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Chapter 15

Stochastic optimal control

15.1 Introduction

In this chapter we define the stochastic optimal control problem as an optimal control problem of
an Itô forward stochastic differential equation (FSDE) together with an initial condition on the
state variable, and some cases in which there are terminal conditions. We deal with both the finite
and the infinite horizon cases. We, again, present the simplest problems, heuristic proofs, and are
mostly concerned with characterizing properties of solutions.

There are three approaches to solving the stochastic optimal control problem: (1) using the
principle of dynamic programming (DP); (2) using the Pontriyagin maximum principle (PM); and
(3) the convex duality method (see Pham (2009)).

The first method is the most well known (see Fleming and Rishel (1975) or Malliaris and Brock
(1982) for applications in economics and finance) and leads to the solution of a parabolic PDE,
or a second order ODE for infinite horizon problems. The second method is less well known and
leads directly to a system of forward-backward stochastic differential equations (FBSDE). The third
method is used in association to the Malliavin calculus and is still new. It is not presented in the
following notes.

15.2 Stochastic dynamic programming

15.2.1 Finite horizon

Again we assume the filtered probability space (Ω, ℱ, ℙ, 𝔽), where a non-anticipating filtration
𝔽  = (ℱ𝑡)𝑡∈ℝ+

, where ℱ𝑡 is the information generated by past realizations of a Wiener process
(𝑊(𝑠))𝑠∈(0,𝑡). This means that all the information is generated by past events.  

Let 𝑋(𝑡) denote the state variable and 𝑈(𝑡) the control variable at time 𝑡. We consider the
stochastic optimal control problem, that consists in determining the value function, 𝑉 (.),

𝑉 (𝑥0) = max
(𝑈(𝑡))𝑡∈[0,𝑇]

 𝔼0 [∫
𝑇

0
𝑓(𝑡, 𝑋(𝑡), 𝑈(𝑡))𝑑𝑡] (15.1)
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subjected to the non-autonomous stochastic stochastic differential equation

𝑑𝑋(𝑡) = 𝑔(𝑡, 𝑋(𝑡), 𝑈(𝑡))𝑑𝑡 + 𝜎(𝑡, 𝑋(𝑡), 𝑈(𝑡))𝑑𝑊(𝑡) (15.2)

given the initial distribution for the state variable 𝑋(0) = 𝑥0. We assume that the objective, the
drift and the volatility functions, 𝑓(.), 𝑔(.) and 𝜎(.) are known. Function 𝑔(.) is assumed to be of
class 𝐻 and functions 𝑓(.) and 𝜎(.) are of class 𝑁 , that is bounded functions for any realization of
the stochastic processses.

One important difference as regards deterministic optimal control is that while in this case
the control variable, together with the transversality condition can be seen as a backward looking
variable, in the stochastic case it should be a ℱ𝑡-adapted process. Therefore, some type of terminal
condition should be imposed.

The stochastic dynamic programming principle is the analogue to the dynamic programming
principle for the optimal control of ODE’s. It gives a local necessary condition for optimality.

Proposition 1. Stochastic dynamic programming Let the processes (𝑋∗(𝑡), 𝑈 ∗(𝑡))𝑡∈[0,𝑇 ] be
solution to the SOC problem (15.1)-(15.2). Then, at time 𝑡, every realizations of the state and
control variables, 𝑋∗(𝑡) = 𝑥 and 𝑈∗(𝑡) = 𝑢, satisfy the Hamilton-Jacobi-Bellman equation

−𝜕𝑉 (𝑡, 𝑥)
𝜕𝑡 = max

𝑢
(𝑓(𝑡, 𝑥, 𝑢) + 𝑔(𝑡, 𝑥, 𝑢)𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥 + 1
2𝜎(𝑡, 𝑥, 𝑢)2 𝜕2𝑉 (𝑡, 𝑥)

𝜕𝑥2 ) . (15.3)

Proof. (Heuristic) The value of the problem, at time 𝑡 = 0 is

𝑉 (0, 𝑥0) = 𝔼0[ ∫
𝑇

0
𝑓(𝑡, 𝑋∗(𝑡), 𝑈 ∗(𝑡)) 𝑑𝑡].

Equivalently, we have

𝑉 (0, 𝑥0) = max
(𝑢(𝑡))𝑡∈[0,𝑇]

𝔼0[ ∫
𝑇

0
𝑓(𝑡, 𝑋(𝑡), 𝑈(𝑡))𝑑𝑡]

= max
(𝑢(𝑡))𝑡∈[0,𝑇]

𝔼0[ ∫
Δ𝑡

0
𝑓(𝑡, 𝑋(𝑡), 𝑈(𝑡))𝑑𝑡 + ∫

𝑇

Δ𝑡
𝑓(𝑡, 𝑋(𝑡), 𝑈(𝑡))𝑑𝑡].

By the principle of the dynamic programming we have

𝑉 (0, 𝑥0) = max
(𝑢(𝑡))𝑡∈[0,Δ𝑡]

 𝔼0 [∫
Δ𝑡

0
𝑓(𝑡, 𝑋(𝑡), 𝑈(𝑡))𝑑𝑡 + max

(𝑢(𝑡))𝑡∈[Δ𝑡,𝑇]
 𝔼Δ𝑡 [∫

𝑇

Δ𝑡
𝑓(𝑡, 𝑋(𝑡), 𝑈(𝑡))𝑑𝑡]] .

