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Chapter 12

Scalar parabolic partial differential
equations

 

12.1 Introduction

Parabolic partial differential equations involve a known function 𝐹 depending on two independent
variables (𝑡, 𝑥), an unknown function of them 𝑢(𝑡, 𝑥), the first partial derivative as regards 𝑡 and
first and second partial derivatives as regards the ”spatial” variable 𝑥:

𝐹(𝑡, 𝑥, 𝑢, 𝑢𝑡, 𝑢𝑥, 𝑢𝑥𝑥) = 0

  for 𝑢 ∶ T × X → ℝ, where T ⊆ ℝ+ and X ⊆ ℝ.
In its simplest form, 𝐹(𝑢𝑡, 𝑢𝑥𝑥) = 0, the equation models the dynamics (in time) of a cross

section distribution driven by dispersion. Dispersion if generated by spatial contact (think about
the change in the distribution of a pollutant spreading within a lake where the water is com-
pletely still). Equation 𝐹(𝑢𝑡, 𝑢𝑥, 𝑢𝑥𝑥) = 0 features both dispersion and advection behaviors (think
about the change in the distribution of a pollutant spreading within a flowing river). Equation
𝐹(𝑢𝑡, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥) = 0 jointly displays dispersion, advection and growth or decay behaviors (think
about the change in the distribution of a pollutant spreading within a flowing river, in which there
is a permanent inflow or outflow of new pollutants). The independent terms, 𝑡 and 𝑥, appear in
function 𝐹(.) if there are some time or spatial specific components.

We will also see in the next chapter that there is a close connection between partial differ-
ential equations and stochastic differential equations. This is the reason explaining the fact that
continuous-time finance has been using parabolic PDE’s since the beginning of the 1970’s.

In economics and finance applications it is important to distinguish between forward (FPDE)
and backward (BPDE) parabolic PDE’s. While the first are complemented with an initial distri-
bution and generate a flow of distributions forward in time, the latter are complemented with a
terminal distribution and its solution generate a flow of distributions consistent with that terminal

2



Paulo Brito Advanced Mathematical Economics 2022/2023 3

constraint. While for FPDE the terminal distribution is unknown, for FPDE the distribution at
time 𝑡 = 0 is unknown. For planar systems, we may have forward, backward or forward-backward
(FBPDE) parabolic PDE’s. The last case can be seen as a generalization of the saddle-path dy-
namics for ODE’s.

In mathematical finance most applications, such as the Black and Scholes (1973) model, are
PDE’s of the backward type. In economics there is recent interest in PDE’s related to the topi-
cal importance of distribution issues, and, in particular to spatial dynamics modelled by BPDE.
Optimal control of PDE’s and mean-field games usually lead to FBPDE’s.

The body of theory and application of parabolic PDE’s is huge. We only present next some
very introductory results and applications. In particular, we deal with linear PDE’s having explicit
solutions, and that can be useful for studying the dynamics of the distributions for stochastic
differential equations.

The rest of this chapter presents an overview for linear scalar PDEs in section 12.2. Section
12.3 contains the solutions for the simplest FPDEs. Sections 12.4 and 12.5 deal with homogeneous
and non-homogenous general linear scalar parabolic PDE, respectively. Section 12.6 contains an
introduction to forward non-autonomous equations. Next we briefly present the solutions to linear
backward equations in section 12.7. The remaining sections present applications of previous results
to solving some simple Fokker-Planck equations, in section 12.8, and to economics and finance in
section 12.9.

12.2 A general overview of linear scalar parabolic PDE’s

 
Consider function 𝑢(𝑡, 𝑥) where (𝑡, 𝑥) ∈ T×X ⊆ ℝ×ℝ+ and assume it is an at least 𝐶1,2(ℝ+, ℝ)

function1. There are several types of linear parabolic PDE:

• if 𝐹(.) is linear in the derivatives of 𝑢, but the coefficients can be non-linear functions of 𝑢,
as

𝑢𝑡 = 𝑎(𝑥, 𝑡, 𝑢)𝑢𝑥𝑥 + 𝑏(𝑥, 𝑡, 𝑢)𝑢𝑥 + 𝑐(𝑥, 𝑡, 𝑢),
  then it is called a quasi-linear  parabolic PDE;

• it 𝐹(.) is linear in the derivatives of 𝑢, and the coefficients are independent from 𝑢, as

𝑢𝑡 = 𝑎(𝑡, 𝑥)𝑢𝑥𝑥 + 𝑏(𝑡, 𝑥)𝑢𝑥 + 𝑐(𝑥, 𝑡, 𝑢)

  then it is called a semi-linear  parabolic PDE;

• if 𝐹(.) is linear in 𝑢 and all its derivatives,  and the coefficients are independent from 𝑢, as

𝑢𝑡 = 𝑎(𝑡, 𝑥)𝑢𝑥𝑥 + 𝑏(𝑡, 𝑥)𝑢𝑥 + 𝑐(𝑡, 𝑥)𝑢 + 𝑑(𝑡, 𝑥)

then it is called a linear  parabolic PDE.
1It is, at least, differentiable to the second order as regards 𝑥 and to the first order as regards 𝑡.
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A linear equation having constant coefficients, which are obviously independent from (𝑡, 𝑥), is
called an autonomous PDE. The general form of an autonomous linear parabolic PDE  is

 𝑢𝑡 = 𝑎𝑢𝑥𝑥 + 𝑏𝑢𝑥 + 𝑐𝑢 + 𝑑. (12.1)

There are two main particular cases, in analogy to linear scalar ODEs: if 𝑑 = 0 the PDE is called
homogeneous and if 𝑑 ≠ 0 it is non-homogeneous.

Equation (12.1)  is sometimes called a diffusion equation with advection and growth. This is
because, the time-behavior of 𝑢 depends on three terms: a diffusion term, 𝑎𝑢𝑥𝑥, a transport term,
𝑏𝑢𝑥, and a growth term 𝑐 𝑢 and a position term 𝑑. If 𝑎 > 0 (𝑎 < 0) the equation is a forward PDE -
FPDE (backward PDE - BPDE) because the diffusion operator works forward (backward) in time.
The 𝑏 coefficient introduces a behavior similar to the first-order PDE: it involves a transportation
of the solution along the axis 𝑥, in the forward direction if 𝑏 < 0 and in the backward direction if
𝑏 > 0. The 𝑐 coefficient generates a time behavior of the whole distribution 𝑢(𝑥, .) in a way similar
to an ordinary differential equation, that is, it involves stability if 𝑐 < 0 or instability if 𝑐 > 0.

In the case of a parabolic PDE the stability or instability properties are related to the whole
distribution: we have stability in a distributional sense if there is a solution 𝑢(𝑡, 𝑥) = 𝑢(𝑥)
such that

lim
𝑡→∞

𝑢(𝑡, 𝑥) = 𝑢(𝑥)

  where 𝑢(𝑥) is a stationary distribution.
An important element regarding the existence and characterization of the solution of PDE’s is

related to the characteristics of the support of the distribution X. The most common applications
assume that the set 𝑋 can be a line or a circle (a ring). In the first case, we can distinguish between
three main cases:

• unbounded or infinite case X = (−∞, ∞);

• the semi-bounded of semi-infinite case X = [𝑥, ∞) or X = (−∞, 𝑥];

• the bounded case X = (𝑥, 𝑥)

where both 𝑥 and 𝑥 are finite numbers.
In order to define problems involving parabolic PDE’s we have to supplement it with a

distribution referred to a point in time (an initial distribution for the forward PDE or terminal
distribution for a backward PDE), and possibly conditions involving known values for the values of
𝑢(𝑡, 𝑥) at the boundaries of X (called boundary conditions), i.e, values for 𝑢(𝑥, ⋅) for points 𝑥 ∈ 𝜕X,
where 𝜕X denotes the boundary of X.

A boundary-value problem in defined by a PDE supplemented with conditions on their
boundaries. The conditions on the boundaries can take several forms. In particular:

• we say we have Cauchy problem if the PDE is supplemented with a condition on the level of
𝑢 at the boundaries: 𝑢(𝑡, 𝑥) = 𝑢 and 𝑢(𝑡, 𝑥) = 𝑢 where 𝑢 and 𝑥 are know numbers
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• we say we haveNeumann problem if the PDE is supplemented with a condition on the spatial
derivative of 𝑢 at the boundaries: 𝑢𝑥(𝑡, 𝑥) = 𝑢 and 𝑢𝑥(𝑡, 𝑥) = 𝑢 where 𝑢 and 𝑥 are know
numbers.

  However, boundary conditions may not be specified, which is sometimes the case when 𝑋 = ℝ,
and there are other types boundary conditions.

A problem is said to be well-posed if there is a solution to the PDE that satisfies both the
initial (or terminal) conditions, referring to time, and the ”spatial” boundary conditions, and it is
continuous at those points. In this case we say we have a classic solution. If a problem is not
well-posed it is ill-posed. In this case there are no solutions or classic solutions do not exist (but
generalized or weak solutions can exist).

A necessary condition for a problem involving a FPDE to be well posed is that it is supplemented
with an initial condition in time, and a necessary condition for a problem BPDE to be well-posed
is that it involves a terminal condition in time.

12.3 The simplest forward PDE

 
This section presents the heat equation which is the simplest forward version of equation (12.1).

In subsection 12.3.1  we show how the heat equation is obtained. In subsection 12.3.2 we introduce
Fourier transforms, which allows us to transform some types of parabolic PDE into ODEs. In the
remaining subsections several version of the (forward) heat equations are solved, depending on its
domain: the infinite domain in subsection 12.3.3, the semi-infinite domain in section 12.3.4

12.3.1 The heat equation: derivation

 
The simplest linear parabolic PDE is the heat equation. Denoting the temperature at location

𝑥 ∈ X at time 𝑡 by 𝑢(𝑡, 𝑥), the heat equation formalizes the dynamics of the heat distribution across
set X over time by the linear forward parabolic PDE2

𝑢𝑡 − 𝑢𝑥𝑥 = 0. (12.2)

  It describes the dynamics of the temperature distribution when spatial differences in temperature
drive the change in spatial distribution of temperature over time. Consider a homogeneous rod
with infinite width and let 𝑢(𝑡, 𝑥) be the temperature at point 𝑥 ∈ X = (−∞, ∞) at time 𝑡 ≥ 0.
Consider a small segment of the rod between points 𝑥 and 𝑥 + Δ𝑥, where Δ𝑥 > 0. The average
temperature in the segment at time 𝑡 is ∫𝑥+Δ𝑥

𝑥 𝑢(𝑡, 𝑧) 𝑑𝑧. and the instantaneous change of the
average temperature in the segment is

𝑑
𝑑𝑡( ∫

𝑥+Δ𝑥

𝑥
𝑢(𝑡, 𝑧) 𝑑𝑧) = ∫

𝑥+Δ𝑥

𝑥
𝑢𝑡(𝑡, 𝑧) 𝑑𝑧.

2The first formulation of the heat equation is attributed to Fourier in a presentation to the Institut de France,
and in a book with title Théorie de la Propagation de la Chaleur dans les Solides both in 1807.
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It is assumed that this change in temperature is generated by the heat flow through the segment,
that is flowing across the two boundaries of the segment (𝑥, 𝑥 + Δ𝑥). The difference in the tem-
perature between the two boundaries of the segment, 𝑢(𝑡, 𝑥 + Δ𝑥) − 𝑢(𝑡, 𝑥), is by the mean value
theorem

𝑢(𝑡, 𝑥 + Δ𝑥) − 𝑢(𝑡, 𝑥) = ∫
𝑥+Δ𝑥

𝑥
𝑢𝑥(𝑡, 𝑧) 𝑑𝑧,

which can be seen as a measure of the average temperature in the segment (𝑥, 𝑥 + Δ𝑥) at time 𝑡.
If there is a hotter spot located outside the segment, for instance in a leftward region, and because
the heat flows from hot to colder regions, then temperature in the segment (𝑥, 𝑥 + Δ𝑥) is lower
then in the leftward region, implying 𝑢𝑥(𝑡, 𝑥) < 0, and it is higher than in the rightward region,
implying 𝑢𝑥(𝑡, 𝑥 + Δ𝑥) < 0, and the gradient in the leftward boundary is higher in absolute terms
that the rightward 𝑢𝑥(𝑡, 𝑥 + Δ𝑥) − 𝑢𝑥(𝑡, 𝑥) > 0. Therefore, from the mean-value theorem, the heal
flow is

𝑢𝑥(𝑡, 𝑥 + Δ𝑥) − 𝑢𝑥(𝑡, 𝑥) = ∫
𝑥+Δ𝑥

𝑥
𝑢𝑥𝑥 (𝑡, 𝑧) 𝑑𝑧 > 0.

