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1 General
1. The diffusion equation is

dX(t) = γX(t)dt+ σX(t)dW (t)

  for X(0) = x0.

(a) Prove that the solution is X(t) = x0e
(γ−σ2/2)t+σW (t)

(b) Find E[X(t)|X(0) = x0] and V[X(t)|X(0) = x0].
(c) Derive the backward Kolmogorov equation for the probability for X(T ) ≤ 2x

assuming that X(t) = x

(d) Derive the forward Kolmogorov equation for the density associated to X(t) =
x > 0, assuming that X(0) = 0.

2. Consider the diffusion equation

dX(t) = γX(t)dt+ σdW (t)

  where {W (t)} is a standard Brownian motion.

(a) Let X(0) = x0 be known. Find the solution of the initial value problem.
(b) Find E[X(t)|X(0) = x0] and V[X(t)|X(0) = x0].
(c) Write the forward Kolmogorov equation for the density associated to X(t) = x.

Provide an intuition for this equation.

3. Consider the diffusion equation

dX(t) =
(
σ0 + σ1X(t)

)
dW (t)

  where {W (t)} is a standard Brownian motion.
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(a) Let X(0) = x0 be known. Find the solution of the initial value problem.
(b) Write the forward Kolmogorov equation for the density associated to X(t) = x.

Solve it.
(c) Find E[X(t)|X(0) = x0] and V[X(t)|X(0) = x0].

4. Consider the problem

dX(t) = µdt+ σ
√
X(t) dW (t), t > 0

X(0) = x0

  where {W (t)} is a standard Brownian motion, and µ and σ are constants.

(a) Find the process for Y (t) =
√
X(t).

(b) Write the Fokker-Planck-Kolmogorov for P[X(t) = x|X(0) = x0]. Solve it.
(c) Find E[X(t)|X(0) = x0] and V[X(t)|X(0) = x0].

5. Consider the diffusion equation

dX(t) = (1−X(t))dt+ dW (t), t ∈ [0,∞)

  where {W (t)} is a standard Wiener process.

(a) Let X(0) = 0. Find the solution of the initial value problem.
(b) Find E[X(t)|X(0) = 0] and V[X(t)|X(0) = 0].
(c) Write the forward Kolmogorov equation for the density associated to X(t) = x.

Provide an intuition for this equation.

6. Consider the diffusion equation

dX(t) = −X(t)dt+ dW (t), t ∈ [0,∞)

  where {W (t)} is a standard Wiener process.

(a) Let X(0) = x0, where x0 is a real number. Find the solution to the initial value
problem.

(b) Write the forward Fokker-Planck-Kolmogorov (FPK) for the density associated
to X(t) = x, conditional on X(0) = x0, that is p(t, x) = P[X(t) = x |X(0) = x0].

(c) Let P (t, s) = F [p(t, x)] be the Fourier transform of p(t, w). Find P (t, s), which is
the solution to the transformed FPK equation together with the initial condition
P (0, s) = F [δ(x − x0)] = e−2π i s x0(tip: F [x ∂xp(t, x)] = −

(
P (t, s) + s ∂sP (t, s)

)
and F [∂xxp(t, x)] = −(2π s)2 P (t, s)).

7. Consider the stochastic differential equation

dX(t) = (a−X(t))dt+ b dW (t), t ∈ [0,∞)

  where
(
W (t)

)
t≥0

is a standard Wiener process, and a and b are positive constants.
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(a) Let X(0) = a. Find the solution of the initial value problem (hint: use the
transformation Y (t) = X(t) et).

(b) Write the Fokker-Planck-Kolmogorov equation for P[X(t) = x|X(0) = a]. Solve
it.

(c) Find E[X(t)|X(0) = a] and V[X(t)|X(0) = a]. Provide an intuition for their
asymptotic values (i.e., for their limit when t → ∞).

8. Consider the following problem

dX(t) =
(σ
2

)2
dt+ σ

√
X(t) dW (t), t ∈ (0, T ]

X(T ) = a2,

where {W (t)} is a standard Brownian motion, and σ, a and T are positive numbers.
In order to solve the problem, consider the following steps:

(a) Find the process for Y (t) =
√
X(t) by using Itô’s lemma.