If we consider a small interval Δ𝑡 we can approximate

 𝑉 (0, 𝑥0) ≈ max
(𝑢(𝑡))𝑡∈[0,Δ𝑡]

 𝔼0 [𝑓(𝑡, 𝑋(𝑡), 𝑈(𝑡))Δ𝑡 + 𝑉 (Δ𝑡, 𝑥(Δ𝑡))]

where 𝑥(Δ𝑡) = 𝑥0 + Δ𝑥 and

𝑉 (Δ𝑡, 𝑥(Δ𝑡)) = max
(𝑢(𝑡))𝑡∈[Δ𝑡,𝑇]

 𝔼Δ𝑡 [∫
𝑇

Δ𝑡
𝑓(𝑡, 𝑋(𝑡), 𝑈(𝑡))𝑑𝑡] .
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  If we consider any time 𝑡, and any realization fot the state variable 𝑋(𝑡) = 𝑥, and if 𝑉 is
continuously differentiable of the second order, then, from Itô’s lemma, the variation of the value
function is

𝑉 (𝑡 + 𝑑𝑡, 𝑥 + 𝑑𝑋(𝑡)) = 𝑉 (𝑡, 𝑥) + 𝑉𝑡(𝑡, 𝑥)𝑑𝑡 + 𝑉𝑥(𝑡, 𝑥)𝑑𝑋(𝑡) + 1
2𝑉𝑥𝑥(𝑡, 𝑥)(𝑑𝑋(𝑡))2 + ℎ.𝑜.𝑡

where

𝑑𝑋(𝑡) = 𝑔(𝑡, 𝑋(𝑡), 𝑈(𝑡))𝑑𝑡 + 𝜎(𝑡, 𝑋(𝑡), 𝑈(𝑡))𝑑𝑊(𝑡)
(𝑑𝑋(𝑡))2 = 𝑔(𝑡, 𝑋(𝑡), 𝑈(𝑡))2(𝑑𝑡)2 + 2 𝑔(𝑡, 𝑋(𝑡), 𝑈(𝑡))𝜎(.)(𝑑𝑡)(𝑑𝑊(𝑡)) +

+(𝜎(𝑡, 𝑋(𝑡), 𝑈(𝑡)))2(𝑑𝑊)2

= (𝜎(𝑡, 𝑋(𝑡), 𝑈(𝑡)))2𝑑𝑡.

Then
𝑉 (𝑡 + 𝑑𝑡, 𝑥 + 𝑑𝑋∗(𝑡)) − 𝑉 (𝑡, 𝑥)

𝑑𝑡   = max
𝑢

𝔼 [𝑓𝑑𝑡 + 𝑉 + 𝑉𝑡𝑑𝑡 + 𝑉𝑥𝑔𝑑𝑡 + 𝑉𝑥𝜎𝑑𝑊 + 1
2𝜎2𝑉𝑥𝑥𝑑𝑡] 1

𝑑𝑡 

= max
𝑢

([𝑓 + 𝑉𝑡 + 𝑉𝑥 𝑔 + 𝜎2

2 𝑉𝑥𝑥)

because 𝔼0(𝑑𝑊) = 0. At the optimum

lim
𝑑𝑡→0

 𝑉 (𝑡 + 𝑑𝑡, 𝑥 + 𝑑𝑋∗(𝑡)) − 𝑉 (𝑡, 𝑥)
𝑑𝑡   = 0,

  which is satisfied only if HJB equation (15.3) holds.

15.2.2 Infinite horizon

The autonomous discounted infinite horizon problem is

𝑉 (𝑥0) = max
𝑢

𝔼0 [∫
∞

0
𝑓 (𝑋(𝑡), 𝑈(𝑡)) 𝑒−𝜌𝑡𝑑𝑡] (15.4)

where 𝜌 > 0, subject to the autonomous stochastic differential equation

𝑑𝑋(𝑡) = 𝑔 (𝑋(𝑡), 𝑈(𝑡)) 𝑑𝑡 + 𝜎 (𝑋(𝑡), 𝑈(𝑡)) 𝑑𝑊(𝑡) (15.5)

given the initial value of the state variable 𝑋(0) = 𝑥0, and assuming the same properties for
functions 𝑓(.), 𝑔(.) and 𝜎(.).

Applying, again, the Bellman’s principle, now the HJB equation is the nonlinear second order
ODE of the form

𝜌 𝑣(𝑥) = max
𝑢

(𝑓(𝑥, 𝑢) + 𝑔(𝑡, 𝑥, 𝑢)𝑣′(𝑥) + 1
2 𝜎(𝑥, 𝑢)2 𝑣″(𝑥)) . (15.6)

Proof: Write 𝑉 (𝑡, 𝑥) = 𝑒−𝜌 𝑡  𝑣(𝑥). Therefore 𝑉𝑡(𝑡, 𝑥) = −𝜌 𝑒−𝜌 𝑡  𝑣(𝑥), 𝑉𝑥(𝑡, 𝑥) = 𝑒−𝜌 𝑡  𝑣′(𝑥),
and 𝑉𝑥𝑥(𝑡, 𝑥) = 𝑒−𝜌 𝑡  𝑣″(𝑥). Substitutimng in HJB equation equation (15.3) yields HJB equation
(15.6).
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15.2.3 Economic applications using stochastic dynamic programming

The representative agent problem

The Merton (1971) model is the standard micro model for the simultaneous determination of the
strategies of consumption and portfolio investment. Next, we present a simplified version with one
risky and one risk-free asset.

Assume that an agent can invest in two types of assets, a risk-free and a risky asset, whose
prices are denoted by 𝐵 and 𝑆, respectively. We denote by 𝜃0(𝑡) and 𝜃1(𝑡) the number of risk free
and risky assets in the portfolio, and by 𝐴(𝑡) net financial wealth of the agent at time 𝑡, we have
𝐴(𝑡) = 𝜃0(𝑡)𝐵(𝑡) + 𝜃1(𝑡)𝑆(𝑡), for any 𝑡 ∈ [0, ∞). The agent can have a short position (𝜃𝑗(𝑡) < 0) or
a long position (if 𝜃𝑗(𝑡) <> 0) on any asset 𝑗 at time 𝑡.