If we assume that the instantaneous change in the segment’s temperature is equal to the heat that
flows through the segment, then

𝜕
𝜕𝑡( ∫

𝑥+Δ𝑥

𝑥
𝑢(𝑡, 𝑧) 𝑑𝑧) = 𝜕

𝜕𝑥𝑢(𝑡, 𝑥 + Δ𝑥) − 𝜕
𝜕𝑥𝑢(𝑡, 𝑥),

  that is

∫
𝑥+Δ𝑥

𝑥
𝑢𝑡(𝑡, 𝑧) 𝑑𝑧 = ∫

𝑥+Δ𝑥

𝑥
𝑢𝑥𝑥 (𝑡, 𝑧) 𝑑𝑧.

  This is equivalent to

∫
𝑥+Δ𝑥

𝑥
(𝑢𝑡(𝑡, 𝑧) − 𝑢𝑥𝑥 (𝑡, 𝑧)) 𝑑𝑧 = 0,

  which holds if and only if equation (12.2) is satisfied.
The simplest linear scalar parabolic PDE is a slight generalization of the forward partial differ-

ential equation 𝑢𝑡(𝑡, 𝑥) = 𝑎 𝑢𝑥𝑥(𝑡, 𝑥) where 𝑎 > 0. The solution, and the solution methods, to this
equation depends on our assumption regarding the domain X. For the equations, and the related
problems we will be interested, a powerful method uses Fourier transforms. We present next a
short introduction to Fourier transforms.

12.3.2 Fourier transforms

  
There are several methods for solving linear parabolic PDE’s. A general method consist in

transforming the PDE into a parameterized ODE. There are several possible transformations -
sine, cosine, Laplace, Mellin or Fourier transforms. The choice of the method usually depends on
the domain of the ”spatial” variable, X.
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When the domain of the independent variable 𝑥 is X = (−∞, ∞), the most direct method to
find a solution is to use Fourier and inverse Fourier transforms (see Appendix 12.10 Tables 12.1
and 12.2).

The method of obtaining a solution follows three steps: first, we transform function 𝑢(𝑡, 𝑥)
into function 𝑈(𝑡., 𝜔), where 𝜔 ∈ Ω = ℝ represents frequencies, such that the PDE over 𝑢(𝑡, 𝑥) is
transformed into a parameterized ordinary differential equation over 𝑈(𝑡𝜔); second we solve the
ODE over 𝑈(⋅); and finally we transform back to the original function 𝑢(𝑡, 𝑥). When the domain
of 𝑥 is not the double-infinity we may have to adapt this method.

The (spatial) Fourier transform of the integrable function 𝑢(𝑡, 𝑥) over 𝑥, taking 𝑡 as a pa-
rameter, is 3

𝑈(𝑡, 𝜔) = ℱ[𝑢(𝑡, 𝑥)](𝜔) ≡ ∫
∞

−∞
𝑢(𝑡, 𝑥)𝑒−2𝜋𝑖𝜔𝑥𝑑𝑥 (12.3)

  where 𝑖2 = −1 and the inverse Fourier transform  is

𝑢(𝑡, 𝑥) = ℱ−1[𝑈(𝑡, 𝜔)](𝑥) ≡ ∫
∞

−∞
𝑈(𝑡, 𝜔)𝑒2𝜋𝑖𝜔𝑥𝑑𝜔. (12.4)

  By representing the primitive function 𝑢(𝑡, 𝑥) as

𝑢(𝑡, 𝑥) = ∫
∞

−∞
𝑈(𝑡, 𝜔)𝑒2𝜋𝑖𝜔𝑥𝑑𝜔

we can transform the PDE 𝑓(𝑢𝑡, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥 ) = 0 into an ODE 𝐹(𝑈𝑡, 𝑈) = 0, because the derivatives
of the original variable have the following representations

𝑢𝑡(𝑡, 𝑥) = 𝜕
𝜕𝑡  ∫

∞

−∞
𝑈(𝑡, 𝜔)𝑒2𝜋𝑖𝜔𝑥𝑑𝜔 = ∫

∞

−∞
𝑈𝑡(𝑡, 𝜔)𝑒2𝜋𝑖𝜔𝑥𝑑𝜔,

  and
𝑢𝑥(𝑡, 𝑥) = 𝜕

𝜕𝑥  ∫
∞

−∞
𝑈(𝑡, 𝜔)𝑒2𝜋𝑖𝜔𝑥𝑑𝜔 = ∫

∞

−∞
2𝜋𝜔𝑖 𝑈(𝑡, 𝜔)𝑒2𝜋𝑖𝜔𝑥𝑑𝜔,

  and the second-order derivative is

𝑢𝑥𝑥(𝑡, 𝑥) = 𝜕2

𝜕𝑥2   ∫
∞

−∞
𝑈(𝑡, 𝜔)𝑒2𝜋𝑖𝜔𝑥𝑑𝜔

= 𝜕
𝜕𝑥  ∫

∞

−∞
2𝜋𝜔𝑖 𝑈(𝑡, 𝜔)𝑒2𝜋𝑖𝜔𝑥𝑑𝜔

= ∫
∞

−∞
(2𝜋𝜔𝑖)2𝑈(𝑡, 𝜔)𝑒2𝜋𝑖𝜔𝑥𝑑𝜔

= − ∫
∞

−∞
(2𝜋𝜔)2𝑈(𝑡, 𝜔)𝑒2𝜋𝑖𝜔𝑥𝑑𝜔.

 

If function 𝑓(𝑢𝑡, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥) is linear then 𝐹(𝑈𝑡, 𝑈) will be linear as well. Assume that the solution
of the ODE 𝐹(𝑈𝑡, 𝑈) = 0 is a product of two Fourier transforms,

𝑈(𝑡, 𝜔) = 𝑈(0, 𝜔) 𝐺(𝑡, 𝜔)
3There are different definitions of Fourier transforms, we use the definition by, v.g., Kammler (2000).
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  where 𝑈(0, 𝜔) = ℱ[𝑢(0, 𝑥)](𝜔) and 𝐺(𝑡, 𝜔) = ℱ[𝑔(𝑡, 𝑥)](𝜔). If we are able to find the inverse
Fourier transforms, 𝑢(0, 𝑥) and 𝑔(𝑡, 𝑥) then we can obtain 𝑢(𝑡, 𝑥) as the inverse Fourier transform
of 𝑈(𝑡, 𝜔), as the convolution

𝑢(𝑡, 𝑥) = ℱ−1[𝑈(𝑡, 𝜔)](𝑥) = ℱ−1[𝑈(0, 𝜔) 𝐺(𝑡, 𝜔)](𝑥) = 𝑢(0, 𝑥) ∗ 𝑔(𝑡, 𝑥).

  If function 𝑢(𝑡, 𝑥) is a convolution of functions 𝑢(0, 𝑥) and 𝑔(𝑡, 𝑥), assumed to be integrable
functions in the domain of 𝑥 then it satisfies

𝑢(𝑡, 𝑥) = 𝑢(0, 𝑥) ∗ 𝑔(𝑡, 𝑥) ≡ ∫
∞

−∞
𝑢(0, 𝜉) 𝑔(𝑡, 𝑥 − 𝜉) 𝑑𝜉.

 

12.3.3 The forward heat equation in the infinite domain

In this subsection we solve the slightly more general version of equation (12.2) in the infinite
domain for an arbitrary bounded initial condition, and for a given initial condition. The last two
are versions of Cauchy problems in which the side conditions refer to 𝑡 = 0.

General solution

The simplest forward linear PDE for an infinite domain 𝑋 = (−∞, ∞) = ℝ is

𝑢𝑡 − 𝑎𝑢𝑥𝑥 = 0, (𝑡, 𝑥) ∈ ℝ+ × ℝ (12.5)

where 𝑎 > 0.

Proposition 1. Let 𝑢(0, 𝑥) be an arbitrary but bounded function with domain in ℝ, i.e. satisfying
∫∞
−∞ |𝑢(0, 𝑥)|𝑑𝑥 < ∞. Then the solution to PDE (12.5) is

𝑢(𝑡, 𝑥) =
⎧{
⎨{⎩

𝑢(0, 𝑥), (𝑡, 𝑥) ∈ {𝑡 = 0}  × ℝ
1

2
√

𝜋𝑎𝑡 ∫
∞

−∞
𝑢(0, 𝜉)𝑒− (𝑥−𝜉)2

4𝑎𝑡  𝑑𝜉, (𝑡, 𝑥) ∈ ℝ++ × ℝ
(12.6)

 

Proof.  The proof proceeds in three steps. First step: transform PDE (12.5) into a parameterized
ODE. Applying the previous definition of Fourier transform to the PDE (12.5) we have

𝑢𝑡 − 𝑎𝑢𝑥𝑥 = ∫
∞

−∞
(𝑈𝑡(𝑡, 𝜔) + 𝑎(2𝜋𝜔)2𝑈(𝑡, 𝜔)) 𝑒2𝜋𝑖𝜔𝑥𝑑𝜔 = 0.

Defining 𝜆(𝜔) ≡ −𝑎 (2𝜋𝜔)2 (called an eigenfunction), the equation is satisfied if and only if 𝑈(⋅, 𝜔)
solves the characteristic equation

𝑈𝑡(𝑡, 𝜔) = 𝜆(𝜔) 𝑈(𝑡, 𝜔),
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which is a linear ODE with time as the independent variable, and 𝜔 as a parameter. Second step:
the characteristic equation is

𝑈(𝑡, 𝜔) = 𝑈(0, 𝜔) 𝐺(𝑡, 𝜔)

  where 𝑈(0, 𝜔) is an arbitrary function of 𝜔, and

𝐺(𝜔, 𝑡) ≡
⎧{
⎨{⎩

1, 𝑡 = 0
𝑒𝜆(𝜔) 𝑡, 𝑡 > 0

is called the Gaussian kernel.  Third step: we transform back from 𝑈(𝑡, 𝜔) to 𝑢(𝑡, 𝑥) using the
inverse Fourier transform, yielding

𝑢(𝑡, 𝑥) = ℱ−1[𝑈(𝑡, 𝜔)](𝑥) = ℱ−1[𝑈(0, 𝜔) 𝐺(𝑡, 𝜔)] = 𝑢(0, 𝑥) ∗ 𝑔(𝑡, 𝑥)

where 𝑢(0, 𝑥) = ℱ−1[𝑈(0, 𝜔)](𝑥) and 𝑔(𝑡, 𝑥) = ℱ−1[𝐺(𝑡, 𝜔)](𝑥) are inverse Fourier transforms, and
 

𝑢(0, 𝑥) ∗ 𝑔(𝑡, 𝑥) = ∫
∞

−∞
𝑢(0, 𝜉) 𝑔(𝑡, 𝑥 − 𝜉)𝑑𝜉

  Using the table 12.2 in the Appendix, for 𝑔(𝑥, 𝑡) = ℱ−1[𝐺(𝑡, 𝜔)](𝑥) the Gaussian kernel in the
initial variable is

𝑔(𝑡, 𝑥) =
⎧{
⎨{⎩

𝛿(𝑥), 𝑡 = 0
𝑒− 𝑥2

4𝑎𝑡

2
√

𝜋 𝑎 𝑡, 𝑡 > 0

  where 𝛿(.) is the Dirac’s delta function. Then we obtain the general solution (12.6) where
𝑢(0, 𝑥) is an arbitrary but bounded function, i.e. satisfying ∫∞

−∞ |𝑢(0, 𝑥)|𝑑𝑥 < ∞, because
∫∞
−∞ 𝑢(0, 𝜉)𝛿(𝑥 − 𝜉)𝑑𝜉 = 𝑢(0, 𝑥).

Two observations can be made concerning the solution of this PDE in equation (12.6):
First, applying the Fourier transform, we change from a distribution in the original variables 𝑥

to a frequency distribution 𝜔.
The transformed PDE becomes a linear ODE where the coefficient is eigenfunction

𝜆(𝜔) = −𝑎 (2𝜋𝜔)2, for  𝜔 ∈ ℝ 

  which is a real and non-positive function of any 𝜔 ∈ ℝ such that: 𝜆(0) = 0 and 𝜆(𝜔) < 0 for 𝜔 ≠ 0
and, lim𝜔→±∞ 𝜆(𝜔) = −∞. This means that lim𝜔→±∞ 𝑈(𝑡, 𝜔) = 0 for any 𝑡 if 𝐾(𝜔) is bounded.

Second, associated to the previous property, the solution 𝑢(𝑡, 𝑥) is a time-varying expected value
of the arbitrary function where the density function is a Gaussian density function with average 0
and variance 2 𝑎 𝑡.
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Initial value problems Similarly to ODE’s we define an initial value problem

⎧{
⎨{⎩

𝑢𝑡 = 𝑎𝑢𝑥𝑥, (𝑡, 𝑥) ∈ (0, ∞) × (−∞, ∞)
𝑢(0, 𝑥) = 𝑢0(𝑥) (𝑡, 𝑥) ∈ {𝑡 = 0}  × (−∞, ∞)

(12.7)

  where 𝑎 > 0 and 𝑢0(𝑥) is a known function (and not a known number as in an ODE). The
problem is well-posed if 𝑢0(𝑥) is bounded, which means that the solution to the problem exists
and is continuous in time.