(b) Find the general solution for X(t).
(c) Find the particular solution to the proposed problem.

2 Economic applications
1. The Vasicek 1977 (or Ornstein-Uhlenbeck) process is the solution of the equation

dX(t) = θ(µ−X(t))dt+ σdW (t)

  for X(0) = x0.

(a) Prove that the solution is

X(t) = µ+ (x0 − µ)e−θt + σ

∫ t

0
e−θ(t−s)dW (s)

(b) Find E[X(t)|X(0) = x0] and V[X(t)|X(0) = x0].

2. Assume an AK model where Y = A(t)K(t) where the productivity follows a SDE

dA(t) = γdt+ σdW (t)

  and the equilibrium equation is dK(t) = sY (t)dt, and K(0) = k0 given. All the
parameters, γ, σ and s are positive.

(a) Find the solution to the capital process (K(t))t∈R+ .
(b) Write the forward Fokker-Planck-Kolmogorov (FPK) for the density associated to

K(t) = k, conditional on K(0) = k0 > 0, that is p(t, k) = P[K(t) = k |K(0) = k0].
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(c) By solving the FPK equation find the conditional mean and variance of K(t).

3. Consider a stochastic Solow model in which the population is constant and the pro-
duction function is Y (t) = A(t)K(t)αL1−α with =0 < α < 1. The total factor
productivity follows the process

dA(t) = γA(t)dt+ σA(t)dW (t).

  where γ > 0 and σ > 0 and (W (t)) is a Wiener process. The equilibrium in the
product market is given by equation

dK(t)

dt
= sY (t)− δK(t)

  where 0 < s < 1 is the savings rate and δ is the depreciation rate.

(a)  Write the Itô stochastic differential equation for capital in intensive terms k(t) ≡
K(t)/L(t)

(b) Assuming that K(0) = k0 and defining the conditional probability as p(t, k) =
P[K(t) = k|K(0) = k0] write the Fokker-Planck-Kolmogorov equation.

(c) Assume that the SDE you have found in (a) has the form dk = µ(k)dt +
σ(k)dW (t). Consider an approximation of this SDE by the SDE dk = λ (k̄ −
k) dt + σ(k)dW (t), where k̄ is the steady state of the squeleton (i.e., the value
of k > 0 such that µ(k) = 0 and λ =

∂µ

∂k
(k̄) (the derivative evaluated at that

steady state). Find the Fokker-Planck-Kolmogorov equation.
(d) Find the asymptotic moments of the process of the approximated process and

provide an intuition for your results.

4. Consider a stochastic Solow model in which the population is constant and the pro-
duction function is Y (t) = A(t)K(t)αL1−α with =0 < α < 1. The total factor
productivity follows the process

dA(t) = γA(t)dt+ σA(t)dW (t).

  where γ > 0 and σ > 0 and (W (t)) is a Wiener process. The equilibrium in the
product market is given by equation

dK(t)

dt
= sY (t)− δK(t)

  where 0 < s < 1 is the savings rate and δ is the depreciation rate.

(a)  Write the Itô stochastic differential equation for capital in intensive terms k(t) ≡
K(t)/L(t)

(b) Assuming that K(0) = k0 and defining the conditional probability as p(t, k) =
P[K(t) = k|K(0) = k0] write the Fokker-Planck-Kolmogorov equation.
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(c) Assume that the SDE you have found in (a) has the form dk = µ(k)dt +
σ(k)dW (t). Consider an approximation of this SDE by the SDE dk = λ (k̄ −
k) dt + σ(k)dW (t), where k̄ is the steady state of the squeleton (i.e., the value
of k > 0 such that µ(k) = 0 and λ =

∂µ

∂k
(k̄) (the derivative evaluated at that

steady state). Find the Fokker-Planck-Kolmogorov equation.
(d) Find the asymptotic moments of the process of the approximated process and

provide an intuition for your results.
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