The prices of the assets are given to the agent and are assume to follow the exogenous processes

𝑑𝐵(𝑡) = 𝑟𝐵(𝑡)𝑑𝑡
𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊(𝑡)

where 𝑟 is the risk-free interest rate, 𝜇 and 𝜎 are the constant rates of return and volatility for the
risky asset. The change in financial income in the time interval 𝑑𝑡, starting at time 𝑡, is therefore,

𝜃0(𝑡) 𝑟 𝐵(𝑡) 𝑑𝑡 + 𝜃1(𝑡)(𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊(𝑡)).

 
Assume that the agent is entitled to a deterministic endowment (𝑦(𝑡))𝑡∈ℝ which adds to the

financial income. Then the value of financial wealth at time 𝑡 is

𝐴(𝑡) = 𝐴(0) + ∫
𝑡

0
(𝑟𝜃0(𝑠)𝐵(𝑠) + 𝜇𝜃1(𝑠)𝑆(𝑠) + 𝑌 (𝑠) − 𝐶(𝑠)) 𝑑𝑠 + ∫

𝑡

0
𝜎𝜇𝜃1(𝑠)𝑆(𝑠)𝑑𝑊(𝑠),

where the process for consumption (𝐶(𝑡))𝑡∈ℝ is endogenous. Denoting the shares of the equity and

of the risk-free asset by 𝑤 = 𝜃1𝑆
𝐴 and 1 − 𝑤 = 𝜃0𝐵

𝐴 , the budget constraint is the Itô’s stochastic
differential equation

𝑑𝐴(𝑡) = [(𝑟 (1 − 𝑤(𝑡)) + 𝜇 𝑤(𝑡)) 𝐴(𝑡) + 𝑌 (𝑡) − 𝐶(𝑡)] 𝑑𝑡 + 𝜎 𝑤(𝑡) 𝐴(𝑡) 𝑑𝑊(𝑡), for 𝑡 ≥ 0  (15.7)

and the initial net wealth 𝐴(0) = 𝜃0(0)𝐵(0) + 𝜃1(0)𝑆(0) is known. The rate of return on the total
asset position 𝑟𝑎(𝑡) = 𝑟 (1 − 𝑤(𝑡)) + 𝜇 𝑤(𝑡) is a weighted sum of the rates of return of the risk-free
and the risky asset, and there is time-varying.

The problem  for the consumer-investor is

max
𝑐,𝑤

𝔼0 [∫
∞

0
𝑢(𝐶(𝑡))𝑒−𝜌𝑡𝑑𝑡] (15.8)

subject to the instantaneous budget constraint (15.7), given 𝐴(0) = 𝑎0 and assuming that the
utility function is increasing and concave.
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This is a stochastic optimal control problem with infinite horizon, and has two control variables,
𝑐 and 𝑤. We solve it by using proposition 1.

The Hamilton-Jacobi-Bellman equation (15.6) is

𝜌 𝑣(𝐴) = max
𝑐,𝑤

{𝑢(𝑐) + 𝑣′(𝐴)[(𝑟(1 − 𝑤) + 𝜇𝑤)𝐴 + 𝑦 − 𝑐] + 1
2𝑤2𝜎2𝐴2𝑣″(𝐴)} .

The first order necessary conditions allows us to obtain the optimal controls, i.e. the optimal
policies for consumption and portfolio composition

𝑢′(𝑐∗) = 𝑣′(𝐴), (15.9)

𝑤∗ = 𝑊(𝐴) = (𝜇 − 𝑟)
𝜀𝑣(𝐴) 𝜎2 (15.10)

where the (𝜇 − 𝑟)
𝜎 is the Sharpe index and 𝜀𝑣(𝐴) ≡ − 𝑣′(𝐴)

𝐴𝑣″(𝐴) is the inverse of the elasticity of the
value function.

If 𝑢″(.) < 0 then the optimal policy function for consumption may be written as 𝑐∗ = 𝐶(𝐴) ≡
(𝑢′)−1(𝑣′(𝐴)). Substituting the policy functions into the HJB equation, we get the differential
equation over 𝑣(𝐴)

𝜌 𝑣(𝐴) = 𝑢(𝐶(𝐴)) + 𝑣′(𝐴)(𝑦 + 𝑟𝐴 − 𝐶(𝐴)) + 1
2(𝑟 − 𝜇

𝜎  )
2 (𝑣′(𝐴))2

𝑣″(𝐴) . (15.11)

In some cases, in particular when the utility function is a generalized logarithm and the constraint
is a linear SDE, the HJB equation can be solved explicitly.

Example: the CRRA case Let the utility function display constant relative risk aversion
(CRRA)

𝑢(𝑐) = 𝑐1−𝜂 − 1
1 − 𝜂 , for 𝜂 > 0,

and define total net wealth
𝑁 = 𝑁(𝐴) = 𝑦

𝑟 + 𝐴,

  as the sum of human wealth (𝑦
𝑟 ) and net financial wealth.

We can solve equation solve equation (15.11) by using the method of undetermined coefficients.
Conjecture that the solution for equation (15.11) is of type

𝑉 (𝐴) = 𝛼 + 𝜃 𝑁(𝐴)1−𝜂

where 𝛼 and 𝜃 are arbitrary constants to be determined. If the functional form of this function is
correct, by substituting in equation (15.11) the state variable, we obtain the HJB equation, at the
optimum, containing only the unknowns 𝛼 and 𝜃. By finding a particular solution of that equation
we find particular values for those two coefficients.