Substituting the arbitrary function 𝑢(0, 𝑥) = 𝑢0(𝑥), because 𝑢0(𝑥) is a known function, in the
general solution of the PDE, equation (12.6), yields the particular solution to the initial problem
(12.7)

𝑢(𝑡, 𝑥) =
⎧{{
⎨{{⎩

𝑢0(𝑥), (𝑡, 𝑥) ∈ {𝑡 = 0}  × ℝ

∫
∞

−∞

𝑢0(𝜉)
2
√

𝜋 𝑎 𝑡  𝑒−
(𝑥 − 𝜉)2

4𝑎𝑡  𝑑𝜉, (𝑡, 𝑥) ∈ ℝ++ × ℝ.
(12.8)

Next we present several examples, for different initial-value functions.

Example 1: Dirac’s delta initial distribution Let 𝑎 = 1 and assume that the initial dis-
tribution is concentrated at point 𝑥 = 0. Then 𝑢0(𝑥) = 𝛿(𝑥), satisfying ∫∞

−∞  𝛿(𝑥) 𝑑𝑥 = 1. Using
equation (12.8) yields

𝑢(𝑡, 𝑥) = 𝑒− 𝑥2
4 𝑡√

4 𝑠𝜋 𝑡
, for  (𝑡, 𝑥) ∈ ℝ+  × ℝ.

This solution has two properties: first, it satisfies a conservation law at every point in time

∫
∞

−∞
𝑢(𝑡, 𝑥) 𝑑𝑥 = 1, for every 𝑡 ≥ 0,

and it decays over time to a spatially homogeneous distribution

lim
𝑡→∞

𝑢(𝑡, 𝑥) = 0, ∀𝑥 ∈ (−∞, ∞)

  meaning that the variance will tend to infinity.  

Example 2: A Gaussian initial distribution Let again 𝑎 = 1, but assume instead that

𝑢0(𝑥) = 𝑒−𝑥2

√𝜋 . Equation (12.8) becomes

𝑢(𝑡, 𝑥) = 1
√𝜋(1 + 4 𝑡)

𝑒
−

𝑥2

1 + 4 𝑡 .

  Figure 12.1 illustrates the behavior of this solution. This solution has the same properties as
the previous example: it satisfies a conservation law, and decays over time and converges to a flat
distribution.
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Figure 12.1: Solution for the initial value problem for the heat equation with 𝑎 = 1 and 𝑢0(𝑥) =
𝑒−𝑥2

√𝜋 .

Example 3: Piecewise-constant initial condition Let the initial distribution be a discontin-
uous function defined over the infinite domain

𝑢0(𝑥) =
⎧{
⎨{⎩

𝜙0, if 𝑥 ∈ [𝑥, 𝑥] 
0 if 𝑥 ∉ [𝑥, 𝑥)

  where 𝑥 < 𝑥 are both finite and 𝜙0 is a constant. In this case, applying solution (12.8) yields the
solution

𝑢(𝑡, 𝑥) = 𝜙0 [ Φ ( 𝑥 − 𝑥√
2𝑎𝑡  ) − Φ ( 𝑥 − 𝑥√

2𝑎𝑡  )]   (12.9)

  where Φ(𝑧) is the cumulative distribution function (CDF) of the standard normal probability
distribution

Φ(𝑦) = 1√
2𝜋 ∫

𝑦

−∞
𝑒− 𝑧2

2 𝑑𝑧.

Observe that ∫∞
−∞ 𝑒− 𝑧2

2 𝑑𝑧 =
√

2𝜋 then Φ(𝑦) ∈ (0, 1).

Figure 12.2: Solution for the initial value problem for the heat equation with 𝑎 = 1 and piecewise
initial condition.

To prove this result, with apply the general solution, presented in equation (12.6). This yields
the solution of the initial-value problem

𝑢(𝑡, 𝑥) = 𝜙0
2
√

𝜋𝑎𝑡  ∫
𝑥

𝑥
𝑒− (𝑥−𝜉)2

4𝑎𝑡 𝑑𝜉.



Paulo Brito Advanced Mathematical Economics 2022/2023 12

To simplify the expression, we make the transformation of variables 𝑧 ≡ (𝑥 − 𝜉)/
√

2𝑎𝑡, and denote
𝑧 ≡ (𝑥 − 𝜉)/

√
2𝑎𝑡 and 𝑧 ≡ (𝑥 − 𝜉)/

√
2𝑎𝑡. Then, because 𝑑𝑧 = − 1√

2𝑎𝑡 𝑑𝜉, the solution simplifies to 4

1√
4𝜋𝑎𝑡

∫
𝑥

𝑥
𝑒−(𝑥−𝜉)2/4𝑎𝑡𝑑𝜉 = −

√
2𝑎𝑡√

4𝜋𝑎𝑡
∫

(𝑥−𝑥)/
√

2𝑎𝑡

(𝑥−𝑥)/
√

2𝑎𝑡
𝑒−𝑧2/2𝑑𝑧

= 1√
2𝜋 (∫

(𝑥−𝑥)/
√

2𝑎𝑡

−∞
𝑒−𝑧2/2𝑑𝑧 − ∫

(𝑥−𝑥)/
√

2𝑎𝑡

−∞
𝑒−𝑧2/2𝑑𝑧) =

= Φ ( 𝑥 − 𝑥√
2𝑎𝑡  ) − Φ ( 𝑥 − 𝑥√

2𝑎𝑡  ) .

 
The solution (12.9) is illustrated in Figure 12.2.

12.3.4 The forward linear equation in the semi-infinite domain

 
Now consider the equation defined on the semi-infinite domain for 𝑥, that is X = ℝ+. This

case is more interesting for economic applications in which the independent variable can only take
non-negative values, for instance when 𝑥 refers to a price or a physical stock variable. This case
should not be confused with the previous case in which we had an initial condition that could take
the value zero for a subset of the infinite space X.

The FPDE we consider is

𝑢𝑡(𝑡, 𝑥) − 𝑎𝑢𝑥𝑥(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ ℝ2
+ (12.10)

where 𝑎 > 0.

Proposition 2. The solution to equation (12.10) is

𝑢(𝑡, 𝑥) = 1
2
√

𝜋 𝑎 𝑡
⎧{
⎨{⎩

  ∫∞
0 𝑢(0, 𝜉) (𝑒− (𝑥−𝜉)2

4 𝑎 𝑡 − 𝑒− (𝑥+𝜉)2
4 𝑎 𝑡 )  𝑑𝜉, if  𝑢(0, ⋅) is an odd function 

∫∞
0 𝑢(0, 𝜉) (𝑒− (𝑥−𝜉)2

4 𝑎 𝑡 + 𝑒− (𝑥+𝜉)2
4 𝑎 𝑡 )  𝑑𝜉, if  𝑢(0, ⋅) is an even function

  (12.11)

where 𝑢(0, 𝑥) is defined over the semi-infinite space X = ℝ+.

Proof. We solve this equation by using the method of images, which consists in extending the
arbitrary function 𝑢(0, 𝑥), which has the domain X = ℝ+ to set ℝ, which is the domain of the general
solution (12.6). If 𝑓(𝑥), where 𝑥 ∈ ℝ, is an odd function it has the property 𝑓(𝑥) = −𝑓(−𝑥), and
if it is an even function it has the property 𝑓(𝑥) = 𝑓(−𝑥).

4Recalling the formula for integration by substitution of variables, if we set 𝑧 = 𝜑(𝜉) and 𝜉 ∈ (𝑎, 𝑏) then

∫
𝜑(𝑏)

𝜑(𝑎)
𝑓(𝑧)𝑑𝑧 = ∫

𝑏

𝑎
𝑓(𝜑(𝜉)) 𝜑′ (𝜉) 𝑑𝜉.
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Therefore, if 𝑢(0, 𝑥), where 𝑥 ∈ ℝ+, we can make the following extensions to functions 𝑢̃(0, 𝑥),
where 𝑥 ∈ ℝ, for an odd function

𝑢̃(0, 𝑥) =
⎧{
⎨{⎩

𝑢(0, 𝑥), if 𝑥 ≥ 0
−𝑢(0, −𝑥) if 𝑥 < 0,

or for an even function

𝑢̃(0, 𝑥) =
⎧{
⎨{⎩

𝑢(0, 𝑥), if 𝑥 ≥ 0
𝑢(0, −𝑥) if 𝑥 < 0.

  Substituting in equation (12.6), for 𝑡 > 0, yields, for an odd function

𝑢(𝑡, 𝑥) = 1
2
√

𝜋𝑎𝑡 ∫
∞

−∞
𝑢̃ (0, 𝜉)𝑒− (𝑥−𝜉)2

4𝑎𝑡  𝑑𝜉 =

= 1
2
√

𝜋𝑎𝑡 (∫
0

−∞
𝑢̃ (0, 𝜉)𝑒− (𝑥−𝜉)2

4𝑎𝑡  𝑑𝜉 + ∫
∞

0
𝑢̃(0, 𝜉)𝑒− (𝑥−𝜉)2

4𝑎𝑡  𝑑𝜉) =

= 1
2
√

𝜋𝑎𝑡 (− ∫
∞

0
𝑢 (0, 𝜉)𝑒− (𝑥+𝜉)2

4𝑎𝑡  𝑑𝜉 + ∫
∞

0
𝑢(0, 𝜉)𝑒− (𝑥−𝜉)2

4𝑎𝑡  𝑑𝜉)

where the last step involves integration by substitution: i.e., if we define 𝑢 = −𝑥 for 𝑥 ∈ [0, ∞)
then ∫0

−∞ 𝑓(𝑢)𝑑𝑢 = − ∫0
∞ 𝑓(−𝑥)𝑑𝑥 = ∫∞

0 𝑓(−𝑥)𝑑𝑥. Then the solution of equation (12.10) for an
odd arbitrary function in equation (12.11) is obtained. The solution for an arbitrary even function
is obtained in an analogous way.

The solution to the initial-value problem

𝑢(𝑡, 𝑥) = 1
2
√

𝜋 𝑎 𝑡
⎧{
⎨{⎩

  ∫∞
0 𝑢0(𝜉) (𝑒− (𝑥−𝜉)2

4 𝑎 𝑡 − 𝑒− (𝑥+𝜉)2
4 𝑎 𝑡 )  𝑑𝜉, if  𝑢0(⋅) is a known odd function 

∫∞
0 𝑢0(𝜉) (𝑒− (𝑥−𝜉)2

4 𝑎 𝑡 + 𝑒− (𝑥+𝜉)2
4 𝑎 𝑡 )  𝑑𝜉, if  𝑢0(⋅) is a known even function

 

(12.12)
We obtain this result by direct application of equation (12.11).

Example Assume the initial distribution is log-normal, that is,

𝑢0(𝑥) = 𝑒−
ln (𝑥) − 𝜇

2 𝜎2

𝜎 𝑥
√

2 𝜋 , for  𝑥 ∈ ℝ+,

is an even function because 𝑢0(𝑥)  = 𝑢0(−𝑦) if 𝑥 > 0 and 𝑦 = −𝑥 < 0. Substituting in equation
(12.11) yields the solution to the initial-value problem which we plot in Figure 12.4 for several
moments in time.

We observe that the solution is conservative, i.e. the integral ∫∞
0 𝑢(𝑡, 𝑥) 𝑑𝑥 = 1  for every 𝑡 > 0.
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Figure 12.3: Solution for the initial value problem for the heat equation in the semi-infinite line
with 𝑎 = 1 and an initial log-normal density.

12.4 The forward homogeneous linear PDE

 
The general forward linear homogeneous parabolic PDE in the infinite domain, X = (−∞, ∞)

is
𝑢𝑡(𝑡, 𝑥) = 𝑎 𝑢𝑥𝑥(𝑡, 𝑥) + 𝑏 𝑢𝑥(𝑡, 𝑥) + 𝑐 𝑢(𝑡, 𝑥), (𝑡, 𝑥) ∈ (0, ∞) × X (12.13)

  where 𝑎 > 0, and 𝑏 and 𝑐 are real numbers. It contains three terms: a diffusion term, if 𝑎 ≠ 0, a
transport term, if 𝑏 ≠ 0, and a growth or decay term if 𝑐 > 0 or 𝑐 < 0.

In order to solve the equation, we can follow one of two alternative methods:

1. apply the Fourier transform method to transform the PDE into a parameterized ODE, solve
it, and apply inverse Fourier transforms.

2. transform the PDE over the original function into a heat equation over a transformed function,
solve this heat equation for the transformed function, and transform back to the original
function.

