𝑇 )

𝐿∗
𝑢(𝑡) = 0
�̇�  = −𝐿∗

𝑦(𝑡)
̇𝑦  = 𝐿∗

𝜆 (𝑡) = 𝐺(𝑡, 𝑦∗(𝑡), 𝑢∗(𝑡))
𝜈1(𝑡) ≥ 0, and  𝜈1(𝑡)𝑄∗

1(𝑡) = 0
𝜈2(𝑡) ≥ 0, and  𝜈2(𝑡)𝑄∗

2(𝑡) = 0

2. at the terminal time 𝑡 = 𝑇

𝜆(𝑇−) = 𝛼𝑄∗
2,𝑦 (𝑇 ) + 𝛽 𝑅∗

𝑦 (𝑇 )
𝛼 ≥ 0, and  𝛼𝑄∗

2(𝑇 ) = 0
𝛽 ≥ 0, and  𝛽 𝑅∗(𝑇 ) = 0.

 

3. for any time 𝑡𝑖 at a boundary interval and for any contact time 𝑡𝑖, the co-state variable 𝜆(⋅)
may have a discontinuity given by

𝜆(𝑡−𝑖 ) = 𝜆(𝑡+𝑖 ) + 𝜂(𝑡𝑖)𝑄∗
2,𝑦(𝑡𝑖)

𝐻∗(𝑡−𝑖 ) = 𝐻∗ (𝑡+𝑖 ) + 𝜂(𝑡𝑖)𝑄∗
2,𝑡(𝑡𝑖)

𝜂(𝑡𝑖) ≥ 0, and  𝜂(𝑡𝑖)𝑄∗
2(𝑡𝑖) = 0

where 𝜆(𝑡−𝑖 ) = lim𝑡↑𝑡𝑖  𝜆(𝑡) and 𝜆(𝑡+𝑖 ) = lim𝑡↓𝑡𝑖  𝜆(𝑡) and an analogous notation for 𝐻∗(𝑡).

References: Köhler (1980), Hartl et al. (1995).

11.5 References

The definitive textbook on optimal control is Grass et al. (2008)
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