First, as
𝑉 ′(𝐴) = 𝜃 (1 − 𝜂) 𝑁−𝜂, and 𝑉 ″(𝐴) = −𝜃 𝜂 (1 − 𝜂) 𝑁−𝜂−1
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  then the optimal policy functions are: for consumption it is

𝐶(𝐴) = (𝜃(1 − 𝜂))− 1
𝜂 𝑁(𝐴)

which requires that 𝜃 (1 − 𝜂) > 0 to be a real number, and for the portfolio composition it is

𝑊(𝐴) = (𝜇 − 𝑟)
𝜎2   𝑁

𝜂 𝐴.

Substituting in (15.11), we obtain

𝜌(𝛼 + 𝜃𝑁1−𝜂) = 1
1 − 𝜂((𝜃 (1 − 𝜂))

𝜂−1
𝜂 𝑁1−𝜂 − 1)+

+ (𝜃 (1 − 𝜂) 𝑁1−𝜂)(𝑟 − (𝜃 (1 − 𝜂))
−1
𝜂 − 1

2 𝜂(𝜇 − 𝑟
𝜎 )

2
).

If we set 𝛼 𝜌 (1 − 𝜂) + 1 = 0, we can eliminate 𝑁1−𝜂 and obtain an equation in 𝜃. Solving it, yields

𝜃 = 𝜃∗  ≡ 1
1 − 𝜂 [𝜌 + 𝑟(1 − 𝜂)

𝜂 + (1 − 𝜂)
2𝜂2 (𝜇 − 𝑟

𝜎 )
2
]

−𝜂

Then

𝑉 (𝐴) = 1
1 − 𝜂{  [𝜌 − 𝑟(1 − 𝜂)

𝜂 + (1 − 𝜂)
2𝜂2 (𝜇 − 𝑟

𝜎 )
2
]

−𝜂
𝑁(𝐴)1−𝜂 − 1

𝜌}. 
 

Then the optimal consumption is

𝐶∗ = (𝜌 + 𝑟(𝜂 − 1)
𝜂 + (1 − 𝜂)

2𝜂2 (𝜇 − 𝑟
𝜎 )

2
) 𝑁,

and the share of the risky asset in the portfolio is again

𝑤∗  = −(𝑟 − 𝜇)
𝜎2   𝑁

𝜂 𝐴.

  In the deterministic analogue, with only the risk-free asset, optimal consumption would be

𝐶∗ = 𝜌 + 𝑟(𝜂 − 1)
𝜂 𝑁,

which means that if 𝜂 > 1 consumption will be smaller in the stochastic environment than in the
stochastic one.

We see that the consumer cannot eliminate risk, in general. If we write 𝑐∗ = 𝜒𝑁 , where
𝜒 ≡ 𝜌−𝑟(1−𝜂)

𝜂 + (1−𝜂)
2𝜂2 (𝜇−𝑟

𝜎 )2, then the optimal net wealth is stochastic and follows a geometric
Brownian motion

𝑑𝑁(𝑡) = (𝜇𝑛𝑑𝑡 + 𝜎𝑛𝑑𝑊(𝑡))  𝑁(𝑡),
where

𝜇𝑛 = 𝑟 + (𝜇 − 𝑟
𝜎 )

2
(1 − 𝜂

𝜂 ) − 𝜒

𝜎𝑛 = 1 − 𝜂
𝜂 (𝜇 − 𝑟

𝜎 ).
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Given the initial wealth 𝑛(0) = 𝑦
𝑟 + 𝑎0, and using the results in the previous chapter, we find that

the probability density of a realization 𝐴(𝑡) = 𝑎/𝑎0 follows a log-normal distribution.
As 𝐶∗ = 𝐶(𝑁), the optimal consumption is also stochastic. If we apply Itô’s lemma,

𝑑𝐶 = 𝜒𝑑𝑁 = 𝐶 (𝜇𝑐𝑑𝑡 + 𝜎𝑐𝑑𝑊(𝑡))

where

𝜇𝑐 = 𝑟 − 𝜌
𝜂

𝜎𝑐 = 𝑟 − 𝜂𝜌
𝜂 + .12(𝜇 − 𝑟

𝜎
1 − 𝜂

𝜂 )
2

The stochastic differential equation has the solution

𝐶(𝑡) = 𝑐(0) exp {(𝜇𝑐 − 𝜎2
𝑐

2 ) 𝑡 + 𝜎𝑐𝑊(𝑡)}

where
𝑐(0) = (1 − 𝜂)(𝜃∗) 1

𝜂 𝑛(0) = (1 − 𝜂)(𝜃∗) 1
𝜂 (𝑦 + 𝑟𝑎0

𝑟 ).

The unconditional expected value for consumption at time 𝑡

𝔼0[𝐶(𝑡)] = 𝑐(0) 𝑒𝜇𝑐𝑡.

The value function follows a stochastic process which is a monotonous function for wealth.
The optimal strategy for consumption follows a stochastic process which is a linear function of the
process for wealth and the fraction of the risky asset in the optimal portfolio is a direct function of
the premium of the risky asset relative to the riskless asset and is a inverse function of the volatility.

References Merton (1971), Merton (1990), Duffie (1996) Cvitanić and Zapatero (2004)

The stochastic Ramsey model

Let 𝐾 denote the stock of physical capital and 𝐿 the labor input which is equal to the population
(no unemployment, diseases, etc). The economy is represented by the the differential equations

𝑑𝐾(𝑡) = (𝐹(𝐾(𝑡), 𝐿(𝑡)) − 𝐶(𝑡))𝑑𝑡
𝑑𝐿(𝑡) = 𝜇𝐿(𝑡)𝑑𝑡 + 𝜎𝐿(𝑡)𝑑𝑊(𝑡)

where we assume that 𝐹(𝐾, 𝐿) is linearly homogeneous, given the (deterministic) initial stock of
capital and labor 𝐾(0) = 𝐾0 and 𝐿(0) = 𝐿0. The growth of the labor input (or its productivity)
is stochastic.