Next, we use the first method to prove the following result

Proposition 3. The solution to equation (12.16) is

𝑢(𝑡, 𝑥) = ∫
∞

−∞
𝑢(0, 𝑠) 1√

4𝜋𝑎𝑡
exp (−(𝑥 − 𝑠)2 + 2 𝑏 (𝑥 − 𝑠) 𝑡 + (𝑏2 − 4𝑎𝑐) 𝑡2

4 𝑎 𝑡 ) 𝑑𝑠, (𝑡, 𝑥) ∈ ℝ+ × ℝ
(12.14)

where 𝑢(0, 𝑥) is an arbitrary bounded function mapping 𝑢(0, ⋅) ∶ X → ℝ.  

Proof. A Fourier representation of the PDE yields

𝑢𝑡(𝑡, 𝑥) − 𝑎𝑢𝑥𝑥(𝑡, 𝑥) − 𝑏𝑢𝑥 − 𝑐𝑢(𝑡, 𝑥) = ∫
∞

−∞
𝑒2𝜋𝑖𝜔𝑥 [ 𝑈𝑡(𝑡, 𝜔) + 𝜆(𝜔)𝑈(𝑡, 𝜔)]  𝑑𝜔,

  where the eigenfunction is a complex-valued function of 𝜔

𝜆(𝜔) ≡ −(𝑎(2𝜋𝜔)2 − 𝑐 − 𝑏 2𝜋 𝜔 𝑖), for  ∈∈ ℝ
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where 𝑖 =
√

−1. The equation Fourier representation is equal to zero if and only if 𝑈(𝑡, 𝜔) solves
the parameterized linear ODE,

𝑈𝑡(𝑡, 𝜔) = 𝜆(𝜔) 𝑈(𝑡, 𝜔), (𝑡, 𝜔) ∈ ℝ+ × ℝ,

which is called a characteristic equation. The solution is

𝑈(𝑡, 𝜔) = 𝑈(0, 𝜔) 𝐺(𝑡, 𝜔), for𝑡 ∈ [0, ∞)

  where 𝐺(𝑡, 𝜔) is the Gaussian kernel

𝐺(𝑡, 𝜔) = 𝑒−𝜆(𝜔)𝑡, for 𝑡 > 0.

  We obtain the solution of problem (12.16) by applying the inverse Fourier transform

𝑢(𝑡, 𝑥) = ℱ−1 [𝑈(𝑡, 𝜔)]  (𝑥) = ℱ−1 [𝑈(0, 𝜔) 𝐺(𝑡, 𝜔)]  (𝑥) = ∫
∞

−∞
𝑢(0, 𝑠)𝑔(𝑡, 𝑥 − 𝑠)𝑑𝑠

  where (see the Appendix 12.10 Table 12.2)

𝑔(𝑡, 𝑦) = ℱ−1 [ 𝑒𝜆(𝜔)𝑡]   = 1√
4𝜋𝑎𝑡

exp (−𝑦2 + 2 𝑏 𝑡 𝑦 + (𝑏2 − 4 𝑎 𝑐) 𝑡2

4𝑎𝑡 ), (12.15)

  because 𝑎 𝑡 > 0, and 𝑢(0, 𝑥) = ℱ−1 [𝑈(0, 𝜔)]  (𝑥).

The initial value problem for a general linear homogeneous (forward) diffusion equation is

⎧{
⎨{⎩

𝑢𝑡(𝑡, 𝑥) = 𝑎 𝑢𝑥𝑥(𝑡, 𝑥) + 𝑏 𝑢𝑥(𝑡, 𝑥) + 𝑐 𝑢(𝑡, 𝑥), (𝑡, 𝑥) ∈ (0, ∞) × (−∞, ∞)
𝑢(0, 𝑥) = 𝑢0(𝑥), (𝑡, 𝑥) ∈ {𝑡 = 0} × (−∞, ∞),

(12.16)

  where 𝑎 > 0, 𝑏 ≠ 0 and 𝑐 ≠ 0 and 𝑢0(𝑥) is a known bounded function defined on 𝑋 = ℝ.
The solution to this problem is

𝑢(𝑡, 𝑥) = ∫
∞

−∞
𝑢0(𝜉) 1√

4𝜋𝑎𝑡
exp (−(𝑥 − 𝜉)2 + 2 𝑏 (𝑥 − 𝜉) 𝑡 + (𝑏2 − 4𝑎𝑐) 𝑡2

4 𝑎 𝑡 ) 𝑑𝜉. (12.17)

12.4.1 Particular case without transport term

If the linear forward PDE does not contain a transport term, that is when 𝑏 = 0, we can illustrate
the second method to solve the PDE, that was already mentioned. The PDE is thus 𝑢𝑡(𝑡, 𝑥) =
𝑎 𝑢𝑥𝑥(𝑡, 𝑥) + 𝑐 𝑢(𝑡, 𝑥), and, to solve it, follow this steps: First, define 𝑣(𝑡, 𝑥) = 𝑒−𝑐 𝑡𝑢(𝑡, 𝑥), which
has derivatives 𝑣𝑡 = −𝑐𝑒−𝑐 𝑡𝑢 + 𝑒−𝑐 𝑡𝑢𝑡 and 𝑣𝑥𝑥 = 𝑒−𝑐𝑡𝑢𝑥𝑥. Second, equation (12.16) is equivalent
to the simplest linear equation 𝑣𝑡 = 𝑎𝑣𝑥𝑥 which has solution (12.6). Third, as 𝑢(𝑡, 𝑥) = 𝑒𝑐 𝑡 𝑣(𝑡, 𝑥)
we obtain the solution

𝑢(𝑡, 𝑥) = 𝑒𝑐 𝑡  ∫
∞

−∞
𝑢0(𝜉)𝑒− (𝑥−𝜉)2

4 𝑎 𝑡  √
4 𝜋 𝑎 𝑡

𝑑𝜉, (𝑡, 𝑥) ∈ ℝ++  × ℝ,
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  for a bounded initial distribution 𝑢0(𝑥) with domain 𝑥 ∈ ℝ.
We see that the dynamics of the solution depends crucially on the sign of 𝑐:

lim
𝑡→∞

𝑢(𝑡, 𝑥) =
⎧{
⎨{⎩

0 if 𝑐 < 0
∞ if 𝑐 > 0

 
If 𝑢0(𝑥) = 𝑒−𝑥2

√𝜋 we obtain the solution of the initial value problem,

𝑢(𝑡, 𝑥) = 𝑒𝑐 𝑡−
𝑥2

4 𝑎 𝑡
2

√
𝜋 𝑎 𝑡 ,

  plotted in Figure 12.4 for the cases in which 𝑐 < 0 and 𝑐 > 0. In both cases we see that the
long-time behavior of the solution is commanded by 𝑒𝑐 𝑡: if 𝑐 < 0 then lim𝑡→∞ 𝑢(𝑡, 𝑥) = 0, for any
𝑥 ∈ ℝ, and if 𝑐 > 0 then lim𝑡→∞ 𝑢(𝑡, 𝑥) ∝ lim𝑡→∞ 𝑒𝑐 𝑡 = ∞, for any 𝑥 ∈ ℝ.

This means that the diffusion equation display asymptotic stability if 𝑐 < 0 and instability if
𝑐 > 0, both in a distributional sense. In the first case the solution 𝑢(𝑡, 𝑥) is asymptotically bounded
and in the second case it is aymptotically unbounded.

(a) Case 𝑐 = −0.5 (b) Case 𝑐 = 0.5

Figure 12.4: Solutions for the initial value problem for the heat equation with 𝑎 = 1 and 𝑢0(𝑥) =
𝑒−𝑥2

√𝜋 .

12.4.2 Particular case with transport term

If we assume that 𝑏 ≠ 0 and 𝑢0(𝑥) = 𝑒−𝑥2
√𝜋 we obtain the solution of the initial value problem,

𝑢(𝑡, 𝑥) = 𝑒𝑐 𝑡−
(𝑥 + 𝑏 𝑡)2

4 𝑎 𝑡
2

√
𝜋 𝑎 𝑡 ,

  and plot it in Figure 12.5. It illustrates the solution to the initial value problem for positive (in
panels (a) and (c)) and for negative values of 𝑏 (in panels (b) and (d)). As in Figure 12.4 panels (a)
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and (b) are for negatives values of 𝑐 and panels (c) and (d) for positive values for 𝑐. We observe that
parameter 𝑏 introduces a sliding across the spatial domain X - a transportation - in the positive
direction , if 𝑏 < 0, or in the negative direction, if 𝑏 > 0. As in Figure 12.4 , 𝑐 is associated to the
stability properties over time of the whole distribution.

(a) Case for 𝑏 = 1 and 𝑐 = −0.5 (b) Case for 𝑏 = −1 and 𝑐 = −0.5

(c) Case for 𝑏 = 1 and 𝑐 = 0.5 (d) Case for 𝑏 = −1 and 𝑐 = 0.5

Figure 12.5: Solutions for the initial value problem linear PDE for 𝑎 = 1 and 𝑢0(𝑥) = 𝑒−𝑥2

√𝜋 .

12.5 The non-homogeneous forward linear PDE

 
The general forward linear non-homogeneous parabolic PDE in the infinite domain, X =

(−∞, ∞) is

𝑢𝑡(𝑡, 𝑥) = 𝑎 𝑢𝑥𝑥(𝑡, 𝑥) + 𝑏 𝑢𝑥(𝑡, 𝑥) + 𝑐 𝑢(𝑡, 𝑥) + 𝑑, (𝑡, 𝑥) ∈ (0, ∞) × X (12.18)

  where 𝑎 > 0, and 𝑏, 𝑐 and 𝑑 are real numbers. We add a new constant term to PDE (12.16).

Proposition 4. The solution to equation (12.18) is

𝑢(𝑡, 𝑥) = ∫
∞

−∞
𝑢(0, 𝜉) 𝑒𝛾(𝑥−𝜉,𝑡)

√
4𝜋𝑎𝑡

𝑑𝜉 + ∫
𝑡

0
  ∫

∞

−∞
  𝑑 𝑒𝛾(𝑥−𝜉,𝑡−𝑠)

√4𝜋𝑎(𝑡 − 𝑠)
𝑑𝜉 𝑑𝑠, (𝑡, 𝑥) ∈ ℝ+ × ℝ (12.19)

where
𝛾(𝑡, 𝑥) ≡ −(𝑥2 + 2 𝑏 𝑥 𝑡 + (𝑏2 − 4𝑎𝑐) 𝑡2

4 𝑎 𝑡
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  where 𝑢(0, 𝑥) is an arbitrary bounded function mapping 𝑢0 ∶ X → ℝ.  

Proof. We will solve this problem using the Fourier transform representation of equation 𝑢𝑡 −
(𝑎𝑢𝑥𝑥 + 𝑏𝑢𝑥 + 𝑐𝑢 + 𝑑) = 0. Using inverse Fourier transforms yields

𝑢𝑡(𝑡, 𝑥) − 𝑎𝑢𝑥𝑥(𝑡, 𝑥) − 𝑏𝑢𝑥 − 𝑐𝑢(𝑡, 𝑥) − 𝑑 = ∫
∞

−∞
𝑒2𝜋𝑖𝜔𝑥 [ 𝑈𝑡(𝑡, 𝜔) + 𝜆(𝜔)𝑈(𝑡, 𝜔) − 𝑑 𝛿(𝜔)]  𝑑𝜔 = 0.

  where again 𝜆(𝜔) ≡ −𝑎(2𝜋𝜔)2 + 2𝜋 𝑏 𝜔 𝑖 + 𝑐. Therefore, the PDE (12.16) has the characteristic
equation

𝑈𝑡(𝑡, 𝜔) = 𝜆(𝜔) 𝑈(𝑡, 𝜔) + 𝑑 𝛿(𝜔), (𝑡, 𝜔) ∈ ℝ+ × ℝ,
  which has the explicit solution

𝑈(𝑡, 𝜔) = 𝑈(0, 𝜔) 𝐺(𝑡, 𝜔) + ∫
𝑡

0
 𝑑 𝛿(𝜔) 𝐺(𝑡 − 𝑠, 𝜔) 𝑑𝑠, for𝑡 ∈ [0, ∞)

  where 𝐺(𝑡, 𝜔) is the Gaussian kernel.
We obtain the solution of problem (12.17) by applying the inverse Fourier transform

 𝑢(𝑡, 𝑥) = ℱ−1 [𝑈(𝑡, 𝜔)]  (𝑥) = ℱ−1 [𝑈𝑡(𝜔) 𝐺(𝑡, 𝜔)]  (𝑥)

= 𝑢(0, 𝑥) ∗ 𝑔(𝑡, 𝑥) + ∫
𝑡

0
 𝑑 ∗ 𝑔(𝑡 − 𝑠, 𝑥) 𝑑𝑠

= ∫
∞

−∞
 𝑢(0, 𝑥) 𝑔(𝑡, 𝑥 − 𝜉) 𝑑𝜉 + 𝑑 ∫

𝑡

0
∫

∞

−∞
 𝑔(𝑡 − 𝑠, 𝑥 − 𝜉) 𝑑𝜉 𝑑𝑠.

 

 

If we assume that 𝑏 ≠ 0 and 𝑢0(𝑥) = 𝑒−𝑥2
√𝜋 we obtain the solution of the initial value problem,

𝑢(𝑡, 𝑥) = 𝑒𝑐 𝑡−
(𝑥 + 𝑏 𝑡)2

4 𝑎 𝑡
2

√
𝜋 𝑎 𝑡 − 𝑑

𝑐   (1 − 𝑒𝑐 𝑡)

  and Figure 12.6 illustrates some cases. We see in panel (a) that if 𝑏 = 𝑐 = 0 and 𝑑 > 0 then the
solution becomes unbounded and converges to a homogenous distribution with linear growth. In
panel (b), where 𝑐 < 0 the distribution also converges asymptotically to a homogeneous distribution
with positive values. This behavior is also observable in panel (c), where 𝑏 > 0, but the transition
time profile is slight different, with a temporary transport dynamics.

12.6 Non-autonomous forward linear equations

 
Non-autonomous scalar linear parabolic equations are linear in the state variable 𝑢(⋅) and on

its derivatives, as the autonomous equations, but its coefficients are functions of the independent
variables variables (𝑡, 𝑥),

 𝑢𝑡 = 𝑎(𝑡, 𝑥) 𝑢𝑥𝑥  + 𝑏(𝑡, 𝑥) 𝑢𝑥 + 𝑐(𝑡, 𝑥) 𝑢 + 𝑑(𝑡, 𝑥). (12.20)
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(a) For 𝑏 = 0, 𝑐 = 0 and 𝑑 = 0.5
(b) For 𝑏 = 0, 𝑐 = −0.5 and 𝑑 = 0.5

(c) For 𝑏 = 5, 𝑐 = −0.5 and 𝑑 = 0.5

Figure 12.6: Illustration of equation (12.19) for 𝑎 = 1 and 𝑢0(𝑥) = 𝑒−𝑥2

√𝜋 .

This structure covers a large number of cases, some of then will be covered in the next sections. In
the rest of this section we assume that 𝑎, 𝑏 and 𝑐 are constant and 𝑑(𝑡, 𝑥) is a specified function of
the independent variables

𝑢𝑡 = 𝑎 𝑢𝑥𝑥  + 𝑏 𝑢𝑥 + 𝑐 𝑢 + 𝑑(𝑡, 𝑥). (12.21)

Following similar steps as in the derivation of equation (12.17), we find the general solution
(12.21)  to the forward PDE

𝑢(𝑡, 𝑥) = ∫
∞

−∞
𝑢(0, 𝜉) 𝑒𝛾(𝑥−𝜉,𝑡)

√
4𝜋𝑎𝑡

𝑑𝜉 +∫
𝑡

0
  ∫

∞

−∞
  𝑒𝛾(𝑥−𝜉,𝑡−𝑠)

√4𝜋𝑎(𝑡 − 𝑠)
𝑑(𝑠, 𝜉) 𝑑𝜉 𝑑𝑠, for  (𝑡, 𝑥) ∈ ℝ+ ×ℝ (12.22)

where
𝛾(𝑡, 𝑥) ≡ −(𝑥2 + 2 𝑏 𝑥 𝑡 + (𝑏2 − 4𝑎𝑐) 𝑡2

4 𝑎 𝑡 .

Next we illustrate two cases which some qualitative dynamics effects of this modification.
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Example 1 : non-homogeneous heat equation We consider the problem:

  
⎧{
⎨{⎩

𝑢𝑡 = 𝑢𝑥𝑥  + 𝑑 𝛿(𝑥 − 𝑥0)
𝑢0(𝑥) = 𝑒−𝑥2𝜋− 1

2 ,
(12.23)

where 𝑑 is a constant and the initial condition is a Gaussian kernel such that ∫∞
−∞  𝑢0(𝑥) 𝑑𝑥 = 1

(see Appendix 12.B). The solution is plotted in Figure 12.7. Although the independent term is a
degenerate distribution centered at 𝑥 = 𝑥0 (where 𝑥0 = 2 in the figure), the diffusion mechanism
implies the solution tends to lim𝑡→∞ 𝑢(𝑡, 𝑥) = ∞ for any 𝑥 ∈ X.

Figure 12.7: Solution to the non-autonomous equation problem (12.23)  with 𝑥0 = 2.

Example 2 : non-homogeneous linear equation We consider the problem:

  
⎧{
⎨{⎩

𝑢𝑡 = 𝑢𝑥𝑥  + 𝑐𝑢 + 𝑒−(𝑥−𝑥0)2𝜋− 1
2

𝑢0(𝑥) = 𝛿(𝑥 − 𝑥0).
(12.24)

The solution is plotted in Figure 12.8
In this case the existence of a negative coefficient for 𝑢 (i.e, 𝑐 < 0) leads to a convergence of the

solution to a bounded non-degenerate but non-flat distribution.

12.7 Linear backward PDE

 

12.7.1 The backward heat equation

In finance applications, and in Euler equations for optimal control problems, we sometimes need
to solve backward parabolic PDE.
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Figure 12.8: Solution to the non-autonomous equation problem (12.24)  with 𝑐 < 0 and 𝑥0 = 2.

The simplest parabolic BPDE equation in the infinite domain for 𝑥 and a bounded domain for
𝑡 is

𝑢𝑡 + 𝑎𝑢𝑥𝑥 = 0, (𝑡, 𝑥) ∈ [0, 𝑇 ] × (−∞, ∞) (12.25)

where 𝑎 > 0.

Proposition 5. Consider the BPDE equation (12.25). The solution is

 𝑢(𝑡, 𝑥) = 1
√4𝜋𝑎(𝑇 − 𝑡)

∫
∞

−∞
𝑢(𝑇 , 𝜉)𝑒− (𝑥−𝜉)2

4𝑎(𝑇−𝑡)  𝑑𝜉, 𝑡 ∈ (0, 𝑇 ) (12.26)

 

Proof. In order to solve it we introduce a change in variables 𝜏 = 𝑇 − 𝑡 and denote 𝑣(𝜏, 𝑥) =
𝑢(𝑡(𝜏), 𝑥) where 𝑡(𝜏) = 𝑇 − 𝜏 . As

𝑣𝜏(𝜏, 𝑥) = −𝑢𝑡(𝑡(𝜏), 𝑥), and 𝑣𝑥𝑥(𝜏, 𝑥) = 𝑢𝑥𝑥(𝑡(𝜏), 𝑥)

  Then 𝑢𝑡(𝑡, 𝑥) = −𝑎𝑢𝑥𝑥(𝑡, 𝑥) is equivalent to

𝑣𝜏(𝜏, 𝑥) = 𝑎𝑣𝑥𝑥(𝜏, 𝑥).

  Using the solution already found in equation (12.6) we get

𝑣(𝜏, 𝑥) =
⎧{
⎨{⎩

𝑣(0, 𝑥), 𝜏 = 0

∫
∞

−∞
𝑣(0, 𝜉) (4𝜋𝑎𝜏)−1/2 𝑒− (𝑥−𝜉)2

4𝑎𝜏  𝑑𝜉, 𝜏 ∈ (0, 𝑇 ).

Transforming back to 𝑢(𝑡, 𝑥), and observing that 𝑡 = 𝑇 if 𝜏 = 0 , yields solution (12.26).

A problem involving a backward PDE is only well posed if together with the PDE we have a
terminal condition, for example 𝑢(𝑇 , 𝑥) = 𝑢𝑇 (𝑥), that is known. In this case the solution at time
𝑡 = 0, 𝑢(0, 𝑥), becomes endogenous.
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The terminal-value problem

⎧{
⎨{⎩

𝑢𝑡 = −𝑎𝑢𝑥𝑥, (𝑡, 𝑥) ∈ (−∞, ∞) × (0, 𝑇 ]
𝑢(𝑇 , 𝑥) = 𝑢𝑇 (𝑥) (𝑡, 𝑥) ∈ (−∞, ∞) × { 𝑡 = 𝑇 },  

(12.27)

has the solution, for 𝑎 > 0,

  𝑢(𝑡, 𝑥) =
⎧{
⎨{⎩

𝑢𝑇 (𝑥), (𝑡, 𝑥) ∈ {𝑡 = 𝑇 }  × ℝ 
1

√4𝜋𝑎(𝑇 − 𝑡)
∫

∞

−∞
𝑢𝑇 (𝜉)𝑒− (𝑥−𝜉)2

4𝑎(𝑇−𝑡)  𝑑𝜉, (𝑡, 𝑥) ∈ (0, 𝑇 ) × ℝ
(12.28)

The initial distribution can be obtained by setting 𝑡 = 0

𝑢(0, 𝑥) = 1√
4 𝜋 𝑎 𝑇

∫
∞

−∞
𝑢𝑇 (𝜉)𝑒− (𝑥−𝜉)2

4 𝑎 𝑇  𝑑𝜉.

 
Example Assuming a terminal distribution 𝑢𝑇 (𝑥) = 𝑒−𝑥2

√𝜋 , solution (12.28)  simplifies to

𝑢(𝑡, 𝑥) = 𝑒
−

𝑥2

1 + 4 𝑎 (𝑇 − 𝑡)
√𝜋 (1 + 4 𝑎 (𝑇 − 𝑡))

and is illustrated in Figure 12.9, which can be compared with the forward PDE in Figure 12.1. In
this case the initial distribution depends on the terminal time 𝑇 ,

𝑢(0, 𝑥) = 𝑒
−

𝑥2

1 + 4 𝑎 𝑇
√𝜋 (1 + 4 𝑎 𝑇 )

.

Figure 12.9: Solutions for backward ODE 𝑎 = 1 and 𝑢𝑇 (𝑥) = 𝑒−𝑥2

√𝜋 .
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12.8 Application: Fokker-Planck-Kolmogorov equation for a lin-
ear diffusion

 
Stochastic differential equations, under some conditions, have a time-varying probability dis-

tribution that follows a particular parabolic PDE, called the Fokker-Planck-Kolmogorov equation.
This equation is having an increased application in economics, as a model for processes satisfying
a conservation law.

Assume we have a diffusion process for (𝑋(𝑡))𝑡∈ℝ+
that is generated by the stochastic differential

equation (SDE)
𝑑𝑋(𝑡) = 𝑏(𝑡, 𝑋(𝑡)) 𝑑𝑡 + 𝑎(𝑡, 𝑋(𝑡)) 𝑑𝑊(𝑡),

where (𝑊(𝑡))𝑡∈ℝ+
is a Wiener process. Assume that at time 𝑡 = 0 we observe the initial value of the

process to be 𝑥0, i.e, 𝑋(0) = 𝑥0. The probability that the realization of the process at time 𝑡 > 0 is a
number 𝑥, i.e., 𝑋(𝑡) = 𝑥 is denoted by 𝑝(𝑡, 𝑥). Therefore 𝑝(𝑡, 𝑥) = ℙ [𝑋(𝑡) = 𝑥|𝑋(0) = 𝑥0] and, for
every 𝑡, we have 𝑝(𝑡, 𝑥) ∈ (0, 1) and ∫X  𝑝(𝑡, 𝑥)𝑑𝑥 = 1, where X is the set of all possible realizations
of the process (𝑋(𝑡))𝑡∈ℝ+

. It can be proved that the probability process (𝑝(𝑡, 𝑥))(𝑡,𝑥)∈T×X, where
𝑝(𝑡, 𝑥) ∶ T × X → (0, 1), satisfies the Fokker-Planck-Kolmogorov equation together with an initial
condition

𝜕𝑡𝑝(𝑡, 𝑥) = 1
2𝜕𝑥𝑥 (𝑎(𝑡, 𝑥)2 𝑝(𝑡, 𝑥)) − 𝜕𝑥(𝑏(𝑡, 𝑥) 𝑝(𝑡, 𝑥)), (12.29)

  where we assume 𝑝(0, 𝑥) is known and satisfies

∫
𝑋

𝑝(0, 𝑥)𝑑𝑥 = 1.

As
∫

X
𝑝(𝑡, 𝑥)𝑑𝑥 = 1, for every  𝑡 ∈ T,

  the probability process satisfies a conservation law.
In applications resulting from stochastic differential equations, the initial state is known 𝑥 = 𝑥0

and the dynamics of a probability distribution is given by Kolmogorov forward equation (or Fokker-
Planck equation) and the initial condition 𝑝(0, 𝑥) = 𝛿(𝑥−𝑥0) where 𝛿(⋅) is Dirac’s delta generalized
function.