If we define the variables in intensity terms,

𝑘(𝑡) ≡ 𝐾(𝑡)
𝐿(𝑡) , 𝑐(𝑡) ≡ 𝐶(𝑡)

𝐿(𝑡) ,
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we can get an equivalent representation of the economy by a single stochastic differential equation
over 𝑘. Using the Itô’s lemma yields

𝑑𝑘 = (𝑓(𝑘) − 𝑐 − (𝜇 − 𝜎2)𝑘) 𝑑𝑡 − 𝜎2𝑘𝑑𝑊(𝑡) (15.12)

where the production function in intensity terms is 𝑓(𝑘) = 𝐹 (𝐾
𝐿 , 1).

There is a central planner who wants to find the optimal path of consumption (𝑐∗(𝑡))𝑡≥0 that
maximizing the intertemporal utility functional

𝔼0 [  ∫
∞

0
𝑢(𝑐(𝑡))𝑒−𝜌𝑡𝑑𝑡]  

  subject to the budget constraint (15.12).
We use the stochastic dynamic programming principle to solve the problem. The HJB equation,

(15.6), is
𝜌𝑉 (𝑘) = max

𝑐
{𝑢(𝑐) + 𝑉 ′(𝑘) (𝑓(𝑘) − 𝑐 − (𝜇 − 𝜎2)𝑘) + 1

2(𝑘𝜎)2𝑉 "(𝑘)}

the optimality condition is again
𝑢′(𝑐) = 𝑉 ′(𝑘)

and, substituting in the HJB equation yields an implicit second-order ODE

𝜌𝑉 (𝑘) = 𝑢(ℎ(𝑘)) + 𝑉 ′(𝑘) (𝑓(𝑘) − ℎ(𝑘) − (𝜇 − 𝜎2)𝑘) + 1
2(𝑘𝜎)2𝑉 "(𝑘).

Again, we assume the benchmark particular case: 𝑢(𝑐) = 𝑐1−𝜃

1 − 𝜃 and 𝑓(𝑘) = 𝑘𝛼. Then the
optimal policy function becomes

𝑐∗ = 𝑉 ′(𝑘)− 1
𝜃

and the HJB becomes

𝜌𝑉 (𝑘) = 𝜃
1 − 𝜃𝑉 ′(𝑘) 𝜃−1

𝜃 + 𝑉 ′(𝑘) (𝑘𝛼 − (𝜇 − 𝜎2)𝑘) + 1
2(𝑘𝜎)2𝑉 "(𝑘).

This equation does not seem to have a closed form solution.
However, to illustrate how a solution would be obtained in the case in which a closed-form

solution would be obtained, we consider the (unrealistic) case 𝜃 = 𝛼. Again we conjecture that the
solution if of the form

𝑉 (𝑘) = 𝐵0 + 𝐵1𝑘𝛼

Using the same methods as before we get

𝐵0 = (1 − 𝛼)𝐵1
𝜌

𝐵1 = 1
1 − 𝛼 [ (1 − 𝛼)𝜃

(1 − 𝜃)(𝜌 − (1 − 𝛼)2𝜎2)]
𝛼

.

Then
𝑉 (𝑘) = 𝐵1 (1 − 𝛼

𝜌 + 𝑘1−𝛼)
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and
𝑐∗ = 𝑐(𝑘) = ((1 − 𝜃)(𝜌 − (1 − 𝛼)2𝜎2)

(1 − 𝛼)𝜃 ) 𝑘 ≡ 𝜚𝑘

as we see an increase in volatility decreases consumption for every level of the capital stock.
Then the optimal dynamics of the per capita capital stock is the SDE

𝑑𝑘∗(𝑡) = (𝑓(𝑘∗(𝑡)) − (𝜇 + 𝜚 − 𝜎2)𝑘∗(𝑡)) 𝑑𝑡 − 𝜎2𝑘∗(𝑡)𝑑𝑊(𝑡).

In this case we can not solve it explicitly as in the deterministic case.
References: Brock and Mirman (1972), Merton (1975), Merton (1990)

15.3 The stochastic PMP

In order to find the necessary optimality conditions by using the stochastic version of the Pontriyagin
maximum principle (SPMP) it is useful to distinguish the case in which the volatility component
depends on the control variable, as in equation (15.2), from the case in which it does not, as in
equation

𝑑𝑋(𝑡) = 𝑔(𝑡, 𝑋(𝑡), 𝑈(𝑡))𝑑𝑡 + 𝜎(𝑡, 𝑋(𝑡))𝑑𝑊(𝑡). (15.13)

The reason for this is, again, related to the fact that the control variable should be ℱ𝑡 adapted.
Assume again the optimal control problem with value function (15.1) with a finite horizon, i.e,

𝑡 ∈ [0, 𝑇 ] for a finite 𝑇 .

15.3.1 Volatility function independent of the control variable

Proposition 2. Stochastic PMP Let the processes (𝑋∗(𝑡), 𝑈 ∗(𝑡))𝑡∈[0,𝑇 ] be solution to the SOC
problem (15.1)-(15.13). Then, there are two processes (𝑝(𝑡), 𝑞(𝑡))𝑡∈[0,𝑇 ] satisfying the adjoint equa-
tion and a terminal condition

⎧{
⎨{⎩

𝑑𝑝(𝑡) = −{ 𝑓𝑥(𝑡, 𝑋∗(𝑡), 𝑈 ∗(𝑡)) + 𝑝(𝑡)𝑔𝑥(𝑡, 𝑋∗(𝑡), 𝑈 ∗(𝑡)) + 𝑞(𝑡)𝜎𝑥(𝑡, 𝑋∗(𝑡))} 𝑑𝑡 + 𝑞(𝑡)𝑑𝑊(𝑡)
𝑝(𝑇 ) = 0

  and, defining the Hamiltonian function by

𝐻(𝑡, 𝑥, 𝑢, 𝑝, 𝑞) = 𝑓(𝑡, 𝑥, 𝑢) + 𝑝 𝑔(𝑡, 𝑥, 𝑢) + 𝑞 𝜎(𝑡, 𝑥),

  the optimal control satisfies for the realizations of the state and the control variables 𝑋∗(𝑡) = 𝑥
and 𝑈 ∗(𝑡) = 𝑢,

𝐻(𝑡, 𝑥∗, 𝑢∗, 𝑝, 𝑞) = max
𝑢

𝐻(𝑡, 𝑥∗, 𝑢, 𝑝, 𝑞)
 

The proof is in (Yong and Zhou, 1999, p.123-137)
If function 𝐻(⋅) is differentiable for every 𝑢, then a necessary condition for the maximum is

𝜕𝐻(𝑡, 𝑥∗, 𝑢∗, 𝑝, 𝑞)
𝜕𝑢   = 0.
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15.3.2 Volatility dependent on the control variable

Proposition 3. Stochastic PMP Let the processes (𝑋∗(𝑡), 𝑈 ∗(𝑡))𝑡∈[0,𝑇 ] be solution to the SOC
problem (15.1)-(15.2). Then, there are four processes (𝑝(𝑡), 𝑞(𝑡), 𝑃 (𝑡), 𝑄(𝑡))𝑡∈[0,𝑇 ] satisfying the two
adjoint equations and associated terminal conditions

⎧{
⎨{⎩

𝑑𝑝(𝑡) = −{ 𝑓𝑥(𝑡, 𝑋∗(𝑡), 𝑈 ∗(𝑡)) + 𝑝(𝑡)𝑔𝑥(𝑡, 𝑋∗(𝑡), 𝑈 ∗(𝑡)) + 𝑞(𝑡)𝜎𝑥(𝑡, 𝑋∗(𝑡), 𝑈 ∗(𝑡))} 𝑑𝑡 + 𝑞(𝑡)𝑑𝑊(𝑡)
𝑝(𝑇 ) = 0

  and

⎧{{
⎨{{⎩

𝑑𝑃(𝑡) = −{ 𝑓𝑥𝑥(𝑡, 𝑋∗(𝑡), 𝑈 ∗(𝑡)) + 2𝑃(𝑡)𝑔𝑥 (𝑡, 𝑋∗(𝑡), 𝑈 ∗(𝑡)) + 𝑃(𝑡) (𝑔𝑥(𝑡, 𝑋∗(𝑡), 𝑈 ∗(𝑡)))2 +
+2𝑄(𝑡)𝜎𝑥(𝑡, 𝑋∗(𝑡), 𝑈 ∗(𝑡))} 𝑑𝑡 + 𝑄(𝑡)𝑑𝑊(𝑡)

𝑃 (𝑇 ) = 0

  and, defining the Generalized Hamiltonian function

𝐺(𝑡, 𝑥, 𝑢, 𝑝, 𝑃 ) = 𝑓(𝑡, 𝑥, 𝑢) + 𝑝𝑔(𝑡, 𝑥, 𝑢) + 1
2𝜎2(𝑡, 𝑥, 𝑢)𝑃

  the optimal control satisfies locally 𝑋∗(𝑡) = 𝑥∗ and 𝑈 ∗(𝑡) = 𝑢∗ such that defining

ℋ(𝑡, 𝑥∗, 𝑢) = 𝐺(𝑡, 𝑥∗, 𝑢, 𝑝, 𝑃 ) + 𝜎(𝑡, 𝑥∗, 𝑢) (𝑞 − 𝑃𝜎(𝑡, 𝑥∗, 𝑢∗))

  it satisfies
ℋ(𝑡, 𝑥∗, 𝑢∗) = max

𝑢
ℋ(𝑡, 𝑥∗, 𝑢)

 

The proof is in (Yong and Zhou, 1999, p.123-137)

15.3.3 Economic applications using stochastic maximum principle

We present next two applications of the stochastic PMP: a stochastic endogenous growth model and,
again, the Merton model. In the first case the control variable does not affect the volatility term
and in the second it does. This means that we use Proposition 2 in the first case and Proposition
3 in the second.

Application: the stochastic 𝐴𝐾 model

This is a stochastic version of the simplest endogenous growth model:

max
𝐶(.)

∫
𝑇

0
ln (𝐶(𝑡))𝑒−𝜌𝑡𝑑𝑡

  subject to
𝑑𝐾(𝑡) = (𝜇𝐾(𝑡) − 𝐶(𝑡)) 𝑑𝑡 + 𝜎𝐾(𝑡)𝑑𝑊(𝑡) (15.14)
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𝐾(0) = 𝑘0

Observe that, as in this case the volatility term is independent of the control variable, 𝐶, we use
proposition 2.

The adjoint equation is

⎧{
⎨{⎩

𝑑𝑝(𝑡) = − (𝜇𝑝(𝑡) + 𝜎𝑞(𝑡)) 𝑑𝑡 + 𝑞(𝑡)𝑑𝑊(𝑡), 𝑡 ∈ (0, 𝑇 )
𝑝(𝑇 ) = 0

  and the Hamiltonian is

𝐻(𝑡, 𝑐, 𝑘, 𝑝, 𝑞) = ln (𝑐)𝑒−𝜌𝑡 + 𝑝(𝜇𝑘 − 𝑐) + 𝑞𝜎𝑘.

  We determine optimal consumption such that 𝐶∗ = 𝑐∗ by making 𝜕𝐻
𝜕𝑐 = 0. Therefore,

𝐶∗(𝑡) = (𝑝(𝑡)𝑒𝜌𝑡)−1 .