If we find the solution to the problem we can obtain the dynamics for the average, variance,
and other statistics, as

𝔼[𝑋(𝑡)]  = ∫
X

 𝑥 𝑝(𝑡, 𝑥) 𝑑𝑥, 𝕍[𝑋(𝑡)]  = ∫
X

 (𝑥 − 𝔼[𝑋(𝑡)] )2 𝑝(𝑡, 𝑥) 𝑑𝑥

 

12.8.1 The simplest problem

The simplest model has constant coefficients 𝑏(𝑡, 𝑥) = 𝜇 and 𝑎(𝑡, 𝑥) = 𝜎 and a Dirac delta, centered
in 𝑥0, as an initial condition:
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⎧{
⎨{⎩

𝜕𝑡𝑝(𝑡, 𝑥) = 𝜎2

2  𝜕𝑥𝑥𝑝(𝑡, 𝑥) − 𝜇𝜕𝑥𝑝(𝑡, 𝑥), (𝑡, 𝑥) ∈ ℝ+ × ℝ
𝑝(0, 𝑥) = 𝛿(𝑥 − 𝑥0) (𝑡, 𝑥) ∈ { 𝑡 = 0}  × ℝ

(12.30)

The solution is a Gamma probability density

𝑝(𝑡, 𝑥) = Γ( − 𝜇𝑡; 𝜎2 𝑡
2 , 𝑥 − 𝑥0)

= 𝑒−(𝑥 − 𝑥0 − 𝜇 𝑡
2 𝜎2 𝑡 )

2

√
2 𝜋 𝜎2 𝑡

, for  (𝑡, 𝑥) ∈ ℝ+ × ℝ.  

This equation is a particular case of equation (12.16). Figure 12.10  presents an illustration of the
solution

 

Figure 12.10: Solution for (12.30)  for 𝑥0 = 5, 𝜇 = 1 and 𝜎 = 0.5.

12.8.2 The distribution associated to the Ornstein Uhlenbeck equation

An important stochastic process has a probability distribution represented by a linear PDE with
(non-autonomous) coefficients 𝑏(𝑡, 𝑥) = 𝜇0 + 𝜇1 𝑥 and 𝑎(𝑡, 𝑥) = 𝜎 and a Dirac delta initial distribu-
tion:

⎧{
⎨{⎩

𝜕𝑡𝑝(𝑡, 𝑥) = −𝜕𝑥((𝜇0, +𝜇1𝑥) 𝑝(𝑡, 𝑥)) + 1
2 𝜕𝑥𝑥(𝜎2 𝑝(𝑡, 𝑥)), (𝑡, 𝑥) ∈ ℝ+ × ℝ

𝑝(0, 𝑥) = 𝛿(𝑥 − 𝑥0) (𝑡, 𝑥) ∈ { 𝑡 = 0}  × ℝ
(12.31)

The solution is a Gaussian density function

𝑝(𝑡, 𝑥) ∼ 𝑁(𝜇0
𝜇1

− (𝜇0
𝜇1

+  𝑥0) 𝑒𝜇1𝑡 , 𝜎2

2 𝜇1
(𝑒2𝜇1𝑡 − 1 )),

because

𝑝(𝑡, 𝑥) = (𝜋 𝜎2

𝜇1
(𝑒2 𝜇1 𝑡 − 1))

− 1
2

exp { −
(𝑥 + 𝜇0

𝜇1
− (𝜇0

𝜇1
+  𝑥0))

2

𝜎2

𝜇1
(𝑒2 𝜇1 𝑡 − 1)

}  (𝑡, 𝑥) ∈ ℝ+ × ℝ (12.32)
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    Exercise: To prove function (12.32) is the solution of problem (12.31) we follow the following
steps. First, apply Fourier transforms. Using the results in the Appendix, Table 12.1, we find

ℱ[𝜕𝑡𝑝(𝑡, 𝑥)] (𝜔) = 𝜕𝑡𝑃(𝑡, 𝜔),  

 

ℱ[ −𝜕𝑥((𝜇0, +𝜇1𝑥) 𝑝(𝑡, 𝑥))+1
2 𝜕𝑥𝑥(𝜎2 𝑝(𝑡, 𝑥))] (𝜔) = −𝜇02𝜋𝜔𝑖 𝑃(𝑡, 𝜔)+𝜇1𝜔𝜕𝑤𝑃(𝑡, 𝜔)−2(𝜋𝜎𝜔)2𝑃(𝑡, 𝜔)

  and
 ℱ[𝑝(0, 𝑥)] (𝜔) = 𝑒−2𝜋𝜔𝑖𝑥0 .

  Therefore, the characteristic equation is a first-order PDE in the Fourier transforms

⎧{
⎨{⎩

𝜕𝑡𝑃(𝑡, 𝜔) − 𝜇1𝜔 𝜕𝑤𝑃(𝑡, 𝜔) = 𝜆(𝜔) 𝑃(𝑡, 𝜔) (𝑡, 𝜔) ∈ ℝ+  × ℝ
𝑃(0, 𝜔) = 𝑒−2𝜋𝜔𝑖𝑥0 (𝑡, 𝜔) ∈ {𝑡 = 0}  × ℝ

  where the eigenfunction 𝜆(𝜔) is a complex function of 𝜔

𝜆(𝜔) = −(2(𝜋𝜔𝜎)2 + 2𝜋𝜔𝜇0𝑖).

  Second, we can solve this PDE by using the method of characteristics: along a characteristic let
𝜔 = 𝑊(𝑡), for any 𝑡 ∈ [0, ∞) and write ̂𝑃 (𝑡) = 𝑃(𝑡, 𝑊(𝑡)) and Γ(𝑡) = 𝜆(𝑊(𝑡)). Taking the time
derivative to ̂𝑃 (𝑡) we have

𝑑 ̂𝑃 (𝑡)
𝑑𝑡   = 𝜕𝑡𝑃(𝑡, 𝑊(𝑡)) + 𝜕𝑤𝑃(𝑡, 𝑊(𝑡))𝑑𝑊(𝑡)

𝑑𝑡
  which is consistent with PDE in the transformed variables along a characteristic if it is the solution
of the ODE system

⎧{
⎨{⎩

 𝑑𝑊(𝑡)
𝑑𝑡 = −𝜇1 𝑊(𝑡),

𝑑 ̂𝑃 (𝑡)
𝑑𝑡   = Γ(𝑡) ̂𝑃 (𝑡), for ̂𝑃 (0) = 𝑃(0, 𝑊(0)) = 𝑒−2𝜋𝑊(0)𝑖𝑥0 .

  Solving the first ODE yields 𝑊(𝑡) = 𝑊(0)𝑒−𝜇1𝑡, and as 𝑊(𝑡) = 𝜔, we have, along a characteristic,
𝑊(0) = 𝜔 𝑒𝜇1𝑡.

Solving the second initial-value problem, and because 𝑃(𝑡, 𝜔) = ̂𝑃 (𝑡) then

𝑃(𝑡, 𝜔) = ̂𝑃 (0) 𝑒∫𝑡
0 Γ(𝑠)𝑑𝑠

= exp { − 2 𝜋 𝑖 𝑥0 𝑊(0) − 2 (𝜋 𝜎 𝑊(0))2 ∫
𝑡

0
𝑒−2𝜇1𝑠𝑑𝑠 − 2 𝜋 𝑖 𝜇0 𝑊(0) ∫

𝑡

0
𝑒−𝜇1𝑠𝑑𝑠}

= exp { − (𝜋𝜎)2

𝜇1
𝑊(0)2 (1 − 𝑒−2𝜇1𝑡) + 2 𝜋 𝑖 𝑊(0) (𝜇0

𝜇1
(𝑒−𝜇1𝑡 − 1) − 𝑥0)}

  substituting 𝑊(0) = 𝜔 𝑒𝜇1𝑡 yields the function

𝑃(𝑡, 𝜔) = exp { − 𝑎 (2 𝜋 𝜔)2 + 𝑏 (2 𝜋 𝑖 𝜔)} 



Paulo Brito Advanced Mathematical Economics 2022/2023 26

  where
𝑎 ≡ 𝜎2

4𝜇1
(𝑒2𝜇1𝑡 − 1) and 𝑏 ≡ 𝜇0

𝜇1
− (𝜇0

𝜇1
+ 𝑥0) 𝑒𝜇1𝑡.

  Transforming back (using the inverse Fourier transform in Appendix 12.10 Table 12.2) , that is
making 𝑝(𝑡, 𝑥) = ℱ−1[𝑃 (𝑡, 𝜔)] (𝑥) we find function (12.32).

Characterizing the solution:  We see that if 𝜇1 < 0 then

lim
𝑡→∞

𝑝(𝑡, 𝑥) ∼ 𝑁( − 𝜇0
𝜇1

, − 𝜎2

2𝜇1
),

  then the distribution is ergodic: for any initial value 𝑥0 it tends asymptotically to a normal
distribution (see Figure 12.11).

 

Figure 12.11: Solution for (12.30)  for 𝑥0 = 5, 𝜇0 = 1, 𝜇1 = −1 and 𝜎 = 0.5.

12.9 Economic applications

 

12.9.1 The distributional Solow model

 
In Brito (2022) we prove that in an economy in which the capital stock is distributed in an

heterogeneous way between regions, 𝐾(𝑡, 𝑥), if there is an infinite support, and there are free
capital flows between regions, the budget constraint for the location 𝑥 can be represented by the
parabolic PDE.

Consider the accounting balance between savings and internal and external investment for a
region 𝑥 at time 𝑡

𝐼(𝑡, 𝑥) + 𝑇 (𝑡, 𝑥) = 𝑆(𝑡, 𝑥)

  where 𝐼(𝑡, 𝑥) and 𝑆(𝑡, 𝑥) is investment and domestic savings of location 𝑥 at time 𝑡 and 𝑇 (𝑡, 𝑥) is
the savings flowing to other regions.
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Assume that the capital flow for a region of length Δ𝑥 is symmetric to the capital distribution
gradient to neighboring regions:

𝑇 (𝑡, 𝑥)Δ𝑥 = − (𝐾𝑥(𝑥 + Δ𝑥, 𝑡) − 𝐾𝑥(𝑡, 𝑥))

  that is capital flows proportionaly and in a reverse direction to the ”spatial gradient” of the
capital distribution: regions with high capital intensity will tend to ”leak” capital to other regions.
If Δ𝑥 → 0 leads to 𝑇 (𝑡, 𝑥) = −𝐾𝑥𝑥(𝑡, 𝑥).

If there is no depreciation then 𝐼(𝑡, 𝑥) = 𝐾𝑡(𝑡, 𝑥). If the technology is 𝐴𝐾 and the savings rate
is determined as in the Solow model then 𝑆(𝑡, 𝑥) = 𝑠𝐴𝐾(𝑡, 𝑥) where 0 < 𝑠 < 1 and 𝐴 is assume to
be spatially homogeneous.

Therefore we obtain a distributional Solow equation for an economy composed by heterogenous
regions

𝐾𝑡 = 𝐾𝑥𝑥 + 𝑠𝐴𝐾, (𝑡, 𝑥) ∈ (−∞, ∞) × (0, ∞)

  We can define a spatially-homogenous balanced growth path (BGP) as

𝐾(𝑡) = 𝐾𝑒𝛾𝑡

  where 𝛾 = 𝑠𝐴.
Then, if we define the deviations as regards the BGP as 𝑘(𝑡, 𝑥) = 𝐾(𝑡, 𝑥)𝑒−𝛾𝑡, we observe that

the transitional dynamics is given by the solution of the equation

𝑘𝑡 = 𝑘𝑥𝑥

  which is the heat equation. Therefore, given the initial distribution of the capital stock 𝐾(𝑥, 0) =
𝑘0(𝑥) the solution for this spatial 𝐴𝐾 model is

𝐾(𝑡, 𝑥) =
⎧{
⎨{⎩

𝑘0(𝑥), 𝑡 = 0

𝑒𝛾𝑡 ∫
∞

−∞
𝑘0(𝜉) (4𝜋𝑡)−1/2 𝑒− (𝑥−𝜉)2

4𝑡  𝑑𝜉, 𝑡 > 0

  and the solution is similar to the case depicted in Figure 12.2 when 𝑐 > 0.
The main conclusion is that: (1) there is long run growth; (2) , if there are homogenous

technologies and preferences the asymptotic distribution will become spatially homogeneous. That
is: the so-called 𝛽- and 𝜎- convergences can be made consistent !

12.9.2 The option pricing model

 
The Black and Scholes (1973) model is a case in which a research paper had an immense impact

on the operation of the economy. It is related to the onset of derivative markets and basically gave
birth to stochastic finance5.

5Myron Scholes was awarded the Nobel prize in 1997, together with Robert Merton another important contributer
to stochastic finance, precisely for this formula. Fisher Black was deceased at the time.
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It provides a formula (the so called Black-Scholes formula) for the value of an European call
option when there are two assets, a riskless asset with interest rate 𝑟 and a underlying asset whose
price, 𝑆 which follows a diffusion process (in a stochastic sense): 𝑑𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝐵 where 𝑑𝐵 is
the standard Brownian motion (see next chapter). An European call option offers the right to buy
the underlying asset at time 𝑇 for a price 𝐾 fixed at time 𝑡 = 0, which is conventioned to be the
moment of the contract.