  Consumption is a stochastic process, depending on 𝑝. Using Itô’s lemma yields

𝑑𝐶∗(𝑡) = −𝜌𝑒−𝜌𝑡

𝑝(𝑡) 𝑑𝑡 − 𝑒−𝜌𝑡

𝑝(𝑡)2 𝑑𝑝(𝑡) + 𝑒−𝜌𝑡

𝑝(𝑡)3 (𝑑𝑝(𝑡))2

= 𝐶∗(𝑡) (−𝜌𝑑𝑡 − 𝑑𝑝(𝑡)
𝑝(𝑡) + (𝑑𝑝(𝑡)

𝑝(𝑡) )
2
)

= 𝐶∗(𝑡) [(𝜇 − 𝜌 + 𝜎 𝑞(𝑡)
𝑝(𝑡) + (𝑞(𝑡)

𝑝(𝑡))
2
) 𝑑𝑡 − 𝑞(𝑡)

𝑝(𝑡)𝑑𝑊(𝑡)]  

 
We have a stochastic differential equation for 𝑝(.) but we do not have one equation allowing for

the determination of 𝑞(.). Based on our knowledge of the related deterministic model, we introduce
a trial relationship

𝐶(𝑡) = 𝜙 𝐾(𝑡)
  where 𝜙 is a constant to be determined. Applying the Itô’s lemma we have

𝑑𝐶(𝑡) = 𝜙 𝑑𝐾(𝑡)
= 𝜙 ((𝜇𝐾(𝑡) − 𝐶(𝑡)) 𝑑𝑡 + 𝜎𝐾(𝑡)𝑑𝑊(𝑡))

  If we match the deterministic and the stochastic components of the two equations for 𝐶, we have,
for any realization of 𝐶(𝑡) = 𝑐, 𝐾(𝑡) = 𝑘, 𝑝(𝑡) = 𝑝, and 𝑞(𝑡) = 𝑞

⎧{{
⎨{{⎩

𝑐 (𝐴 − 𝜌 + 𝜎 𝑞
𝑝 + (𝑞

𝑝)
2
) = 𝜙 (𝜇 𝑘 − 𝑐)

−𝑐 𝑞
𝑝 = 𝜙 𝜎 𝑘

  that would hopefully allow for the determination of the two unknowns, the realization 𝑞 and the
parameter 𝜙. Solving the system we get 𝑞 = −𝜎𝑝 and 𝜙 = 𝜌. Therefore,

𝐶∗(𝑡) = 𝜌𝐾∗(𝑡)
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  substituting in equation (15.14) yields

𝑑𝐾∗(𝑡) = 𝐾∗(𝑡) ((𝜇 − 𝜌)𝑑𝑡 + 𝜎𝑑𝑊(𝑡))

  Therefore
𝐾∗(𝑡) = 𝑘0𝑒(𝜇−𝜌− 1

2 𝜎2)𝑡+𝜎𝑊(𝑡)

  and
𝐶∗(𝑡) = 𝜌𝑘0𝑒(𝜇−𝜌− 1

2 𝜎2)𝑡+𝜎𝑊(𝑡)

  meaning that:

1. consumption and capital accumulation are perfectly correlated;

2. they both follow a log-normal process with mean, where

𝔼[𝐾(𝑡)]  = 𝑘0𝑒(𝜇−𝜌− 1
2 𝜎2)𝑡

3. meaning that there wil be long-run growth if 𝜇 − 𝜌 − 1
2𝜎2 > 0 that is if volatility does not

affect much total factor productivity.

The Merton (1990) model

Next we consider again the problem of maximizing the intertemporal utility functional (15.8) subject
to the stochastic differential equation (15.7). Differently from the previous presentation of the
Merton’s model, we now assume that there is no non-financial income, that is 𝑦 = 0 and the utility
function is logarithmic.

We consider the problem

max
𝐶.𝑤

𝔼0 [  ∫
∞

0
ln (𝐶(𝑡))𝑒−𝜌𝑡𝑑𝑡]  

subject to budget constraint, represents the dynamics of financial net wealth 𝑁 ,

𝑑𝑁(𝑡) = [  (𝑟 + (𝜇 − 𝑟)𝑤) 𝑁 − 𝐶]  𝑑𝑡 + 𝜎𝑤𝑁𝑑𝑊(𝑡)

   and 𝑁(0) = 𝑛0 is given and perfectly observed.
In this case there are two control variables, 𝐶 and 𝑤, but one control variable, 𝑤, affects the

volatility term. Therefore, we have to apply Proposition 3.
The adjoint equations are

⎧{
⎨{⎩

𝑑𝑝(𝑡) = − [(𝑟 + (𝜇 − 𝑟)𝑤(𝑡)) 𝑝(𝑡) + 𝜎𝑤(𝑡)𝑞(𝑡)] 𝑑𝑡 + 𝑞(𝑡)𝑑𝑊(𝑡)
lim𝑡→∞ 𝑝(𝑡) = 0

  and

 
⎧{
⎨{⎩

𝑑𝑃(𝑡) = − [2(𝑟 + (𝜇 − 𝑟)𝑤(𝑡))𝑃(𝑡) + (𝑟 + (𝜇 − 𝑟)𝑤(𝑡))
2
𝑃(𝑡) + 2𝜎𝑤(𝑡)𝑄(𝑡)] 𝑑𝑡 + 𝑄(𝑡)𝑑𝑊(𝑡)

lim𝑡→∞ 𝑃 (𝑡) = 0.
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  To find the optimal controls we write the generalized Hamiltonian

𝐺(𝑡, 𝑁, 𝐶, 𝑤, 𝑝, 𝑃 ) = 𝑒−𝜌𝑡 ln (𝐶) + 𝑝 [  (𝑟 + (𝜇 − 𝑟)𝑤) 𝑁 − 𝐶]   + 1
2𝜎2𝑤2𝑁2𝑃

  and
ℋ(𝑡, 𝑁, 𝐶, 𝑤) = 𝐺(𝑡, 𝑁, 𝐶, 𝑤, 𝑝, 𝑃 ) + 𝜎𝑤𝑁 (𝑞 − 𝑃𝜎𝑤∗𝑁) .

  The optimal controls, 𝐶∗ and 𝑤∗ are found by maximizing function ℋ(𝑡, 𝑁, 𝐶, 𝑤) for 𝐶 and 𝑤.
Therefore, we find

𝐶∗(𝑡) = 𝑒−𝜌𝑡𝑝(𝑡)−1 (15.15)

  and the condition

𝑝(𝑡)(𝜇 − 𝑟)𝑁 ∗(𝑡) + 𝑤∗(𝑡)𝜎2𝑁 ∗(𝑡)2𝑃(𝑡) + 𝜎𝑁 ∗(𝑡) (𝑞(𝑡) − 𝜎𝑤∗(𝑡)𝑁 ∗(𝑡)𝑃 (𝑡)) = 0

  which is equivalent to
𝑝(𝑡)(𝜇 − 𝑟)𝑁 ∗(𝑡) + 𝜎𝑞(𝑡)𝑁 ∗(𝑡) = 0.

Observe that the dual variables 𝑃 and 𝑄 do not influence the behavior of 𝑝 and 𝑞, and therefore
do not influence the solution of 𝐶. From the last equation, we find

𝑞(𝑡) = −𝑝(𝑡) (𝜇 − 𝑟
𝜎 ) ,

  and, substituting in the adjoint equation,

𝑑𝑝(𝑡) = −𝑝(𝑡) (𝑟𝑑𝑡 + (𝜇 − 𝑟
𝜎 ) 𝑑𝑊(𝑡)) .

  Observe that the structure of the model is such that the shadow value of volatility functions 𝑃
and 𝑄 have no effect in the shadow value functions associated with the drift component 𝑝 and 𝑞,
which simplifies the solution.

Applying the Itô’s formula to consumption (15.15), and using this expression for the adjoint
variable 𝑞, we find

𝑑𝐶(𝑡) = −𝜌𝐶(𝑡)𝑑𝑡 − 𝐶(𝑡)
𝑝(𝑡) 𝑑𝑝(𝑡) + 𝐶(𝑡)

𝑝2(𝑡)(𝑑𝑝(𝑡))2 =

= −𝜌𝐶(𝑡)𝑑𝑡 + 𝐶(𝑡) (𝑟𝑑𝑡 + (𝜇 − 𝑟
𝜎 ) 𝑑𝑊(𝑡)) + 𝐶(𝑡)  (𝜇 − 𝑟

𝜎 )
2

𝑑𝑡 =

= 𝐶(𝑡) {(𝑟 − 𝜌 + (𝜇 − 𝑟
𝜎 )

2
) 𝑑𝑡 + (𝜇 − 𝑟

𝜎 ) 𝑑𝑊(𝑡)} . 

  Now, we conjecture that consumption is a linear function of net wealth 𝐶 = 𝜉𝑁 . If this is the
case this would allow us to obtain the optimal portfolio composition 𝑤∗. If the conjecture is right
then we will also have

𝑑𝐶(𝑡) = 𝜉𝑑𝑁(𝑡)
= 𝜉𝑁(𝑡) [  (𝑟 + (𝜇 − 𝑟)𝑤 − 𝜉)  𝑑𝑡 + 𝜎𝑤𝑑𝑊(𝑡)]  
= 𝐶(𝑡) [  (𝑟 + (𝜇 − 𝑟)𝑤 − 𝜉)  𝑑𝑡 + 𝜎𝑤𝑑𝑊(𝑡)]  
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  This is only consistent with the previous derivation if

⎧{
⎨{⎩

𝑟 − 𝜌 + (𝜇 − 𝑟
𝜎 )

2
= 𝑟 + (𝜇 − 𝑟)𝑤 − 𝜉

𝜇 − 𝑟
𝜎 = 𝜎𝑤

  Solving for 𝜉 and 𝑤 we obtain the optimal controls

𝐶∗(𝑡) = 𝜌𝑁 ∗(𝑡) (15.16)
𝑤∗(𝑡) = 𝜇 − 𝑟

𝜎2 (15.17)

Substituting in the budget constraint we have the optimal net wealth process

𝑑𝑁 ∗(𝑡)
𝑁 ∗(𝑡)   = 𝜇𝑛 𝑑𝑡 + 𝜎𝑛𝑑𝑊(𝑡)

  where

𝜇𝑛 = 𝑟 − 𝜌 + (𝜇 − 𝑟
𝜎 )

2
(15.18)

𝜎𝑛 = 𝜇 − 𝑟
𝜎 (15.19)

which can be explicitly solved with the initial condition 𝑁 ∗(0) = 𝑛0. We also find that

𝑑𝐶∗(𝑡)
𝐶∗(𝑡)   = 𝜇𝑛 𝑑𝑡 + 𝜎𝑛𝑑𝑊(𝑡)

  the rates of return for consumption and wealth are perfectly correlated.

15.4 References

• Application to economics: Malliaris and Brock (1982), Chang (2004), Stokey (2009)

• Applications to finance: asset pricing Björk (2004) and Cvitanić and Zapatero (2004) , credit
risk Bielecki and Rutkowski (2004). Advanced Pham (2009).

• Solution by DP methods: Fleming and Rishel (1975) and Seierstad (2009)

• Pontryiagin’s principle for SDE: Bensoussan (1988), (Yong and Zhou, 1999, chap. 3)

• A survey on stochastic control: Kushner (2014),
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