Under the assumption that there are no arbitrage opportunities Black and Scholes (1973) proved
that the price of the option 𝑉 = 𝑉 (𝑡, 𝑆) is a a function of time, 𝑡 ∈ (0, 𝑇 ) and the price of an
underlying asset 𝑆 ∈ (0, ∞) follows the backward parabolic PDE and has a terminal constraint

⎧{
⎨{⎩

𝑉𝑡(𝑡, 𝑆) = −𝜎2𝑆2
2  𝑉𝑆𝑆(𝑡, 𝑆) − 𝑟𝑆𝑉𝑆(𝑡, 𝑆) + 𝑟𝑉 (𝑡, 𝑆), (𝑡, 𝑆) ∈ [0, 𝑇 ] × (0, ∞)

𝑉 (𝑇 , 𝑆) = max{ 𝑆 − 𝐾, 0} , (𝑡, 𝑆) ∈ {𝑡 = 𝑇 } × (0, ∞).
(12.33)

The first equation is valid for any financial option having the same underlying asset dynamics, and
the terminal constraint is characteristic of the European call option: because the writer sells the
right, but not the obligation, to purchase the underlying asset at the price 𝐾 at time 𝑡 = 𝑇 , the
buyer is only interested in that purchase if he can sell it at the prevailing market price 𝑆 = 𝑆(𝑇 )
when that price is higher than the exercise price 𝐾. In this case the payoff will be 𝑆(𝑇 ) − 𝐾.
Otherwise he will not execute the option and the terminal payoff will be zero.

The two boundary constraints

𝑉 (𝑡, 0) = 0, (𝑡, 𝑆) ∈ [0, 𝑇 ] × {𝑆 = 0} 
lim

𝑆→∞
𝑉 (𝑡, 𝑆) = 𝑆, (𝑡, 𝑆) ∈ [0, 𝑇 ] × {𝑆 → ∞},

are sometimes referred to, but they are redundant.
The same structure occurs in the Merton’s model (see Merton (1974)) which is a seminal paper

on the pricing of default bonds. It was the first model on the so-called structural approach to
modelling credit risk.6 In essence, this model assumes that the value of the firm follows a linear
diffusion process and it considers the issuance of a bond with an expiring date 𝑇 whose indenture
gives it absolute priority on the value of the firm at the expiry date. This means that either if the
value of the firm is smaller that the face value of the bond the creditor takes possession of the firm
and in the opposite case it recovers the face value. In this case, we can interpret the position of the
equity owner as holding an European call option over the value of the firm with strike price equal
to the face value of the debt and the creditor as having an European put option security.

The price of the European call option 7, given the former assumptions is given by

𝑉 (𝑡, 𝑆) = 𝑆Φ(𝑑1) − 𝐾𝑒−𝑟(𝑇 −𝑡)Φ(𝑑2), 𝑡 ∈ [0, 𝑇 ] (12.34)
6This model is the inspiration of credit risk models used by rating agencies (see Duffie and Singleton (2003)).
7For the credit risk model 𝑆 would be the value of assets of a firm, 𝐾 would be the face value of loan, and 𝑇 the

term of the loan.
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where Φ(.) is cumulative Gaussian density function such that Φ(𝑑) = ℙ(𝑥 ≤ 𝑑) where

𝑑1 =
ln (𝑆/𝐾) + (𝑇 − 𝑡) (𝑟 + 𝜎2

2 )

𝜎
√

𝑇 − 𝑡
(12.35)

𝑑2 =
ln (𝑆/𝐾) + (𝑇 − 𝑡) (𝑟 − 𝜎2

2 )

𝜎
√

𝑇 − 𝑡
(12.36)

Figure 12.12: Solution for the Black and Scholes model, for 𝑟 = 0.02, 𝑇 = 20, 𝜎 = 0.2, and 𝐾 = 10.

Proof. In order to solve the B-S PDE, which is a non-linear backward parabolic PDE, we transform
it to to a quasi-linear parabolic forward PDE, by applying the transformations: 𝑡(𝜏) = 𝑇 − 𝜏 and
𝑆 = 𝐾𝑒𝑥 and setting 𝑢(𝜏, 𝑥) = 𝑉 (𝑡(𝜏), 𝑆(𝑥)). We can transform the option-pricing problem to the
equivalent initial-value problem PDE equivalent to (12.33)

⎧{
⎨{⎩

𝑢𝜏 = 𝜎2

2 𝑢𝑥𝑥 + (𝑟 − 𝜎2

2 ) 𝑢𝑥 − 𝑟𝑢, (𝜏, 𝑥) ∈ [0, 𝑇 ] × (−∞, ∞)

𝑢(0, 𝑥) = 𝑢0(𝑥)
(12.37)

where

𝑢0(𝑥) =
⎧{
⎨{⎩

0, if 𝑥 ≤ 0
𝐾 (𝑒𝑥 − 1) , if 𝑥 > 0

  The PDE is a particular example of equation (12.16), which implies that the solution is

𝑢(𝜏, 𝑥) = ∫
0

−∞
0 𝑔(𝜏, 𝑥 − 𝑠)𝑑𝑠 + 𝐾 ∫

∞

0
(𝑒𝑠 − 1) 𝑔(𝜏, 𝑥 − 𝑠)𝑑𝑠

= 𝐾√
2𝜋𝜎2𝜏

∫
∞

0
(𝑒𝑠 − 1) 𝑒ℎ(𝜏,𝑥−𝑠)𝑑𝑠

  where (from equation (12.15))

ℎ(𝜏, 𝑦) ≡ −
𝑦2 + 2𝜏 (𝑟 − 𝜎2

2 ) 𝑦 + (𝑟 + 𝜎2

2 )
2

𝜏2

2𝜏𝜎2 . 
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  Then

𝑢(𝜏, 𝑥) = 𝐾√
2𝜋𝜎2𝜏

(∫
∞

0
𝑒𝑠+ℎ(𝜏,𝑥−𝑠)𝑑𝑠 − ∫

∞

0
𝑒ℎ(𝜏,𝑥−𝑠)𝑑𝑠)

= 𝐾√
2𝜋𝜎2𝜏

(𝐼1 − 𝐼2) .

  In order to simplify the integrals, it is useful to remember the formulas for the error function,
erf(𝑥), and of the Gaussian cumulative distribution Φ(𝑥),

erf(𝑥) = 2√𝜋 ∫
𝑥

−∞
𝑒−𝑧2𝑑𝑧, Φ(𝑥) = 1√

2𝜋 ∫
𝑥

−∞
𝑒−

1
2  𝑧2

𝑑𝑧

  which are related as
Φ(𝑥) = 1

2 [ 1 + erf ( 𝑥√
2

 )] . 

  After some algebra we obtain

𝑠 + ℎ(𝜏, 𝑥 − 𝑠) = 𝑥 − 1
2(𝛿1(𝑠))2

ℎ(𝜏, 𝑥 − 𝑠) = −𝑟𝜏 − 1
2(𝛿2(𝑠))2

  where

𝛿1(𝑠) ≡
𝑥 − 𝑠 + (𝑟 + 𝜎2

2 )

𝜎√𝜏 , and 𝛿2(𝑠) ≡
𝑥 − 𝑠 + (𝑟 − 𝜎2

2 )

𝜎√𝜏 .

  Then, integration by transformation of variables 𝑧 = 𝜑(𝑠),

𝐼1 = 𝑒𝑥 ∫
∞

0
𝑒−

1
2 (𝛿1(𝑠))2

𝑑𝑠 =

= −𝜎√𝜏𝑒𝑥 ∫
−∞

𝑑1

𝑒−
1
2 𝛿2

1𝑑𝛿1 =

=
√

𝜎2𝜏𝑒𝑥 ∫
𝑑1

−∞
𝑒−

1
2 𝛿2

1𝑑𝛿1 =

=
√

2𝜋𝜎2𝜏𝑒𝑥Φ(𝑑1)
  where 𝑑1 = 𝛿1(0) as in equation (12.35) for 𝜏 = 𝑇 − 𝑡 , and also, writing that 𝑑2 = 𝛿2(0), as in
equation (12.36) for 𝜏 = 𝑇 − 𝑡,

𝐼2 = 𝑒−𝑟𝜏 ∫
∞

0
𝑒−

1
2 (𝛿2(𝑠))2

𝑑𝑠 =

= −𝜎√𝜏𝑒−𝑟𝜏 ∫
−∞

𝑑2

𝑒−
1
2 𝛿2

2𝑑𝛿2 =

=
√

𝜎2𝜏𝑒−𝑟𝜏 ∫
𝑑2

−∞
𝑒−

1
2 𝛿2

2𝑑𝛿2 =

=
√

2𝜋𝜎2𝜏𝑒−𝑟𝜏Φ(𝑑2)

,
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  Thus
𝑢(𝜏, 𝑥) = 𝐾 (𝑒𝑥Φ(𝑑1) − 𝑒−𝑟𝜏Φ(𝑑2))

  and transforming back 𝑉 (𝑡, 𝑆) = 𝑢 (𝑇 − 𝑡, ln (𝑆/𝐾)) we get equation (12.34).

Observe this is a backward parabolic PDE, which implies that the terminal condition determines
the particular solution.

12.10 Bibliography

• Mathematics of PDE’s: introductory Olver (2014), Salsa (2016) and (Pinsky, 2003, ch 5).
Advanced (Evans, 2010, ch 3).

• Applications to economics (with more advanced material) : Achdou et al. (2014)

• Applications to growth theory Brito (2022)
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12.A Appendix: Fourier transforms

Consider a function 𝑓(𝑥) such that 𝑥 ∈ ℝ and ∫∞
−∞ |𝑓(𝑥)|𝑑𝑥 < ∞. We can define a pair of generalized

functions, the Fourier transform of 𝑓(𝑥), 𝐹(𝑠) = ℱ[𝑓(𝑥)](𝑠) and the inverse Fourier transform
ℱ−1[𝐹 (𝑠)] (𝑥) = 𝑓(𝑥) (using the definition of Kammler (2000) ), where

𝐹(𝑠) = ℱ[𝑓(𝑥)] ≡ ∫
∞

−∞
𝑓(𝑥) 𝑒−2 𝜋 𝑖 𝑠 𝑥 𝑑𝑥

  where 𝑖2 = −1 and
𝑓(𝑥) = ℱ−1[𝐹 (𝑠)] ≡ ∫

∞

−∞
𝐹(𝑠)𝑒2𝜋𝑖𝑠𝑥𝑑𝑠.

Table 12.1: Fourier and inverse Fourier transforms: properties

𝑓(𝑥) for −∞ < 𝑥 < ∞ 𝐹(𝑠) for −∞ < 𝑠 < ∞ obs
1 𝑎 𝑎 𝛿(𝑠) 𝑎 ∈ ℂ complex number, 𝛿( ̇) Dirac’s delta
2 𝑎 𝛿(𝑥) 𝑎 𝑎 ∈ ℂ complex number,
3 𝑎 𝑓(𝑥) 𝑎 𝐹(𝑠) 𝑎 ∈ ℂ complex number
4 𝑎 𝑓(𝑥) + 𝑏 𝑔(𝑥) 𝑎 𝐹(𝑠) + 𝑏 𝐺(𝑠) 𝑎, 𝑏ℂ complex numbers
5 𝑓(𝑥) ∗ 𝑔(𝑥) 𝐹(𝑠) 𝐺(𝑠) 𝑓(𝑥) ∗ 𝑔(𝑥) is a convolution

6 𝑥 −𝛿′(𝑠)
2 𝜋 𝑖 𝛿′(⋅) is the first derivative of 𝛿(⋅)

7 𝑥2 𝛿″(𝑠)
2 𝜋 𝛿″(⋅) is the second derivative of 𝛿(⋅)

8 𝑥 𝑓(𝑥) −𝐹 ′(𝑠)
2 𝜋 𝑖

9 𝑓(𝑡, 𝑥) 𝐹(𝑡, 𝑠) 𝑡 is a real number
10 𝑓 ′(𝑥) 2 𝜋, 𝑖 𝑠 𝐹(𝑠)
11 𝑥 𝑓 ′(𝑥) −(𝐹(𝑠) + 𝑠 𝐹 ′(𝑠)) if 𝑠 ∈ ℝ
12 𝑓″(𝑥) −(2 𝜋 𝑠)2 𝐹(𝑠)
13 𝑥 𝑓″(𝑥) 2 𝜋 𝑠 (2 𝐹(𝑠) + 𝑠 𝐹 ′(𝑠))

𝑖
14 𝑥2 𝑓″(𝑥) −𝑠2 𝐹 ″(𝑠)

There are some useful properties of the Fourier transform that we use in the main text:

1. the Fourier transform of a constant: let 𝑎 ∈ ℂ be a number

𝐹(𝑎)  = ℱ[𝑎]  = 𝑎 ∫
∞

−∞
𝑒−2 𝜋 𝑖 𝑠 𝑥 𝑑𝑥 = 𝑎 ∫

∞

−∞
𝛿(𝑠 − 𝑥) 𝑑𝑥 = 𝑎 𝛿(𝑠)

  and
ℱ−1[𝑎𝛿(𝑠)]  = ∫

∞

−∞
𝑎 𝛿(𝑠) 𝑒2 𝜋 𝑖 𝑠 𝑥 𝑑𝑠 = 𝑎;
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2. the Fourier transform of 𝑎 ∈ ℂ constant times a Dirac’s delta generalized function:

𝐹(𝑎 𝛿(𝑥))  = ℱ[𝑎 𝛿(𝑥)]  = 𝑎 ∫
∞

−∞
𝛿(𝑥) 𝑒−2 𝜋 𝑖 𝑠 𝑥 𝑑𝑥 = 𝑎,

  and
ℱ−1[𝑎]  = ∫

∞

−∞
𝑎, 𝑒2 𝜋 𝑖 𝑠 𝑥 𝑑𝑠 = 𝑎 𝛿(𝑥);

 

3. the Fourier transform preserves multiplication by a complex number 𝑎 ∈ ℂ:

 ℱ[𝑎 𝑓(𝑥)]  = 𝑎 𝐹(𝑠), and ℱ−1[𝑎𝐹(𝑠)]  = 𝑎𝑓(𝑥),

 

Proof.

ℱ[𝑎 𝑓(𝑥)]  = ∫
∞

−∞
𝑎 𝑓(𝑥) 𝑒−2 𝜋 𝑖 𝑠 𝑥 𝑑𝑥 = 𝑎 ∫

∞

−∞
𝑓(𝑥) 𝑒−2 𝜋 𝑖 𝑠 𝑥 𝑑𝑥 = 𝑎 𝐹(𝑠),

and
ℱ−1[𝑎 𝐹(𝑠)] ≡ ∫

∞

−∞
𝑎 𝐹(𝑠)𝑒2𝜋𝑖𝑠𝑥𝑑𝑠 = 𝑎 ∫

∞

−∞
𝐹(𝑠)𝑒2𝜋𝑖𝑠𝑥𝑑𝑠 = 𝑎 𝑓(𝑥).

 

4. the Fourier transform preserves linearity:

ℱ[𝑎 𝑓(𝑥) + 𝑏 𝑔(𝑥)]  = 𝑎 𝐹(𝑠) + 𝑏 𝐺(𝑠), and ℱ−1[𝑎 𝐹(𝑠) + 𝑏 𝐺(𝑠)]  = 𝑎 𝑓(𝑥) + 𝑏 𝑔(𝑥)

 

5. the Fourier transform does not preserve multiplication of two functions. However, there is
a relationship between convolution of functions and multiplication of Fourier transforms. A
convolution  between two functions 𝑓(𝑥) and 𝑔(𝑥) is defined as

𝑓(𝑥) ∗ 𝑔(𝑥) = ∫
∞

−∞
𝑓(𝑦) 𝑔(𝑥 − 𝑦) 𝑑𝑦.

  The inverse Fourier transform of a product of two Fourier transforms is a convolution,

𝑓(𝑥) ∗ 𝑔(𝑥) = ℱ−1[𝐹 (𝑠) 𝐺(𝑠)]  = ∫
∞

−∞
𝐹(𝑠) 𝐺(𝑠) 𝑒2𝜋𝑖𝑠𝑥𝑑𝑠

 

6. ℱ[𝑥] = − 1
2 𝜋 𝑖𝛿′(𝑠), where 𝛿(𝑥) is Dirac’s delta
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Proof.   Observe that ∫∞
−∞ 𝑒2𝜋𝑖𝑠𝑥𝛿(𝑠)𝑑𝑠 = 1 and

∫
∞

−∞
𝑒2 𝜋 𝑖 𝑠 𝑥 𝛿(𝑠) = 0.

  Then

𝑥 = 𝑥 ∫
∞

−∞
𝑒2𝜋𝑖𝑠𝑥𝛿(𝑠)𝑑𝑠

= − 1
2 𝜋 𝑖 ( ∫

∞

−∞
𝑒2 𝜋 𝑖 𝑠 𝑥 𝛿(𝑠) − ∫

∞

−∞
2 𝜋 𝑖 𝑥 𝑒2 𝜋 𝑖 𝑠 𝑥𝛿(𝑠) 𝑑𝑠 )

= − 1
2 𝜋 𝑖 ∫

∞

−∞
𝑒2 𝜋 𝑖 𝑠 𝑥𝛿′(𝑠) 𝑑𝑠

= − 1
2 𝜋 𝑖ℱ−1[  1

2 𝜋 𝑖 𝛿′(𝑠)] 

7. ℱ[𝑥2] = 1
(2 𝜋)2 𝛿″(𝑠)

8. ℱ[𝑥 𝑓(𝑥)]  = − 1
2 𝜋 𝑖 𝐹 ′(𝑠)

Proof.

ℱ[𝑥 𝑓(𝑥)]  = ∫
∞

−∞
𝑥 𝑓(𝑥) 𝑒−2 𝜋 𝑖 𝑠 𝑥 𝑑𝑥

= − 1
2 𝜋 𝑖  ∫

∞

−∞
−2𝜋 𝑖 𝑥 𝑓(𝑥) 𝑒−2 𝜋 𝑖 𝑠 𝑥 𝑑𝑥

= − 1
2 𝜋 𝑖  ∫

∞

−∞
𝑓(𝑥) 𝑑

𝑑𝑠(𝑒−2 𝜋 𝑖 𝑠 𝑥) 𝑑𝑥

= − 1
2 𝜋 𝑖  𝑑

𝑑𝑠𝐹(𝑠) = 𝑑
𝑑𝑠[  ∫

∞

−∞
𝑓(𝑥) 𝑒−2 𝜋 𝑖 𝑠 𝑥 𝑑𝑥] 

= − 1
2 𝜋 𝑖 𝐹 ′(𝑠)

  Alternative proof:

ℱ[𝑥 𝑓(𝑥)]  = ℱ[𝑥] ∗ ℱ[𝑓(𝑥)] = ∫
∞

−∞
− 1

2 𝜋 𝑖 𝛿′(𝑦) 𝐹(𝑠 − 𝑦)𝑑𝑦 = − 1
2 𝜋 𝑖 𝐹 ′(𝑠)

 

if 𝑓 = 𝑓(𝑥, 𝑡) where 𝑡 is a real variable then 𝐹(𝑠, 𝑡) = ℱ[𝑓(𝑥, 𝑡)] and 𝑓(𝑥, 𝑡) =  ℱ−1[𝐹 (𝑠, 𝑡)].
Also 𝐹𝑡(𝑠, 𝑡) = ℱ[𝑓𝑡(𝑥, 𝑡)] and 𝑓𝑡(𝑥, 𝑡) =  ℱ−1[𝐹𝑡(𝑠, 𝑡)]

9. ℱ[𝑓 ′(𝑥)]  = 2 𝜋 𝑖 𝑠 𝐹(𝑠)
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Proof.

ℱ[𝑓 ′(𝑥)]  = ∫
∞

−∞
𝑓 ′(𝑥) 𝑒−2 𝜋 𝑖 𝑠 𝑥 𝑑𝑥

integration by parts 

= ∫
∞

−∞
𝑓(𝑥) 𝑒−2 𝜋 𝑖 𝑠 𝑥 − ∫

∞

−∞
𝑓(𝑥) 𝜕

𝜕𝑥(𝑒−2 𝜋 𝑖 𝑠 𝑥) 𝑑𝑥 

because 𝑒−2 𝜋 𝑖 𝑠 𝑥 is symmetric the first integral is equal to zero

= 2 𝜋 𝑖 𝑠 ∫
∞

−∞
𝑓(𝑥) 𝑒−2 𝜋 𝑖 𝑠 𝑥 𝑑𝑥 

= 2 𝜋 𝑖 𝑠 𝐹(𝑠)

10. ℱ[𝑥𝑓 ′(𝑥)]  = −(𝐹(𝑠) + 𝑠𝐹 ′(𝑠)) if 𝑠 ∈ ℝ

Proof.

 

 ℱ[𝑥 𝑓 ′(𝑥)]  = ℱ[𝑥] ∗ ℱ[𝑓 ′(𝑥)]

= ∫
∞

−∞
( − 1

2 𝜋 𝑖 𝛿′(𝑦)) (2 𝜋 𝑖 (𝑠 − 𝑦) 𝐹(𝑠 − 𝑦))𝑑𝑦

= − ∫
∞

−∞
𝛿′(𝑦) (𝑠 − 𝑦) 𝐹(𝑠 − 𝑦)𝑑𝑦

= −𝑠 ∫
∞

−∞
𝛿′(𝑦) 𝐹(𝑠 − 𝑦)𝑑𝑦 + ∫

∞

−∞
𝛿′(𝑦) 𝑦 𝐹(𝑠 − 𝑦)𝑑𝑦

= −𝑠𝐹 ′(𝑠) + ∫
∞

−∞
𝛿(𝑦) 𝑦 𝐹(𝑠 − 𝑦) − ∫

∞

−∞
𝛿(𝑦) 𝐹(𝑠 − 𝑦)𝑑𝑦

= 𝑠𝐹 ′(𝑠) − 𝐹(𝑠)

 

11. ℱ[𝑓″(𝑥)]  = −4 𝜋2 𝑠2 𝐹(𝑠)

12. ℱ[𝑥 𝑓″(𝑥)]  = 2 𝜋 𝑠
𝑖  (2 𝐹(𝑠) + 𝑠 𝐹 ′(𝑠))

13. ℱ[𝑥2 𝑓″(𝑥)]  = −𝑠2 𝐹 ″(𝑠)

References: https://dlmf.nist.gov/1.14

https://dlmf.nist.gov/1.14
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Table 12.2: Fourier and inverse Fourier transforms of some functions

𝑓(𝑥) for −∞ < 𝑥 < ∞ 𝐹(𝑠) for −∞ < 𝑠 < ∞ obs
𝛿(𝑥 − 𝑎) 𝑒−2 𝜋 𝑖 𝑠 𝑎

1√
4𝜋𝑎𝑒− 𝑥2

4𝑎 𝑒−𝑎(2𝜋𝑠)2 𝑎 > 0
1√
4𝜋𝑎𝑒− (𝑥+𝑏)2

4𝑎 𝑒−𝑎(2𝜋𝑠)2+𝑏(2𝜋𝑖𝑠) 𝑎 > 0, 𝑏 ∈ ℝ
1√
4𝜋𝑎𝑒𝑐− 𝑥2

4𝑎 𝑒−𝑎(2𝜋𝑠)2+𝑐 𝑎 > 0, 𝑐 ∈ ℝ
1√
4𝜋𝑎𝑒𝑐− (𝑥+𝑏)2

4𝑎 𝑒−𝑎(2𝜋𝑠)2+𝑏(2𝜋𝑖𝑠)+𝑐 𝑎 > 0, (𝑏, 𝑐) ∈ ℝ2

 

12.B Appendix: the Gaussian integral

The Gaussian kernel is a function
𝑔(𝑥) = 𝑒−𝑥2

  which has the well known bell shape.
A Gaussian integral is an integral of type

∫
∞

−∞
ℎ(𝑥)𝑔(𝑥)𝑑𝑥,

  where 𝑔(⋅) is the Gaussian kernel, if it is finite in the 𝐿2 sense: that is

( ∫
∞

−∞
∣ℎ(𝑥) 𝑔(𝑥)∣2 𝑑𝑥)

1
2

  < ∞.

 
Some properties of the Gaussian integral are:

  ∫
∞

−∞
𝑒−𝑥2𝑑𝑥 = √𝜋,

 
  ∫

∞

−∞
𝑥 𝑒−𝑥2𝑑𝑥 = 0,

 
∫

∞

−∞
|𝑥| 𝑒−𝑥2𝑑𝑥 = 1,

  where |𝑥| =
√

𝑥2 for any 𝑥 ∈ ℝ,

∫
∞

−∞
𝑥2 𝑒−𝑥2𝑑𝑥 =

√𝜋
2 .

If we introduce a parameter 𝑎 > 0, we have

  ∫
∞

−∞
𝑒−𝑎 𝑥2 𝑑𝑥 = √𝜋

𝑎
 

  ∫
∞

−∞
𝑥 𝑒−𝑎𝑥2𝑑𝑥 = 0
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  ∫

∞

−∞
𝑥2 𝑒−𝑎𝑥2𝑑𝑥 = 1

2 𝑎 √𝜋
𝑎

 
The Gaussian cumulative distribution function (CDF) is

Φ(𝑥) = 1√
2𝜋 ∫

𝑥

−∞
𝑒− 𝑠2

2 𝑑𝑠, for  𝑥 ∈ ℝ.

At is involves a parameterized Gaussian kernel with 𝑎 = 1
2 . Using the previous properties of the

Gaussian integral, we have Φ(∞) = 1.
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